Lecture Notes for 3/11

He-Zhe Lin, March 10, 2021
Last Modified: March 17, 2021

1 Exercises on Method of Lagrange Multipliers

1.1 Exercise 14.56 (p.1034)

Fine the absolute maximum and minimum values of f on the set D, where $f(x, y)=4 x y^{2}-x^{2} y^{2}-x y^{3}$ and D is the closed triangular region in the $x y$-plane with vertices $(0,0),(0,6)$ and $(6,0)$.
Sol. First, we find the points whose gradient are zero.

$$
\begin{gathered}
f_{x}=4 y^{2}-2 x y^{2}-y^{3}=y^{2}(2-2 x-y) \\
f_{y}=8 x y-2 x^{2} y-3 x y^{2}=x y(8-2 x-3 y)
\end{gathered}
$$

In the interior of D, we can find that the gradient is zero at $(1,2)$. We further compute the second-order partial derivative

$$
f_{x x}=-2 y^{2}, f_{x y}=8 y-4 x y-3 y^{2}, f_{y y}=8 x-2 x^{2}-6 x y
$$

The determinant at $(1,2)$ is $-8 \times(-6)-(-4)^{2}>0$ and $f_{x x}(1,2)<0$. Hence $(1,2)$ is a local maximizer with maximum 4.
Then we compute the extermum at the boundary.

1. $x=0, y \in[0,6]$, then $f(x, y)=0$.
2. $y=0, x \in[0,6]$, then $f(x, y)=0$.
3. $x+y=6$, we substitute $x=6-y$. the problem is to solve

$$
g(y)=4(6-y) y^{2}-(6-y)^{2} y^{2}-(6-y) y^{3}=2 y^{3}-12 y^{2}, y \in[0,6]
$$

Use closed interval method, we find $g^{\prime}(0)=0$ when $y=4 . g(0)=0, g(4)=-64, g(6)=0$.
In conclusion, the abs. minimum is -64 , when $(x, y)=(2,4)$ and the abs. maximum is 4 , when $(x, y)=(1,2)$.

