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Lecture Notes for 3/4
He-Zhe Lin, March 4, 2021

1 Differentiability of Functions of Several Variables

Theorem If the partial derivatives f, and f, exist near (a,b) and are continuous at (a,b), then f
is differentiable at (a,b).

Proof Please refer to Appendix F in the textbook.

Remark The above theorem is only a sufficient condition. This page shows a function differentiable
at (0,0) with discontinuous partial derivatives.

2 Chain Rules

2.1 Use the above equation to find % and g—;
Loa?+ 2y +322=1.

2. yz+xlny = 22

2.2 Use chain rule to find the indicated partial derivatives.

L T=g50u=pg/r,v=p/gratp=2,q=1r=4.

3 Mean Value Theorem for Two Variables

Theorem Let f : Q — R. Q C R? be an open set. Assume that f is differentiable in . Given
a = (ar,a2),b = (b1,by) €  and denote L(a,b) as the line segment connecting a and b. Assume
L(a,b) C Q. Then there exist ¢ = (¢1,¢3) € L(a,b) such that

flar,a2) — f(bi,b2) = folcr, ca)(ar — by) + fy(er, ca)(ag — ba)

Proof

Let u = (a1 —bl, a9 —bg) and w(t) = (bl +t(a1 —bl), bg +t(CL2 —b2)>, t e [O, 1] SO that W(O) = (bl, bg),
W(1> = ((Il,ag).

We may consider the scalar function

F(t) = f(bi +t(ar — b1),bs + t(az — b))

So that F(l) = f(&l, CLQ), F(O) = f(bl, bg)
Since f is differentiable (also continuous) on L(a,b), F' is continuous on [0,1] and (0,1). By 1-
dimensional MVT, we have that there exist £ € (0,1) such that

F(1) = F(0) = F'(§)(1 - 0) (*)


https://mathinsight.org/differentiable_function_discontinuous_partial_derivatives
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Using chain rule, we compute

F'(t) = f(z,y) = f(b1 +t(a1 — b1), by + t(as — b))
_Ofdx  Ofdy
T Ordt | Oydt
= fa(z,y)(ar — b1) + fy(z,y)(az — by)

Let ¢ = (¢1,¢2) = (b1 + &(ar — by),ba + £(az — by)). We finally obtain

F(l) - F(O) = f(al,(h) - f(bl,bQ) = fx(Cl,Cz)(m - b1) + fy(az - bz)-
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