Lecture Notes for 3/4

He-Zhe Lin, March 4, 2021

1 Differentiability of Functions of Several Variables

Theorem If the partial derivatives f_{x} and f_{y} exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b).
Proof Please refer to Appendix F in the textbook.
Remark The above theorem is only a sufficient condition. This page shows a function differentiable at $(0,0)$ with discontinuous partial derivatives.

2 Chain Rules

2.1 Use the above equation to find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$

1. $x^{2}+2 y^{2}+3 z^{2}=1$.
2. $y z+x \ln y=z^{2}$.
2.2 Use chain rule to find the indicated partial derivatives.
3. $T=\frac{v}{2 u+v}, u=p q \sqrt{r}, v=p \sqrt{q} r$ at $p=2, q=1, r=4$.

3 Mean Value Theorem for Two Variables

Theorem Let $f: \Omega \rightarrow \mathbb{R}$. $\Omega \subset \mathbb{R}^{2}$ be an open set. Assume that f is differentiable in Ω. Given $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in \Omega$ and denote $L(a, b)$ as the line segment connecting a and b. Assume $L(a, b) \subset \Omega$. Then there exist $c=\left(c_{1}, c_{2}\right) \in L(a, b)$ such that

$$
f\left(a_{1}, a_{2}\right)-f\left(b_{1}, b_{2}\right)=f_{x}\left(c_{1}, c_{2}\right)\left(a_{1}-b_{1}\right)+f_{y}\left(c_{1}, c_{2}\right)\left(a_{2}-b_{2}\right)
$$

Proof

Let $u=\left(a_{1}-b_{1}, a_{2}-b_{2}\right)$ and $\omega(t)=\left(b_{1}+t\left(a_{1}-b_{1}\right), b_{2}+t\left(a_{2}-b_{2}\right)\right), t \in[0,1]$. So that $\omega(0)=\left(b_{1}, b_{2}\right)$, $\omega(1)=\left(a_{1}, a_{2}\right)$.
We may consider the scalar function

$$
F(t)=f\left(b_{1}+t\left(a_{1}-b_{1}\right), b_{2}+t\left(a_{2}-b_{2}\right)\right)
$$

So that $F(1)=f\left(a_{1}, a_{2}\right), F(0)=f\left(b_{1}, b_{2}\right)$.
Since f is differentiable (also continuous) on $L(a, b), F$ is continuous on $[0,1]$ and $(0,1)$. By 1dimensional MVT, we have that there exist $\xi \in(0,1)$ such that

$$
\begin{equation*}
F(1)-F(0)=F^{\prime}(\xi)(1-0) \tag{*}
\end{equation*}
$$

Using chain rule, we compute

$$
\begin{aligned}
F^{\prime}(t)=f(x, y) & =f\left(b_{1}+t\left(a_{1}-b_{1}\right), b_{2}+t\left(a_{2}-b_{2}\right)\right) \\
& =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
& =f_{x}(x, y)\left(a_{1}-b_{1}\right)+f_{y}(x, y)\left(a_{2}-b_{2}\right)
\end{aligned}
$$

Let $c=\left(c_{1}, c_{2}\right)=\left(b_{1}+\xi\left(a_{1}-b_{1}\right), b_{2}+\xi\left(a_{2}-b_{2}\right)\right)$. We finally obtain

$$
F(1)-F(0)=f\left(a_{1}, a_{2}\right)-f\left(b_{1}, b_{2}\right)=f_{x}\left(c_{1}, c_{2}\right)\left(a_{1}-b_{1}\right)+f_{y}\left(a_{2}-b_{2}\right) .
$$

