Calculus (109-2) 1

Lecture Notes for 2/25
He-Zhe Lin, February 24, 2021

Thing you have to know
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1 Sketch Quadric Surfaces
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Example 1 Sketch the surface 4% — y? + 222 + 4 = 0.
Sol. Dividing by —4, we first put the equation in standard form
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When z = 0 and z = 0, the traces in yz-planes and xy-planes are
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Both are hyperbolas with axis on y-axis.
As for y = 0, we see that 422 + 222 + 4 = 0 has no solution, so it has no points on zz-plane. When
y = k, the trace is
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which is an ellipse.

Exercise 1 Sketch the surface 2% + 222 — 62 — y + 10 = 0.



Calculus (109-2)

2 Limits of Multivaiable functions
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Example 2 Show that the following limit doesn’t exist.
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Sol. Let f(x,y) = Ysin’r, f(0,y) = 0 for any y, so f(x,y) = 0 as (z,y)

z4+y4
However, if we approach (0,0) along y = x, we have
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3 Partial Derivatives
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— (0,0) along the y-axis.
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