\# ASSIGNMENT 5

7.8.68 Evaluate $\int_{2}^{\infty} \frac{1}{x \sqrt{x^{2}-4}} d x$.
7.8.75 Show that the region $R=\left\{(x, y) \mid x \geq 1,0 \leq y \leq \frac{1}{x}\right\}$ has infinite area but it attains a finite volume by rotating R by the x-axis (Gabriel's horn).

\# TEXTBOOK 7.8

7.8.91 Find the value of the constant C such that the integral

$$
\int_{0}^{\infty}\left(\frac{1}{\sqrt{x^{2}+4}}-\frac{C}{x+2}\right) d x
$$

converges. Evaluate the integral for this value of C.
\# 107 甲
Evaluate $\int_{1}^{\infty} \frac{\tan ^{-1} x}{x^{2}} d x$ and $\int_{-1}^{1} \frac{\tan ^{-1} x}{x^{2}} d x$, respectively

