Notes for 10/22

Application of rates of change

- 5. (12 pts) A baseball diamond is a square with side 27 m. A player runs from the first base to the second base at a rate of 5 m/s.
 - (a) (4 pts) At what rate is the player's distance from the third base changing when the player is 9m from the first base?
 - (b) (4 pts) At what rate is the angle θ changing at the moment in part (a)?
 - (c) (4 pts) The player slides into the second base at a rate of 4.5 m/s. At what rate is the angle θ changing as the player touches the second base?

Ans: (a) $\frac{-10}{\sqrt{13}}$ (b) -5/39 (rad/s) (c) -1/6

Remark on Linearization (Linear approximation)

- Linearization gives us a convenient way to approximate the function values near x_0 .
- $f(x) \approx f(x_0) + f'(x_0)(x x_0)$ when $x x_0$ small.
- 3.10.50 In physics textbooks, the period T of a pendulum of length L is often given at $T \approx 2\pi\sqrt{L/g}$, provided that the pendulum swings through a relatively small arc. In the course of deriving this formula, the equation $a_T = -g \sin \theta$ for the tangential acceleration of the bob of the pendulum is obtained, and then $\sin \theta$ is replaced by θ with the remark that for small angles, $\theta(\text{in radians})$ is very close to $\sin(\theta)$.
 - (a) Verify the linear approximation at 0 for the sine function: $\sin \theta \approx \theta$
 - (b) If $\theta = \pi/18$ (equivalent to 10°) and we approximate $\sin \theta$ by θ , what is the percentage error?
 - (c) Use a graph to determine the values of θ for which $\sin \theta$ and θ differ by less than 2%. What are the values in degrees?
- 3.10.52 Suppose that we don't have a formula g(x) but we know that g(2) = -4 and $g'(x) = \sqrt{x^2 + 5}$ for all x.
 - (a) Use a linear approximation to estimate g(1.95) and g(2.05).
 - (b) Are your estimates in part (a) too large or too small? Explain.

Quick Review of closed interval method

- 1. Compute the derivative of target function: f'(x)
- 2. Find the x in the closed interval such that f'(x) = 0 or DNE. (Such point is called the critical points.)
- 3. Compute the values for critical points and find max/min among them.