An Analysis of the Skype Peer-to-Peer Internet Telephony Protocol

Embedded Systems and Wireless Networking Labs

Ai-Chun Pang Graduate Institute of Networking and Multimedia Dept. of Comp. Sci. and Info. Engr. National Taiwan University

00

NEWS@NTU

References

- S. A. Baset and H. Schulzrinne, "An Analysis of the Skype Peer-to-Peer Internet Telephone Protocol, " Dept. of CS, Columbia University, Sep. 15, 2004.
- Stephanos Androutsellis-Theotokis and Diomidis Spinellis, "A Survey of Peer-to-Peer Content Distribution Technologies," Athens University of Economics and Business, ACM Computing Surveys, December 2004.
- Skype conferencing white paper by PowerModeling
 - <u>http://www.powermodeling.com/files/whitepapers/Conference%20Test%20feb%2009.pdf</u>

NEWS@NTU

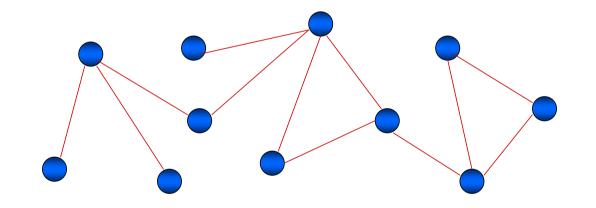
- Skype Explained
 - http://www.skype.com/skype_p2pexplained.html

What's Overlay Network & What's P2P ?

What is P2P?

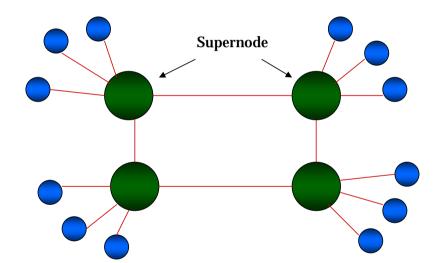
- Distributed systems
- Direct sharing of computer resources
- Without requiring the intermediation or support of a global centralized server or authority.

What is Overlay Network?

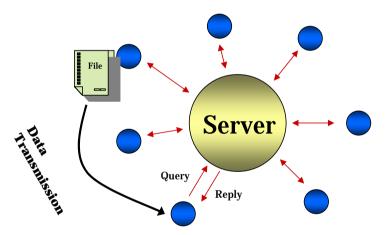

- The operation of any peer-to-peer system relies on a network of peer computers (nodes), and connections (edges) between them.
- This network is formed on top of –and independently from—the underlying physical computer (typically IP) network and is thus referred to as an "overlay" network.

Overlay Network Architecture (1/3)

Purely Decentralized Architectures


• All nodes in the network perform exactly the same tasks, acting both as servers and clients, and there is no central coordination of their activities.

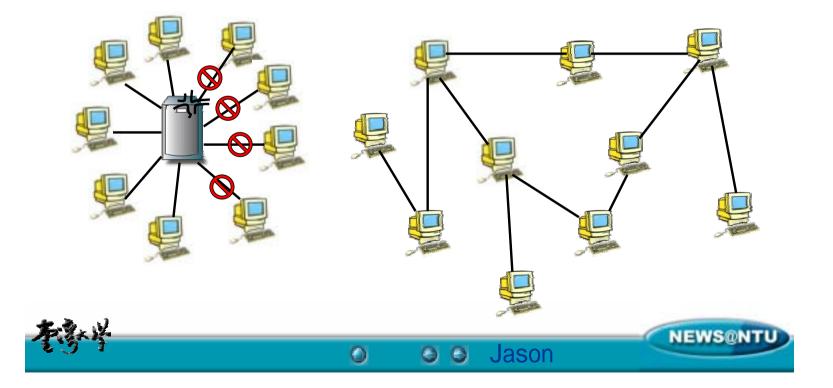
Overlay Network Architecture (2/3)


Partially Centralized Architectures

Overlay Network Architecture (3/3)

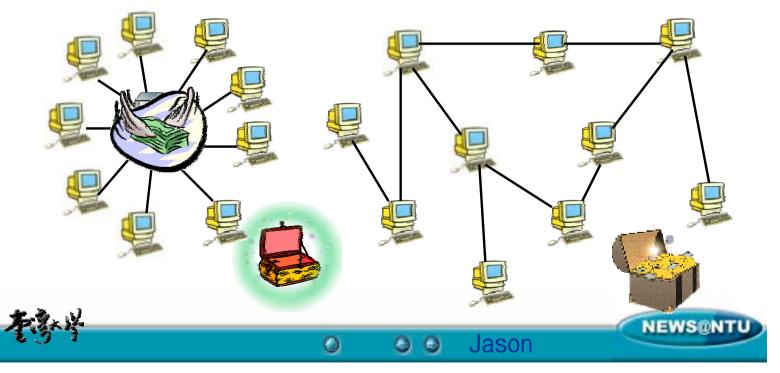
Hybrid Decentralized Architectures

Classification of P2P Applications


- Communication and Collaboration
- Distributed Computation
- Database Systems
- Content Distribution
 - Peer-to-Peer File Exchange Systems
 - Napster : Hybrid decentralized.
 - *KaZaA* : Partially centralized.
 - *Gnutella* : Purely decentralized.

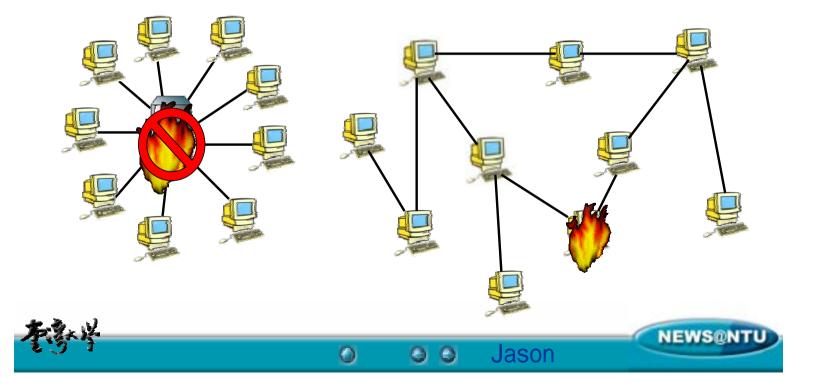
Advantages of P2P (1/3)

Scalability


• A dramatic increase in the number of nodes or documents will have minimal effect on performance and availability.

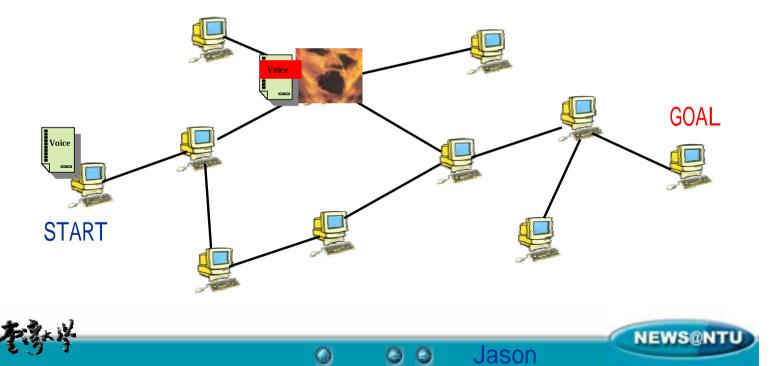
Advantages of P2P (2/3)

Low Cost


• There is no need to buy more special machines to be servers. Every computer can be a server and a client at the same time.

Advantages of P2P (3/3)

Robustness and Reliability


- It could work without centralized server.
- Increased Network Connectivity

Issues of P2P (1/2)

• Security

- Integrity and authenticity.
- Privacy and confidentiality.

Issues of P2P (2/2)

• Performance

• The time required for performing the operations allowed by the system, typically routing, searching, and retrieval of documents.

Fairness

- Ensuring that users offer and consume resources in a fair and balanced manner.
- Resource Management Capabilities

An Example of Voice over Overlay Network

Introduction

- Skype is a peer-to-peer VoIP client developed by KaZaa in 2003
- Skype claims that
 - It can work almost seamlessly across NATs and firewalls
 - It has better voice quality than the MSN and Yahoo IM applications
- The key Skype functions include
 - Login
 - NAT and firewall traversal
 - Call establishment and teardown
 - Media transfer
 - Codecs
 - Conferencing

Skype Network

Any Skype Client (SC) with a public IP address having sufficient CPU, memory, and network bandwidth is a candidate to become a super node (SN)

 \mathbf{a}

NEWS@NTU

ordinary host

super node

neighbour relationships in the Skype network

Key Components of Skype Software [1/2]

- Ports
 - SC opens a TCP and an UDP listening port
 - SC also opens port 80 (HTTP) and port 443 (HTTPS)
 - There is no default TCP or UDP listening port

• Host Cache (HC)

- The HC is a list of super node IP:Port pairs
- A SC stores HC in the Windows registry at HKEY_CURRENT_USER / SOFTWARE / SKYPE / PHONE / LIB / CONNECTION / HOSTCACHE
- HC contains a maximum of 200 entries

Codecs

- The white paper observes that Skype uses **iLBC**, **iSAC**, or a third unknown codec
- Skype codecs allow frequency between 50-8000 Hz to pass through

NEWS@NTU

Key Components of Skype Software [2/2]

Buddy List

- Skype stores its buddy information in the Windows registry
 - Digitally signed and encrypted
- The buddy list is local to one machine and is not stored on a central server

Encryption

- Skype uses AES (Advanced Encryption Standard)
 - 256-bit key (1.1x10⁷⁷ possible keys)
- Skype uses 1536 to 2048 bit RSA to negotiate symmetric AES keys

Experimental Setup

• Version 0.97.0.6

• Latest version 1.0.0.106

Under three different network setups

- **1)** Both Skype users were on machines with public IP address
- 2) One Skype user was behind port-restricted NAT
- 3) Both Skype users were behind port-restricted NAT and UDP-restricted firewall
- Ethereal was used to monitor network traffic
- NetPeeker was used to tune the bandwidth

Skype Functions

- Startup
 - When SC was run for the first time after installation
 - sent a HTTP 1.1 GET request (contains the keyword "installed") to the Skype server
 - During subsequent startups
 - a SC only sent a HTTP 1.1 GET request to determine if a new version is available
- Login
- User Search
- Call Establishment and Teardown
- Media Transfer and Codec
- Keep-alive Messages
 - The SC sent a refresh message to its SN over TCP every 60s

Login

- Login is perhaps the most critical function to the Skype operation
- During this process, a SC
 - Authenticates its user name and password with the login server
 - Advertises its presence to other peers and its buddies
 - Determines the type of NAT and firewall it is behind
 - Discovers online Skype nodes with public IP addresses

Login Server and Bootstrap Super Nodes

Login Server

- The only central component in the Skype network
- IP address: 80.160.91.11
 - ns14.inet.tele.dk and ns15.inet.tele.dk

Bootstrap Super Nodes

- HC was initialized with 7 IP:Port pairs
- Bootstrap SNs are connected to the Internet through 4 ISPs
- If the HC was flushed after the first login, SC was unable to connect to the Skype Network

First-time Login Process [1/2]

- There are only 7 entries in the SC host cache upon installation
- A SC must connect to well known Skype nodes in order to log on to the Skype Network
 - By sending UDP packets to some bootstrap SNs and then wait for their response
 - It is not clear how SC selects among bootstrap SNs to send UDP packets to
 - SC then established a TCP connection with the bootstrap SN that responded

First-time Login Process [2/2]

• A SC running on a machine with public IP address

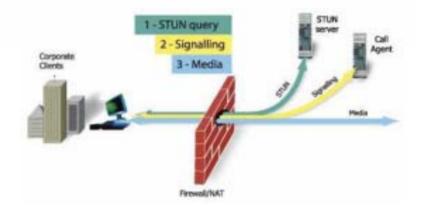
- Exchange some packets with SN over TCP
- Then establishes a TCP connection with the login server
- The TCP connection with the SN persisted as long as SN was alive
- The total data is about 9k bytes

• A SC behind a port-restricted NAT

- Roughly the same as for a SC on a public IP address
- The total data is about 10k bytes

A SC behind a port-restricted NAT and UDPrestricted firewall

- Unable to receive any UDP packets from machines outside the firewall
- It exchanged 8.5k bytes of data


NAT and Firewall Determination

- The authors conjecture that a SC is able to determine at login if it is behind a NAT and firewall
 - By exchanging messages with **its SN** or **some nodes** using a variant of the STUN protocol
- Once determined, the SC stores this information in the Windows registry
- SC refreshes this information periodically

STUN and TURN

- STUN
 - Simple Traversal of UDP through NAT
 - Doesn't work through symmetric NAT

• TURN

• Traversal Using Relay NAT

- Increase latency
- Server load

Login Procedures

- Alternate Node Table
 - SC sends UDP packets to about 20 distinct nodes at the end of login process
 - To advertise its arrival on the network
 - Upon receiving a response from them, SC builds a table of online nodes
 - Alternate node table
 - It is with these nodes a SC can connect to, if its SN becomes unavailable

NEWS@NT

Subsequent Login Process

• Quite similar to the first-time login process

Login Process Time

- Scenario (1) and (2): **3-7** seconds
- Scenario (3): about **34** seconds

User Search

Skype uses its Global Index (GI) technology to search for user

- A distributed algorithm
- Guarantee to find a user if it exits and has logged in during the last 72 hours

• For SC on a public IP address

- SC sent a TCP packet to its SN
- SN gave SC the IP:Port of **4** nodes to query
 - If it could not find the user, it informed the SN over TCP
 - It appears that the SN now asked it to contact **8** different nodes

NEWS@NT

- This process continued until the SC found the user or it determined that the user did not exist
- The search took 3 to 4 seconds

Search Result Caching

Call Establishment and Teardown [1/2]

- The call signaling is always carried over TCP
- For users that are not in the buddy list
 - Call placement = user search + call signaling
- Both users were on public IP address
 - The caller SC established a TCP connection with the callee SC
- The caller was behind port-restricted NAT and callee was on public IP address
 - The caller sent signaling information over TCP to an online Skype node which forwarded it to callee over TCP

NEWS@NT

• The online node also routed voice packets from caller to callee over UDP and vice versa

Call Establishment and Teardown [2/2]

Both users were behind port-restricted NAT and UDP-restricted firewall

- Caller SC sent media over TCP to an online node, which forwarded it to callee SC over TCP and vice versa
- Advantages of having a node route the voice packets from caller and callee
 - It provides a mechanism for users behind NAT and firewall to talk to each other
 - If other users want to participate in a conference, this node serves as a mixer
- Call tear-down

Media Transfer and Codecs [1/2]

- The total uplink and downlink bandwidth used for voice traffic is 5k bytes/s
 - This bandwidth usage corresponds with the Skype claim of 3k-16k bytes/s

No silence suppression is supported in Skype

- It maintains the UDP bindings at NAT
- These packets can be used to play some background noise at the peer

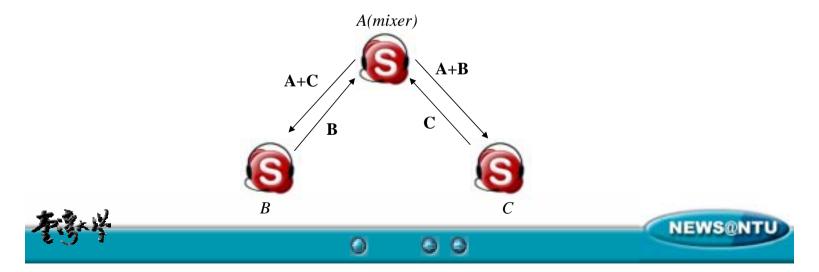
• Skype allows peers to hold a call

• To ensure UDP binding, a SC sends three UDP packets per second to the call peer on average

Media Transfer and Codecs [2/2]

Codec Frequency Range

• The min. and max. audible frequency Skype codecs allow to pass through are 50 Hz and 8000 Hz


Congestion

- Uplink and downlink bandwidth of 2k bytes/s each was necessary for reasonable call quality
- The voice was almost unintelligible at an uplink and downlink bandwidth of 1.5k bytes/s

Conferencing

- A acts as a mixer, mixing its own packets with those of B and sending to C and vice versa
 - The most powerful machine will be elected as conference host and mixer
- Two-way call: 36k bytes/s
- Three-user conference: 54k bytes/s

