Session Initiation Protocol (SIP)
Introduction

- A powerful alternative to H.323
- More flexible, simpler
- Easier to implement
 - Advanced features
- Better suited to the support of intelligent user devices
- A part of IETF multimedia data and control architecture
 - SDP, RTSP (Real-Time Streaming Protocol), SAP (Session Announcement Protocol)
The Popularity of SIP

- Originally Developed in the MMUSIC (Multiparty Multimedia Session Control)
 - A separate SIP working group
 - RFC 2543
 - Many developers
 - The latest version: RFC 3261 (June 2002)

- SIP + MGCP/MEGACO
 - The VoIP signaling in the future

- “bake-offs” or SIP Interoperability Tests
 - The development of SIP and its implementation by system developers has involved a number of events.
 - Various vendors come together and test their products against each other
 - to ensure that they have implemented the specification correctly
 - to ensure compatibility with other implementations
SIP Architecture

- A signaling protocol
 - The setup, modification, and tear-down of multimedia sessions
- SIP + SDP
 - Describe the session characteristics to potential session participants
- Separate signaling and media streams
 - Signaling may pass via one or more proxy or redirect servers
 - Media stream takes a more direct path.
SIP Network Entities [1/4]

- **Clients**
 - User agent clients
 - Application programs sending SIP requests

- **Servers**
 - Responds to clients’ requests

- **Clients and servers may be in the same platform.**
 - Proxy acts as both clients and servers
SIP Network Entities [2/4]

- Four types of servers
 - Proxy servers
 - Act in a similar way to a proxy server used for web access
 - Handle requests or forward requests to other servers after some translation
 - Can be used for call forwarding, time-of-day routing, or follow-me services

```plaintext
1. Request
   Collins@work.com
2. Request
   Collins@home.net
3. Response
4. Response
```

Caller@work.com

SIP Proxy

Collins@home.net
SIP Network Entities [3/4]

- Redirect servers
 - Accept SIP requests
 - Map the destination address to zero or more new addresses
 - Return the new address(es) to the originator of the request

1. Request
 Collins@work.com

2. Moved temporarily
 Contact: Collins@home.net

3. ACK

4. Request
 Collins@home.net

5. Response

Redirect Server
SIP Network Entities [4/4]

- A user agent server
 - Accepts SIP requests and contacts the user
 - The user responds with an SIP response
 - A SIP device
 - E.g., a SIP-enabled telephone

- A registrar (location server)
 - Accepts SIP REGISTER requests
 - Indicating that the user is at a particular address
 - Personal mobility
 - Typically combined with a proxy or redirect server
SIP Call Establishment

- A SIP call establishment is simple.
- A number of interim responses may be made to the INVITE prior to the called party accepting the call.

```
+-------------------+          +-------------------+          
|                   |          |                   |          
| INVITE            |          | Ringing           |          
|                   |          |                   |          
| a                 |          | OK                |          
|                   |          |                   |          
| b                 |          | ACK               |          
|                   |          |                   |          
| c                 |          | Conversation      |          
|                   |          |                   |          
| d                 |          |                   |          
|                   |          |                   |          
| e                 |          |                   |          
|                   |          |                   |          
| f                 |          | BYE               |          
|                   |          |                   |          
| g                 |          | OK                |          
|                   |          |                   |          
```
SIP Advantages

- Attempt to keep the signaling as simple as possible
- Offer a great deal of flexibility
 - Does not care what type of media is to be exchanged during a session or the type of transport to be used for the media
- Various pieces of information can be included within the messages
 - Including non-standard information
 - Text-based encoding
 - Enable the users to make intelligent decisions
 - The control of the intelligent features is placed in the hands of the customer, not the network operator.
 - E.g., SUBJECT header
Call Completion to Busy Subscriber Service

INVITE

Busy (Try at 4pm)

ACK

INVITE

Ringing

OK

ACK

Conversation

BYE

OK
Overview of SIP Messaging Syntax

- **Text-based**
 - Similar to HTTP
 - Disadvantage – more bandwidth consumption

- **SIP messages**
 - \texttt{message} = \texttt{start-line}

 *message-header CRLF

 [message-body]
 - \texttt{start-line} = \texttt{request-line} | \texttt{status-line}

- Request-line specifies the type of request
- The response line indicates the success or failure of a given request.
- **Message headers**
 - Additional information of the request or response
 - E.g.,
 - The originator and recipient
 - Retry-after header
 - Subject header
- **Message body**
 - Describe the type of session
 - The most common structure for the message body is SDP (Session Description Protocol).
 - Could include an ISDN User Part message
 - Examined only at the two ends
SIP Requests [1/2]

- **Method SP Request-URI SP SIP-version CRLF**
- **Request-URI**
 - The SIP address of the destination
- **Methods**
 - INVITE, ACK, OPTIONS, BYE, CANCLE, REGISTER
 - INVITE
 - Initiate a session
 - Information of the calling and called parties
 - The type of media
 - ~IAM (initial address message) of ISUP
 - ACK only when receiving the final response
SIP Requests [2/2]

- **BYE**
 - Terminate a session
 - Can be issued by either the calling or called party

- **OPTIONS**
 - Query a server as to its capabilities
 - To support a particular type of media

- **CANCEL**
 - Terminate a pending request
 - Pending Request: an INVITE did not receive a final response

- **REGISTER**
 - Log in and register the address with a SIP server
 - “all SIP servers” – multicast address (224.0.1.175)
 - Can register with multiple servers
 - Can have several registrations with one server
“One Number” Service
SIP INFO Method

- Specified in RFC 2976
 - For transferring information during an ongoing session
- The transfer of DTMF digits
- The transfer of account balance information
 - Pre-paid service
- The transfer of mid-call signaling information
SIP Responses

- SIP Version SP Status Code SP Reason-Phrase CRLF
- Reason-Phrase
 - A textual description of the outcome
 - Could be presented to the user
- Status code
 - A three-digit number
 - 1XX Informational
 - 2XX Success (only code 200 is defined)
 - 3XX Redirection
 - 4XX Request Failure
 - 5XX Server Failure
 - 6XX Global Failure
- All responses, except for 1XX, are considered final
 - Should be ACKed
SIP Addressing

- SIP URLs (Uniform Resource Locators)
 - user@host
 - sip:collins@home.net
 - sip:3344556789@telco.net
Message Headers

- Provide further information about the message
- E.g.,
 - To: header in an INVITE
 - The called party
 - From: header
 - The calling party
- Four main categories
 - General, Request, Response, and Entity headers
General Headers

- Used in both requests and responses
- Basic information
 - E.g., To:, From:, Call-ID: (uniquely identifies a specific invitation to a session), ...
- Contact:
 - Provides a URL for use in future communication regarding a particular session
 - **Examples 1**: In a SIP INVITE, the Contact header might be different from the From header.
 - An third-party administrator initiates a multiparty session.
 - **Example 2**: Used in response, it is useful for directing further requests directly to the called user.
 - **Example 3**: It is used to indicate a more appropriate address if an INVITE issued to a given URI failed to reach the user.
Request Headers
- Apply only to SIP requests
- Addition information about the request or the client
- E.g.,
 - Subject:
 - Priority: urgency of the request (emergency, urgent, normal, or non-urgent)

Response Headers
- Further information about the response that cannot be included in the status line
- E.g.,
 - Unsupported
 - Retry-After
Entity Headers

- Indicate the type and format of information included in the message body
- Content-Length: the length of the message body
- Content-Type: the media type of the message body
 - E.g., application/sdp
- Content-Encoding: for message compression
- Content Disposition: how a message part should be interpreted
 - session, alert, render …
Examples of SIP Message Sequences

- **Via:**
- **From:** and **To:**
- **Call-ID:**
 - host-specific
- **Contact:** (for future SIP message transmission)
 - *
- **Content-Length:**
 - Zero, no msg body
- **CSeq:**
 - A response to any request must use the same value of CSeq as used in the request.
- **Expires:**
 - TTL
 - 0, unreg
Invitation

- A two-party call
 - Subject: optional
 - Content-Type: application/sdp
- A dialog ID
 - To identify a peer-to-peer relationship between two user agents
 - Tag in From
 - Tag in To
 - Call-ID
Termination of a Call

- CSeq has changed.

Daniel<sip:Collins@work.com> Boss<sip:Manager@station2.work.com>

a
BYE sip:manager@work.com SIP/2.0
Via: SIP/2.0/UDP station1.work.com;
branch=z9hG4bK123
Max-Forwards: 70
From: Daniel<sip:Collins@work.com>; tag=44551
To: Boss<sip:Manager@station2.work.com>; tag=11222
Call-ID: 123456@station1.work.com
CSeq: 2 BYE
Content-Length: 0

b
SIP/2.0 200 OK
Via: SIP/2.0/UDP station1.work.com;
branch=z9hG4bK123
From: Daniel<sip:Collins@work.com>; tag=44551
To: Boss<sip:Manager@station2.work.com>; tag=11222
Call-ID: 123456@station1.work.com
CSeq: 2 BYE
Content-Length: 0
Redirect Servers

- An alternative address
 - 302, Moved temporarily
- Another INVITE
 - Same Call-ID
 - CSeq ++
Proxy Servers [1/2]

- Sits between a user-agent client and the far-end user-agent server
- Numerous proxies can reside in a chain between the caller and callee.
 - The most common scenario will have at least two proxies: one at the caller and one at the callee end.
 - It is likely that only the last proxy in the chain changes the Request-URI.
 - The other proxies in the chain would simply use the domain part of the received Request-URI as input to a location function (e.g., DNS) to determine the next hop.
Proxy Servers [2/2]

- **Via:**
 - The path taken by a request
 - Loop detected, 482 (status code)
 - For a response
 - The 1st Via: header is checked and removed.
 - The second Via: header is checked.
 - If it exists, perform forwarding.
 - If not, the response is destined to the proxy itself.
 - The response finds its way back to the originator of the request.
 - **Branch:** used to distinguish between multiple responses to the same request
 - Forking Proxy: Issue a single request to multiple destinations
Proxy State [1/2]

- Can be either stateless or stateful
- If stateless, the proxy takes an incoming request, performs whatever translation and forwards the corresponding outgoing request and forgets anything.
 - Retransmission takes the same path (no change on retransmission).
- If stateful, the proxy remembers incoming requests and corresponding outgoing request.
 - The proxy is able to act more intelligently on subsequent requests and responses related to the same session.
Proxy State [2/2]

- **Record-Route: and Route: Headers**
 - The subsequent requests may not pass through the same path as the initial request/response.
 - E.g., use Contact:
 - A Proxy might require that it remains in the signaling path for all subsequent requests to provide some advanced service.
 - In particular for a stateful proxy
 - Insert its address into the Record-Route: header
 - The response includes the Record-Route: header
 - The information contained in the Record-Route: header is used in the subsequent requests related to the same call.
 - The Route: header is used to record the path that the request is enforced to pass.
 - lr (loose routing) vs. sr (strict routing)
e
SIP/2.0 200 OK
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7890
Record-route: <sip:server.work.com;l>; tag=ab12
From: Boss <sip:Manager@home.net>; tag=ab12
To: Daniel <sip:Collins@work.com>; tag=xyz45
Call-ID: 123456@pc1.home.net
CSeq: 1 INVITE
Contact: sip:Collins@station1.work.com

f
ACK sip:Collins@station1.work.com SIP/2.0
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7891
Max-Forwards: 70
Route: <sip:server.work.com;l>; tag=ab12
From: Boss <sip:Manager@home.net>; tag=ab12
To: Daniel <sip:Collins@work.com>; tag=xyz45
Call-ID: 123456@pc1.home.net
CSeq: 1 ACK

ACK sip:Collins@station1.work.com SIP/2.0
Via: SIP/2.0/UDP server.work.com; branch=z9hG4bKxyz2
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7891
Max-Forwards: 69
From: Boss <sip:Manager@home.net>; tag=ab12
To: Daniel <sip:Collins@work.com>; tag=xyz45
Call-ID: 123456@pc1.home.net
CSeq: 1 ACK
Forking Proxy

- A proxy can “fork” requests
- A user is registered at several locations
 - ;branch=xxx
- In order to handle such forking, a proxy must be stateful.