The Session Description Protocol

- The Most Common Message Body
 - Be session information describing the media to be exchanged between the parties
 - SDP, RFC 2327 (initial publication)

- SIP uses SDP in an answer/offer mode.
 - An agreement between the two parties as to the types of media they are willing to share
 - RFC 3264 (An Offer/Answer Model with SDP)
 - To describe how SDP and SIP should be used together
The Structure of SDP

- SDP simply provides a format for describing session information to potential session participants.

- Text-based Protocol

- The Structure of SDP
 - Session Level Info
 - Name of the session
 - Originator of the session
 - Time that the session is to be active
 - Media Level Info
 - Media type
 - Port number
 - Transport protocol
 - Media format
SDP Syntax

- A number of lines of text
- In each line
 - field=value
 - field is exactly one character (case-significant)
- Session-level fields
- Media-level fields
 - Begin with media description field (m=)
Mandatory Fields

- **v**=(protocol version)
- **o**=(session origin or creator)
- **s**=(session name), a text string
 - For multicast conference
- **t**=(time of the session), the start time and stop time
 - For pre-arranged multicast conference
- **m**=(media)
 - Media type
 - The transport port
 - The transport protocol
 - The media format, an RTP payload format
Some optional fields can be applied at both session and media levels.
- The value applied at the media level overrides that at the session level

- `i=(session information)`
 - A text description
 - At both session and media levels
 - It would be somewhat superfluous, since SIP already supports the Subject header.

- `u=(URI of description)`
 - Where further session information can be obtained
 - Only at session level
Optional Fields [2/3]

- **e**=(e-mail address)
 - Who is responsible for the session
 - Only at the session level

- **p**=(phone number)
 - Only at the session level

- **c**=(connection information)
 - Network type, address type and connection address
 - At session or media level

- **b**=(bandwidth information)
 - In kilobits per second
 - At session or media level
Optional Fields [3/3]

- **r=(repeat times)**
 - For regularly scheduled session a session is to be repeated
 - How often and how many times

- **z=(timezone adjustments)**
 - For regularly scheduled session
 - Standard time and daylight savings time

- **k=(encryption key)**
 - An encryption key or a mechanism to obtain it for the purposes of encrypting and decrypting the media
 - At session or media level

- **a=(attributes)**
 - Describe additional attributes
Ordering of Fields

- **Session Level**
 - Protocol version (v)
 - Origin (o)
 - Session name (s)
 - Session information (i)
 - URI (u)
 - E-mail address (e)
 - Phone number (p)
 - Connection info (c)
 - Bandwidth info (b)
 - Time description (t)
 - Repeat info (r)
 - Time zone adjustments (z)
 - Encryption key (k)
 - Attributes (a)

- **Media level**
 - Media description (m)
 - Media info (i)
 - Connection info (c)
 - Optional if specified at the session level
 - Bandwidth info (b)
 - Encryption key (k)
 - Attributes (a)
Subfields [1/3]

- Field = <value of subfield1> <value of subfield2> <value of subfield3>.

- Origin
 - Username, the originator’s login id or “-”
 - session ID
 - A unique ID
 - Make use of NTP timestamp
 - version, a version number for this particular session
 - network type
 - A text string
 - IN refers to Internet
 - address type
 - IP4, IP6
 - address, a fully-qualified domain name or the IP address
Subfields [2/3]

- **Connection Data**
 - The network and address at which media data will be received
 - Network type
 - Address type
 - Connection address

- **Media Information**
 - Media type
 - Audio, video, data, or control
 - Port
 - Format
 - List the various types of media format that can be supported
 - According to the RTP audio/video profile
 - \texttt{m= audio 45678 RTP/AVP 15 3 0}
 - G.728, GSM, G.711
Subfields [3/3]

- Attributes
 - To enable additional information to be included
 - Property attribute
 - a=sendonly
 - a=recvonly
 - value attribute
 - a=orient:landscape used in a shared whiteboard session
 - rtpmap attribute
 - The use of dynamic payload type
 - a=rtpmap:<payload type> <encoding name>/<clock rate> [/<encoding parameters>].
 - m=video 54678 RTP/AVP 98
 - a=rtpmap 98 L16/16000/2
 - 16-bit linear encoded stereo (2 channels) audio sampled at 16kHz
Usage of SDP with SIP

- SIP and SDP make a wonderful partnership for the transmission of session information.
- SIP provides the messaging mechanism for the establishment of multimedia sessions.
- SDP provides a structured language for describing the sessions.
 - The entity headers identifies the message body.
SIP Inclusion in SIP Messages

- Fig 5-15
 - G.728 is selected

- INVITE with multiple media streams
 - Unsupported should also be returned with a port number of zero

- An alternative
 - INVITE
 - \texttt{m=audio 4444 RTP/AVP 2 4 15}
 - \texttt{a=rtpmap 2 G726-32/8000}
 - \texttt{a=rtpmap 4 G723/8000}
 - \texttt{a=rtpmap 15 G728/8000}

 - CONNECT
 - \texttt{m=audio 6666 RTP/AVP 15}
 - \texttt{a=rtpmap 15 G728/8000}
INVITE sip:manager@station2.work.com SIP/2.0
From: Daniel<sip:Collins@station1.work.com>; tag = abcd1234
To: Boss<sip:Manager@station2.work.com>
CSeq: 1 INVITE
Content-Length: 213
Content-Type: application/sdp
Content-Disposition: session

v=0
o=collins 123456 001 IN IP4 station1.work.com
s=
c=IN IP4 station1.work.com
t=0 0
m=audio 4444 RTP/AVP 2
a=rtpmap 2 G726-32/8000
m=audio 4666 RTP/AVP 4
a=rtpmap 4 G723/8000
m=audio 4888 RTP/AVP 15
a=rtpmap 15 G728/8000

SIP/2.0 200 OK
Daniel<sip:Collins@station1.work.com>

SIP/2.0 200 OK
From: Daniel<sip:Collins@station1.work.com>; tag = abcd1234
To: Boss<sip:Manager@station2.work.com>; tag=xyz789
CSeq: 1 INVITE
Content-Length: 163
Content-Type: application/sdp
Content-Disposition: session
v=0
o=collins 45678 001 IN IP4 station2.work.com
s=
c=IN IP4 station2.work.com
t=0 0
m=audio 0 RTP/AVP 2
m=audio 0 RTP/AVP 4
m=audio 6666 RTP/AVP 15
a=rtpmap 15 G728/8000

ACK sip:manager@station2.work.com SIP/2.0
From: Daniel<sip:Collins@station1.work.com>; tag = abcd1234
To: Boss<sip:Manager@station2.work.com>; tag=xyz789
CSeq: 1 ACK
Content-Length: 0

Conversation
SIP and SDP Offer/Answer Model

- Re-INVITE is issued when the server replies with more than one codec.
 - With the same dialog identifier (To and From headers, including tag values), Call-ID and Request-URI
 - The session version is increased by 1 in o= line of message body.

- A mismatch
 - 488 or 606
 - Not Acceptable
 - A Warning header with warning code 304 (media type not available) or 305 (incompatible media type)
 - Then the caller issues a new INVITE request.
INVITE sip:manager@station2.work.com SIP/2.0
CSeq: 1 INVITE
Content-Length: 183
Content-Type: application/sdp
Content-Disposition: session

v=0
collins 123456 001 IN IP4 station1.work.com
s=
collins 123456 001 IN IP4 station1.work.com
t=0 0
m=audio 4444 RTP/AVP 2 4 15
a=rtmpmap 2 G726-32/8000
a=rtmpmap 4 G723/8000
a=rtmpmap 15 G728/8000
a=inactive

SIP/2.0 200 OK
CSeq: 1 INVITE
Content-Length: 157
Content-Type: application/sdp
Content-Disposition: session

v=0
collins 45678 001 IN IP4 station2.work.com
s=
collins 45678 001 IN IP4 station2.work.com
t=0 0
m=audio 6866 RTP/AVP 4 15
a=rtmpmap 4 G723/8000
a=rtmpmap 15 G728/8000
a=inactive

ACK sip:manager@station2.work.com SIP/2.0
From: Daniel<sip:Collins@station1.work.com> to: abed1994
Daniel<sip:Collins@station1.work.com>

ACK sip:manager@station2.work.com SIP/2.0
From: Daniel<sip:Collins@station1.work.com>; tag = abcd1234
To: Boss<sip:Manager@station2.work.com>; tag=xyz789
CSeq: 1 ACK
Content-Length: 0

d
INVITE sip:manager@station2.work.com SIP/2.0
CSeq: 2 INVITE
Content-Length: 126
Content-Type: application/sdp
Content-Disposition: session

v=0
c=collins 123456 002 IN IP4 station1.work.com
s=
c=IN IP4 station1.work.com
t=0 0
m=audio 4444 RTP/AVP 15
a=rtcpmap 15 G728/8000

a=inactive
OPTIONS Method

- Determine the capabilities of a potential called party
- Accept Header
 - Indicate the type of information that the sender hopes to receive
- Allow Header
 - Indicate the SIP methods that Boss can handle
- Supported Header
 - Indicate the SIP extensions that can be supported
OPTIONS sip:manager@station2.work.com SIP/2.0
Via: SIP/2.0/UDP Station1.work.com; branch=z9hG4bK7890123
From: Daniel <sip:Collins@work.com>; tag=lmnop123
To: Boss <sip:Manager@station2.work.com>
Call-ID: 123456@station1.work.com
Contact: Daniel <sip:Collins@station1.work.com>
CSeq: 1 OPTIONS
Accept: application/sdp
Content-Length: 0

SIP/2.0 200 OK
Via: SIP/2.0/UDP Station1.work.com; branch=z9hG4bK7890123
From: Daniel <sip:Collins@work.com>; tag=lmnop123
To: Boss <sip:Manager@work.com>; tag=xyz5678
Call-ID: 123456@station1.work.com
CSeq: 1 OPTIONS
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Supported: newfield
Content-Length: 146
Content-Type: application/sdp

v=0
data=manager 45678 001 IN IP4 station2.work.com
s=
c = IN IP4 station2.work.com
t=0 0
m=audio 0 RTP/AVP 4 15
a=rtpmap 4 G723/8000
a=rtpmap 15 G728/8000
SIP Extensions and Enhancements

- RFC 2543, March 1999
 - SIP has attracted enormous interest.
 - Traditional telecommunications companies, cable TV providers and ISP

- A large number of extensions to SIP have been proposed.
 - SIP will be enhanced considerably before it becomes an Internet standard.
183 Session Progress

- It has been included within the revised SIP spec.
 - To open one-way audio path from called end to calling end
 - From the called party to calling party
 - Enable in-band call progress information to be transmitted
 - Tones or announcements
 - Interworking with SS7 network
 - ACM (Address Complete Message)
 - For SIP-PSTN-SIP connections
The Supported Header

The Require Header

- In request
 - A client indicates that a server must support certain extension.
- In response
 - 421, extension required

The Supported header

- RFC 2543 – Require: header (client -> server)
 - 420 (bad extension) – server -> client
- Can be included in both requests and responses
SIP INFO Method

- Be specified in RFC 2976
- For transferring information during an ongoing session
 - DTMF digits, account-balance information, mid-call signaling information (from PSTN)
 - Application-layer information could be transferred in the middle of a call.
- A powerful, flexible tool to support new services
Several SIP-based applications have been devised based on the concept of a user being informed of some event.
- E.g., Instant messaging
- RFC 3265 has addressed the issue of event notification.
 - SUBSCRIBE and NOTIFY
 - The Event header
SIP for Instant Messaging

- The IETF working group – SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)

- A new SIP method – MESSAGE
 - This request carries the actual message in a message body.
 - A MESSAGE request does not establish a SIP dialog.
a) MESSAGE sip:Collins@work.com SIP/2.0
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7890
Max-Forwards: 70
From: Boss <Manager@pc1.home.net>
To: Daniel <sip:Collins@station1.work.com>
Call-ID: 123456@pc1.home.net
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 19
Content-Disposition: render
Hello. How are you?

b) MESSAGE sip:Collins@station1.work.com SIP/2.0
Via: SIP/2.0/UDP server.work.com; branch=z9hG4bKxyzt1
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7890
Max-Forwards: 69
From: Boss <Manager@pc1.home.net>
To: Daniel <sip:Collins@work.com>
Call-ID: 123456@pc1.home.net
CSeq: 1 MESSAGE
Content-Type: text/plain
Content-Length: 19
Content-Disposition: render
Hello. How are you?

c) SIP/2.0 200 OK
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7890
From: Boss <Manager@pc1.home.net>
To: Daniel <sip:Collins@work.com>
Call-ID: 123456@station1.home.net
CSeq: 1 MESSAGE
Content-length: 0

d) SIP/2.0 200 OK
Via: SIP/2.0/UDP server.work.com; branch=z9hG4bKxyzt1
Via: SIP/2.0/UDP pc1.home.net; branch=z9hG4bK7890
From: Boss <Manager@pc1.home.net>
To: Daniel <sip:Collins@work.com>
Call-ID: 123456@pc1.home.net
CSeq: 1 MESSAGE
Content-length: 0

E)
Boss
<Manager@pc1.home.net>

sip:Server.work.com

Daniel
<sip:Collins@station1.work.com>

MESSAGE sip:Manager@home.net SIP/2.0
Via: SIP/2.0/UDP server.work.com; branch=z9hG4bKabcd
Via: SIP/2.0/UDP station1.work.com; branch=z9hG4bK123
Max-Forwards: 69
From: Daniel<sip:Collins@work.com>
To: Boss<sip:Manager@home.net>
Call-ID: 456789@station1.work.com
CSeq: 1101 MESSAGE
Content-Type: text/plain
Content-Length: 22
Content-Disposion: render
I'm fine. How are you?

SIP/2.0 200 OK
Via: SIP/2.0/UDP server.work.com; branch=z9hG4bKabcd
Via: SIP/2.0/UDP station1.work.com; branch=z9hG4bK123
From: Daniel<sip:Collins@work.com>
To: Boss<sip:Manager@home.net>
Call-ID: 456789@station1.work.com
CSeq: 1101 MESSAGE
Content-length: 0

MESSAGE sip:Manager@home.net SIP/2.0
Via: SIP/2.0/UDP station1.work.com; branch=z9hG4bK123
Max-Forwards: 70
From: Daniel<sip:Collins@work.com>
To: Boss<sip:Manager@home.net>
Call-ID: 456789@station1.work.com
CSeq: 1101 MESSAGE
Content-Type: text/plain
Content-Length: 22
Content-Disposion: render
I'm fine. How are you?

SIP/2.0 200 OK
Via: SIP/2.0/UDP station1.work.com; branch=z9hG4bK123
From: Daniel<sip:Collins@work.com>
To: Boss<sip:Manager@home.net>
Call-ID: 456789@station1.work.com
CSeq: 1101 MESSAGE
Content-length: 0
SIP REFER Method

- To enable the sender of the request to instruct the receiver to contact a third party
 - With the contact details for the third party included within the REFER request
 - For Call Transfer applications

- The Refer-to: and Refer-by: Headers

- The dialog between Mary and Joe remains established.
 - Joe could return to the dialog after consultation with Susan.
Reliability of Provisional Responses

- Provisional Responses
 - 100 (trying), 180 (ringing), 183 (session in progress)
 - Are not answered with an ACK
- If the messages is sent over UDP
 - Unreliable
- Lost provisional response may cause problems when interoperating with other network
 - 180, 183 → Q931 alerting or ISUP ACM
 - To drive a state machine
 - E.g., a call to an unassigned number
 - ACM to create a one-way path to relay an announcement such as “The number you have called has been changed”
 - If the provisional response is lost, the called might left in the dark and not understand why the call did not connect.
RFC 3262
- Reliability of Provisional Responses in SIP
- Supported: 100rel
- RSeq Header
 - Response Seq
 - +1, when retxm
- RAck Header
 - Response ACK
 - In PRACK
 - RSeq+CSeq
- PRACK
 - Prov. Resp. ACK
- Should not
 - Apply to 100
- Default timer value = 0.5 s
SIP/2.0 180 Ringing
Via: SIP/2.0/UDP ClientA.network.com; branch=z9hG4bK7890123
Require: 100rel
RSeq: 567891
From: sip:ClientA@network.com; tag=lnnop123
To: sip:ServerB@network.com; tag=xyz123
Call-ID: 123456@ClientA.network.com
CSeq: 1 INVITE

PRACK sip:ServerB@network.com SIP/2.0
Via: SIP/2.0/UDP ClientA.network.com; branch=z9hG4bK7890123
RACK: 567891 1 INVITE
From: sip:ClientA@network.com; tag=lnnop123
To: sip:ServerB@network.com; tag=xyz123
Call-ID: 123456@ClientA.network.com
CSeq: 2 PRACK

SIP/2.0 200 OK
Via: SIP/2.0/UDP ClientA.network.com; branch=z9hG4bK7890123
From: sip:ClientA@network.com; tag=lnnop123
To: sip:ServerB@network.com; tag=xyz123
Call-ID: 123456@ClientA.network.com
CSeq: 2 PRACK
The SIP UPDATE Method

- To enable the modification of session information before a final response to an INVITE is received
 - E.g., to change the codec
- One important usage is when reserving network resources as part of a SIP session establishment
Integration of SIP Signaling and Resource Management [1/2]

- Ensuring that sufficient resources are available to handle a media stream is a very important.
 - To provide a high-quality service for a carrier-grade network
- The signaling might take a different path from the media.
 - The successful transfer of signaling messages does not imply to a successful transfer of media.
- Assume resource-reservation mechanisms are available (Chapter 8)
 - On a per-session basis
 - End-to-end network resources are reserved as part of session establishment.
 - On an aggregate basis
 - A certain amount of network resources are reserved in advance for a certain type of usage.
 - Policing functions at the edge of the network
Integration of SIP Signaling and Resource Management [2/2]

- Reserving network resources in advance of altering the called user
- A new draft – “Integration of Resource Management and SIP”
 - By using the provisional responses and UPDATE method
 - By involving extensions to SDP
Example of e2e Resource Reservation [1/2]

- **SDP for initial INVITE**

  ```
  v=0
  o=userA 45678 001 IN IP4 stationA.network.com
  s=
  c=IN IP4 stationA.nework.com
  t=0 0
  m=audio 4444 RTP/AVP 0
  a=curr: qos e2e none
  a=des: qos mandatory e2e sendrecv
  ```

- **SDP for 183 response**

  ```
  v=0
  o=userB 12345 001 IN IP4 stationB.network.com
  s=
  c=IN IP4 stationB.nework.com
  t=0 0
  m=audio 6666 RTP/AVP 0
  a=curr: qos e2e none
  a=des: qos mandatory e2e sendrecv
  a=conf: qos e2e recv
  ```
Example of e2e Resource Reservation [2/2]

- **SDP for UPDATE**

  ```plaintext
  v=0
  o=userA 45678 001 IN IP4 stationA.network.com
  s=
  c=IN IP4 stationA.nework.com
  t=0 0
  m=audio 4444 RTP/AVP 0
  a=curr: qos e2e send
  a=des: qos mandatory e2e sendrecv
  ```

- **SDP for 200 response**

  ```plaintext
  v=0
  o=userB 12345 001 IN IP4 stationB.network.com
  s=
  c=IN IP4 stationB.nework.com
  t=0 0
  m=audio 6666 RTP/AVP 0
  a=curr: qos e2e sendrecv
  a=des: qos mandatory e2e sendrecv
  ```
Example of Aggregate-based Reservation

- Each participant deals with network access permission at its own end.
Usage of SIP for Features/Services

- Call-transfer application (with REFER method)
- Personal Mobility through the use of registration
- One number service through forking proxy
- Call-completion services by using Retry-After: header
- To carry MIME content as well as an SDP description
- SIP address is a URL
 - Click-to-call applications
- The existing supplementary services in traditional telephony
 - Call waiting, call forwarding, multi-party calling, call screening
- Proxy invokes various types of advanced feature logic.
 - Policy server (call-routing, QoS)
 - Authentication server
 - Use the services of an IN SCP over INAP
Call Forwarding

- On busy
- 486, busy here
- With the same To, User 3 can recognize that this call is a forwarded call, originally sent to User 2.
- Contact: header in 200 response
- Call-forwarding-on-no-answer
 - Timeout
 - CANCEL method
Consultation Hold

- A SIP UPDATE
- User A asks User B a question, and User B need to check with User C for the correct answer.
- User B could use the REFER method to transfer the call to User C.
PSTN Interworking

- PSTN Interworking
 - A SIP URL to a telephone number
 - A network gateway
- PSTN – SIP – PSTN
 - MIME media types
 - For ISUP
- SIP for Telephony (SIP-T)
- The whole issue of interworking with SS7 is fundamental to the success of VoIP in the real world.
Interworking with H.323

- SIP-H.323 interworking gateway
INVITE
To: Terminal@H323.net
c=IN IP4 123.45.6.7
m=audio 8000 RTP/AVP 0

Setup
faststart [logical chan info = G711 TX,
G711 RX 123.45.6.7:8000]

Alerting

Connect
faststart [logical chan info = G711 TX,
G711 RX 123.67.8.9:2000]

200 (OK)
To: Terminal@H323.net
c=IN IP4 123.67.8.9
m=audio 2000 RTP/AVP 0

ACK

Two-way voice

Two-way voice
Summary

- The future for signaling in VoIP networks
 - Simple, yet flexible
 - Easier to implement
 - Fit well with the media gateway control protocols
- SIP is the protocol of choice for the evolution of third-generation wireless networks.
 - SIP-based mobile devices will become available
 - SIP-based network elements will be introduced within mobile networks.