IP Version 6

The explosive growth of the Internet

- IPv4 address space, 32-bit
- Real-time and interactive applications
- Expanded address space, 128 bits
- Simplified header format
 - Enabling easier processing of IP datagrams
- Improved support for headers and extensions
 - Enabling greater flexibility for the introduction of new options
- Flow-labeling capability
 - Better support at the IP level for real-time app.
- Authentication and privacy

1

IPv6 Header [1/3]

$\begin{smallmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 2 & 3 \\ \end{smallmatrix}$	0 0 0 0 0 0 0 1 1 4 5 6 7 8 9 0 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 3 3 7 8 9 0 1	
Version	Traffic Class	Flow Label			
Payload Length		Next Header Hop Limit			
Source Address					
Destination Address					

IPv6 Header [2/3]

- Version
 - **6**
- Traffic Class, 8-bit
 - For the quality of service
- Flow Label, 20-bit
 - Label sequences of packets that belong to a single flow
 - A flow := source address, destination address, flow label

IPv6 Header [3/3]

Payload Length, 16-bit unsigned integer

- The length of payload in octets
- Header extensions are part of the payload
- Next Header, 8-bit
 - The next higher-layer protocol
 - Same as the IPv4
 - The existence of IPv6 header extensions
- Hop Limit, 8-bit unsigned integer
 - The TTL field of the IPv4 header
- Source and Destination Addresses, 128-bit

IPv6 addresses

- X is a hexadecimal character
- E.g., 1511:1:0:0:FA22:45:11
 - The symbol "::" can be used to represent a number of contiguous fields with zero values.
 - = 1511:1::FA22:45:11
- 0:0:0:0:AA11:50:22:F77 = ::AA11:50:22:F77
 - "::" can appears only once

IPv6 special addresses

- The all-zeros address, ::
 - An unspecified address; a node does not yet know its address
- The loopback address, ::1
 - On a virtual internal interface
- IPv6 address with embedded IPv4 address (type 1)
 - 96-bit zeros + 32-bit IPv4 address
 - ::140.113.17.5
 - Used by IPv6 hosts and routers that tunnel IPv6 packets through an IPv4 infrastructure

IPv6 address with embedded IPv4 address (type 2)

- 80-bit zeros + FFFF + 32-bit IPv4 address
- 0:0:0:0:0:FFFF:140.113.17.5
- ::FFFF:140.113.17.5
- Applied to nodes that do not support IPv6

IPv6 Header Extensions

- To be placed between the fixed header and the actual data payload
- Next Header
 - The type of payload carried in the IP datagram
 - The type of header extension
 - Each extension has its own next header field.

Header extension

Use the next header field

		Packet	
	IPv6 Header		
IPv6 header fields	Next header =6 (TCP)	IPv6 header fields	TCP header plus application data

IPv6 header fields Next header = 0 = hop-by-hop options =	hop-by-hop header fields Next header = 60 destination options	destination header fields Next header = 43 = routing	routing header fields Next header = 6 = TCP	TCP header plus application data
--	--	---	--	-------------------------------------

Hop-by-hop Extension [1/3]

- It is only one exception.
 - Examined and processed by every intermediate node
 - If present, the hop-by-hop extension must immediately follow the IP header
 - Of variable length
- Next header
- Length
 - in units of eight octets
- Options
 - TLV (Type-Length-Value) format
 - Type: 8-bit
 - Length: 8-bit (in units of octets)
 - Value: variable length
 - Type [0:2] are of special significance

Hop-by-hop Extension [2/3]

Hop-by-hop header extension

Т	L	V	
Option Type	Option Length	Option Data	T = Type L = Length V = Value

Hop-by-hop Extension [3/3]

- Option Type: the first two bits (how the node react if it does not understand the option)
 - 00: skip this option and continue processing the header
 - 01: discard the packet
 - 10: discard the packet and send an ICMP Parameter Problem, Code 2 message to the originator of the packet
 - 11: do above only if the destination address in the IP header is not a multicast address
- Option Type: the third bit
 - 1, the option data can be changed
 - 0, cannot

Destination options extension

- Has the same format as the hop-by-hop extension
- Only the destination node examine the extension.
- Header type = 60
- Routing Extension
 - A routing type field to enable various routing options
 - Only routing type 0 is defined for now
 - Specify the nodes that should be visited

Routing Extension [1/2]

0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 6 7	0 0 1 1 1 1 1 1 8 9 0 1 2 3 4 5	1 1 1 2 2 2 6 7 8 9 0 1 2	2 2 2 2 2 2 3 3 4 5 6 7 8 9 0 1	
Next Header	Length	Routing Type (0)	Segments Left	
	Rese	rved		
Address I				
Address 2				
Address n				

Routing Extension [2/2]

- Routing type
- Segments Left
 - The number of nodes that still need to be visited
- A list of IP addresses needs to be visited
- Is this type of header analyzed by intermediate node?
 - Yes or no
 - A->Z, 3, (B,C,D)
 - A->B, 3, (C,D,Z)
 - A->C, 2, (B,D,Z) by B
 - A->D, 1, (B,C,Z) by C
 - A->Z, 0, (B,C,D) by D

Interoperation IPv4 and IPv6

IPv4 and IPv6 will coexist for a long time

- IPv4 nodes ⇔ IPv6 nodes
- IPv6 nodes ⇔ IPv6 nodes via IPv4 networks
- IPv4 nodes \IPv4 nodes via IPv6 networks
- IPv4-compatible nodes with IPv4-compatible addresses at the boundaries of IPv6 networks
 - IPv6 in IPv4 packets

