Assembly Language for Intel-Based

Computers, 4™ Edition
Kip R. Irvine

Chapter 13: 16-Bit MS-DOS
Programming

(c) Pearson Education, 2002. All rights reserved.




Chapter Overview

« MS-DOS and the IBM-PC
« MS-DOS Function Calls (INT 21h)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




MS-DOS and the IBM-PC

Real-Address Mode

MS-DOS Memory Organization
MS-DOS Memory Map
Redirecting Input-Output
Software Interrupts

INT Instruction

Interrupt Vectoring Process
Common Interrupts

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Real-Address Mode

 Real-address mode (16-bit mode) programs have
the following characteristics:

Max 1 megabyte addressable RAM
Single tasking
No memory boundary protection
Offsets are 16 bits
 IBM PC-DOS: first Real-address OS for IBM-PC
e Later renamed to MS-DOS, owned by Microsoft

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




MS-DOS Memory Organization

Interrupt Vector Table

BIOS & DOS data

Software BIOS

MS-DOS kernel

Resident command processor
Transient programs

Video graphics & text
Reserved (device controllers)
ROM BIOS

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




MS-DOS Memory Map

ROM BIOS

Reserved

Video Text & Graphics

Video Graphics

Transient Command Processor

Transient Program Area
(available for application programs)

Resident Command Processor 640K RAM

DOS Kernel, Device Drivers

Software BIOS

BIOS & DOS Data

Interrupt Vector Table

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Redirecting Input-Output (1 of 2)

Input-output devices and files are interchangeable

Three primary types of I/O:
e Standard input (console, keyboard)
o Standard output (console, display)
Symbols borrowed from Unix:
e < symbol: get input from

e > symbol: send output to
« sort < myfile.txt > outfile.txt

* | symbol: pipe output from one process to another
e dir| sort > prn
Predefined device names:
« PRN, CON, LPT1, LPT2, NUL, COM1, COM2

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Redirecting Input-Output (2 of 2)

Standard input, standard output can both be redirected

Suppose we have created a program named
myprog.exe that reads from standard input and writes
to standard output. Following are MS-DOS commands
that demonstrate various types of redirection.

myprog < infile.txt
myprog > outfile.txt

myprog < infile.txt > outfile.txt

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT Instruction

A software interrupt is a call to an operating system
procedure.

The INT Instruction executes a software interrupt.

* INT pushes the CPU flags on the stack and calls an interrupt
handler.

The code that handles the interrupt is called an interrupt
handler.

Syntax:
INT number

(number = 0. .FFh)

The Interrupt Vector Table (IVT) holds a 32-bit segment-
offset address for each possible interrupt handler.

Interrupt Service Routine (ISR) is another name for interrupt
handler.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Interrupt Vectoring

Interrupt Vector Table is a table of addresses in the
lowest 1,024 bytes of memory.

 Each entry in this table is a 32-bit segment-offset
address that points to an interrupt handler.

Steps when the INT instruction is invoked.

1. With the number following the INT mnemonic, the
CPU locates the entry of interrupt vector table.

2. The CPU pushes the flag on the stack, disables
hardware interrupt, and executes a call to the address
stored in the interrupt vector table.

. The interrupt handler begins execution and finishes
when the IRET instruction is reached.

. The IRET Instruction causes the program to resume
execution at the next instruction in the calling program.

10

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Interrupt Vectoring Process

Calling program

mov. ..
int 10h
add...

FO00:F065
F066
F067
F068

\ 3069

FOO00:FO065

FO000:AB62

(entry for INT 10)

Interrupt Vector Table

Interrupt Handler

—psti
cld

push es

IRET —;

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Common Interrupts

INT 10h Video Services

INT 16h Keyboard Services
INT 17h Printer Services

INT 1Ah Time of Day

INT 1Ch User Timer Interrupt
INT 21h MS-DOS Services

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 4Ch: Terminate Process

 Ends the current process (program), returns an
optional 8-bit return code to the calling process.

e A return code of O usually indicates successful
completion.

mov ah,4Ch ;, terminate process

mov al,O > return code

Iint 21h
- Same as:

EXIT O

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Selected Output Functions

ASCII control characters

02h, 06h - Write character to standard output
05h - Write character to default printer

09h - Write string to standard output

40h - Write string to file or device

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




ASCII Control Characters

Many INT 21h functions act upon the following
control characters:

e 08h - Backspace (moves one column to the left)
09h - Horizontal tab (skips forward n columns)
OAh - Line feed (moves to next output line)
OCh - Form feed (moves to next printer page)
ODh - Carriage return (moves to leftmost output column)
1Bh - Escape character

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Functions 02h and 06h:
Write Character to Standard Output

Write the letter 'A' to standard output:

mov ah,02h
mov dl,’A’
Int 21h

Write a backspace to standard output:

mov ah,06h
mov dl,08h
Int 21h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function O5h:

Write Character to Default Printer

Write the letter 'A';

mov ah,05h
mov dl,65
Int 21h

Write a horizontal tab:

mov ah,05h
mov dl,09h
Int 21h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 09h:
Write String to Standard Output

* The string must be terminated by a '$' character.

DS must point to the string's segment, and DX
must contain the string's offset:

.data
string BYTE "This i1s a string$”

.code

mov ah,9

mov dx,OFFSET string
int 21h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 40h:

Write String to File or Device

Input: BX = file or device handle (console = 1), CX =
number of bytes to write, DS:DX = address of array

.data
message "Writing a string to the console”
bytesWritten WORD ?

.code
mov ah,40h
mov bx,1
mov cX,LENGTHOF message
mov dx,OFFSET message
int 21h
mov bytesWritten,ax

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Selected Input Functions

O01h, 06h - Read character from standard input

OAh - Read array of buffered characters from
standard input

OBh - Get status of the standard input buffer
3Fh - Read from file or device

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function O1h:

Read single character from standard input

* Echoes the input character

« Waits for input if the buffer is empty

e Checks for Ctrl-Break (*C)

» Acts on control codes such as horizontal Tab

.data

char BYTE ?
.code

mov ah,01h

Iint 21h

mov char,al

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 06h:

Read character from standard input without waiting

* Does not echo the input character

e Does not wait for input (use the Zero flag to check for
an input character)

« Example: repeats loop until a character is pressed.

.data

char BYTE ?

.code

L1: mov ah,06h ; keyboard input
mov dl,0FFh ; don"t wait for input
int 21h
Jz L1 ; No character? repeat loop
mov char,al ; Character pressed: save it
call DumpRegs ; display registers

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function OAh:

Read buffered array from standard input (1 of 2)

* Requires a predefined structure to be set up that
describes the maximum input size and holds the
Input characters.

e Example:

count = 80

KEYBOARD STRUCT
maxInput BYTE count ; max chars to input
inputCount BYTE ? ; actual Input count
buffer BYTE count DUP(?) ; holds 1nput chars
KEYBOARD ENDS

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function OAh (2 of 2)

Executing the interrupt:

.data
kybdData KEYBOARD <>

.code
mov ah,OAh
mov dx,OFFSET kybdData
int 21h

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function OBh:

Get status of standard input buffer

 Example: loop until a key is pressed. Save the
key in a variable:

ah,0Bh , get buffer status
21h

al,0 ; buffer empty?

L1 ; yes: loop again
ah,1 ; ho: 1nput the key
21h

char,al ; and save 1t

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Example: String Encryption

Reads from standard input, encrypts each byte, writes to
standard output. (encrypt < infile.txt > outfile.txt)

XORVAL = 239 ; any value between 0-255
.code
main PROC
mov ax,@data
mov ds,ax
mov ah,6 , direct console 1nput
mov dlI,OFFh ; don"t wait for character
21h ; AL = character
L2 ; quit 1f ZF = 1 (EOF)
al , XORVAL
ah,6 ; Wwrite to output
dl,al
int 21h
Jmp L1 ; repeat the loop
L2: exit

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 3Fh:

Read from file or device

 Read a block of bytes.
e Can be interrupted by Ctrl-Break (*C)
 Example: Read string from keyboard:

.data

inputBuffer BYTE 127 dup(O)
bytesRead WORD ?

.code

mov ah,3Fh
mov bx,0 ; keyboard handle

mov Cx,127 ;, max bytes to read
mov dx,0OFFSET i1nputBuffer ; target location

int 21h
mov bytesRead,ax ; save character count

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




Date/Time Functions

2Ah - Get system date
2Bh - Set system date
2Ch - Get system time
2Dh - Set system time

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 2Ah:

Get system date

e Returns year in CX, month in DH, day in DL, and
day of week in AL

ah,2Ah

21h

year ,CX
month,dh
day,dl
dayOfweek,al

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 2Bh:

Set system date

o Sets the system date. AL = O if the function was
not successful in modifying the date.

ah,2Bh
CX,year
dh,month
dl ,day
21h

al,o
failed

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 2Ch:

Get system time

e Returns hours (0-23) in CH, minutes (0-59) in CL,
and seconds (0-59) in DH, and hundredths (0-99)
in DL.

ah,2Ch

21h
hours, ch
minutes, cl
seconds, dh

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




INT 21h Function 2Dh:

Set system time

o Sets the system date. AL = O if the function was
not successful in modifying the time.

ah, 2Dh
ch,hours
cl,minutes
dh,seconds
21h

al,o
failed

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.




