
Assembly Language for IntelAssembly Language for Intel--Based Based
Computers, 4Computers, 4thth Edition Edition

Chapter 6: Conditional Processing

(c) Pearson Education, 2002. All rights reserved.

Kip R. Irvine

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 2

Chapter OverviewChapter Overview

• Boolean and Comparison Instructions
• Conditional Jumps
• Conditional Loop Instructions
• Conditional Structures
• Application: Finite-State Machines
• Using the .IF Directive

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 3

Boolean and Comparison InstructionsBoolean and Comparison Instructions

• CPU Status Flags
• AND Instruction
• OR Instruction
• XOR Instruction
• NOT Instruction
• Applications
• TEST Instruction
• CMP Instruction

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 4

Status Flags Status Flags -- ReviewReview

• The Zero flag is set when the result of an operation equals
zero.

• The Carry flag is set when an instruction generates a
result that is too large (or too small) for the destination
operand.

• The Sign flag is set if the destination operand is negative,
and it is clear if the destination operand is positive.

• The Overflow flag is set when an instruction generates an
invalid signed result.

• Less important:
• The Parity flag is set when an instruction generates an even

number of 1 bits in the low byte of the destination operand.
• The Auxiliary Carry flag is set when an operation produces a carry

out from bit 3 to bit 4.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 5

AND InstructionAND Instruction

• Performs a Boolean AND operation between each
pair of matching bits in two operands

• Syntax:
AND destination, source

(same operand types as MOV)

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

AND

unchangedcleared

AND

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 6

OR InstructionOR Instruction

• Performs a Boolean OR operation between each pair
of matching bits in two operands

• Syntax:
OR destination, source

OR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 1 1 1 1

OR

setunchanged

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 7

XOR InstructionXOR Instruction

• Performs a Boolean exclusive-OR operation between
each pair of matching bits in two operands

• Syntax:
XOR destination, source XOR

0 0 1 1 1 0 1 1
0 0 0 0 1 1 1 1

0 0 1 1 0 1 0 0

XOR

invertedunchanged

XOR is a useful way to toggle (invert) the bits in an operand.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 8

NOT InstructionNOT Instruction

• Performs a Boolean NOT operation on a single
destination operand

• Syntax:
NOT destination NOT

0 0 1 1 1 0 1 1

1 1 0 0 0 1 0 0

NOT

inverted

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 9

Applications Applications (1 of 5)(1 of 5)

mov al,'a' ; AL = 01100001b
and al,11011111b ; AL = 01000001b

• Task: Convert the character in AL to upper case.

• Solution: Use the AND instruction to clear bit 5.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 10

ApplicationsApplications (2 of 5)(2 of 5)

mov al,6 ; AL = 00000110b
or al,00110000b ; AL = 00110110b

• Task: Convert a binary decimal byte into its equivalent
ASCII decimal digit.

• Solution: Use the OR instruction to set bits 4 and 5.

The ASCII digit '6' = 00110110b

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 11

ApplicationsApplications (3 of 5)(3 of 5)

mov ax,40h ; BIOS segment
mov ds,ax
mov bx,17h ; keyboard flag byte
or BYTE PTR [bx],01000000b ; CapsLock on

• Task: Turn on the keyboard CapsLock key

• Solution: Use the OR instruction to set bit 6 in the keyboard
flag byte at 0040:0017h in the BIOS data area.

This code only runs in Real-address mode, and it does not
work under Windows NT, 2000, or XP.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 12

ApplicationsApplications (4 of 5)(4 of 5)

mov ax,wordVal
and ax,1 ; low bit set?
jz EvenValue ; jump if Zero flag set

• Task: Jump to a label if an integer is even.

• Solution: AND the lowest bit with a 1. If the result is Zero,
the number was even.

JZ (jump if Zero) is covered in Section 6.3.

Your turn: Write code that jumps to a label if an integer is
negative.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 13

ApplicationsApplications (5 of 5)(5 of 5)

or al,al
jnz IsNotZero ; jump if not zero

• Task: Jump to a label if the value in AL is not zero.

• Solution: OR the byte with itself, then use the JNZ (jump
if not zero) instruction.

ORing any number with itself does not change its value.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 14

TEST InstructionTEST Instruction

• Performs a nondestructive AND operation between each pair of
matching bits in two operands

• No operands are modified, but the Zero flag is affected.
• Example: jump to a label if either bit 0 or bit 1 in AL is set.

test al,00000011b
jnz ValueFound

• Example: jump to a label if neither bit 0 nor bit 1 in AL is set.

test al,00000011b
jz ValueNotFound

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 15

CMP Instruction CMP Instruction (1 of 3)(1 of 3)

• Compares the destination operand to the source operand
• Nondestructive subtraction of source from destination (destination

operand is not changed)
• Syntax: CMP destination, source
• Example: destination == source

mov al,5
cmp al,5 ; Zero flag set

• Example: destination < source

mov al,4
cmp al,5 ; Carry flag set

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 16

CMP Instruction CMP Instruction (2 of 3)(2 of 3)

• Example: destination > source

mov al,6
cmp al,5 ; ZF = 0, CF = 0

(both the Zero and Carry flags are clear)

The comparisons shown so far were unsigned.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 17

CMP Instruction CMP Instruction (3 of 3)(3 of 3)

• Example: destination > source

mov al,5
cmp al,-2 ; Sign flag == Overflow flag

The comparisons shown here are performed with signed
integers.

• Example: destination < source

mov al,-1
cmp al,5 ; Sign flag != Overflow flag

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 18

Conditional JumpsConditional Jumps

• Jumps Based On . . .
• Specific flags
• Equality
• Unsigned comparisons
• Signed Comparisons

• Applications
• Encrypting a String
• Bit Test (BT) Instruction

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 19

JJcondcond InstructionInstruction

• A conditional jump instruction branches to a label
when specific register or flag conditions are met

• Examples:
• JB, JC jump to a label if the Carry flag is set
• JE, JZ jump to a label if the Zero flag is set
• JS jumps to a label if the Sign flag is set
• JNE, JNZ jump to a label if the Zero flag is clear
• JECXZ jumps to a label if ECX equals 0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 20

Jumps Based on Specific FlagsJumps Based on Specific Flags

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 21

Jumps Based on EqualityJumps Based on Equality

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 22

Jumps Based on Unsigned ComparisonsJumps Based on Unsigned Comparisons

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 23

Jumps Based on Signed ComparisonsJumps Based on Signed Comparisons

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 24

Applications Applications (1 of 5)(1 of 5)

cmp eax,ebx
ja Larger

• Task: Jump to a label if unsigned EAX is greater than EBX

• Solution: Use CMP, followed by JA

cmp eax,ebx
jg Greater

• Task: Jump to a label if signed EAX is greater than EBX

• Solution: Use CMP, followed by JG

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 25

Applications Applications (2 of 5)(2 of 5)

cmp eax,Val1
jbe L1 ; below or equal

• Jump to label L1 if unsigned EAX is less than or equal to Val1

cmp eax,Val1
jle L1

• Jump to label L1 if signed EAX is less than or equal to Val1

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 26

Applications Applications (3 of 5)(3 of 5)

mov Large,bx
cmp ax,bx
jna Next
mov Large,ax

Next:

• Compare unsigned AX to BX, and copy the larger of the two
into a variable named Large

mov Small,ax
cmp bx,ax
jnl Next
mov Small,bx

Next:

• Compare signed AX to BX, and copy the smaller of the two
into a variable named Small

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 27

Applications Applications (4 of 5)(4 of 5)

cmp WORD PTR [esi],0
je L1

• Jump to label L1 if the memory word pointed to by ESI equals
Zero

test DWORD PTR [edi],1
jz L2

• Jump to label L2 if the doubleword in memory pointed to by
EDI is even

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 28

Applications Applications (5 of 5)(5 of 5)

and al,00001011b ; clear unwanted bits
cmp al,00001011b ; check remaining bits
je L1 ; all set? jump to L1

• Task: Jump to label L1 if bits 0, 1, and 3 in AL are all set.

• Solution: Clear all bits except bits 0, 1,and 3. Then
compare the result with 00001011 binary.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 29

Your turn . . .Your turn . . .

• Write code that jumps to label L1 if either bit 4, 5, or 6
is set in the BL register.

• Write code that jumps to label L1 if bits 4, 5, and 6
are all set in the BL register.

• Write code that jumps to label L2 if AL has even
parity.

• Write code that jumps to label L3 if EAX is negative.
• Write code that jumps to label L4 if the expression

(EBX – ECX) is greater than zero.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 30

Encrypting a StringEncrypting a String

KEY = 239
.data
buffer BYTE BUFMAX DUP(0)
bufSize DWORD ?
.code

mov ecx,bufSize ; loop counter
mov esi,0 ; index 0 in buffer

L1:
xor buffer[esi],KEY ; translate a byte
inc esi ; point to next byte
loop L1

The following loop uses the XOR instruction to transform every
character in a string into a new value.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 31

String Encryption ProgramString Encryption Program

• Tasks:
• Input a message (string) from the user
• Encrypt the message
• Display the encrypted message
• Decrypt the message
• Display the decrypted message

View the Encrypt.asm program's source code. Sample output:

Enter the plain text: Attack at dawn.

Cipher text: «¢¢Äîä-Ä¢-ïÄÿü-Gs

Decrypted: Attack at dawn.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 32

BT (Bit Test) InstructionBT (Bit Test) Instruction

• Copies bit n from an operand into the Carry flag
• Syntax: BT bitBase, n

• bitBase may be r/m16 or r/m32
• n may be r16, r32, or imm8

• Example: jump to label L1 if bit 9 is set in the AX
register:

bt AX,9 ; CF = bit 9
jc L1 ; jump if Carry

