
Assembly Language for IntelAssembly Language for Intel--Based Based
Computers, 4Computers, 4thth Edition Edition

Chapter 2: IA-32 Processor
Architecture

Kip R. Irvine

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 2

Chapter OverviewChapter Overview

• General Concepts
• IA-32 Processor Architecture
• IA-32 Memory Management
• Components of an IA-32 Microcomputer
• Input-Output System

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 3

General ConceptsGeneral Concepts

• Basic microcomputer design
• Instruction execution cycle
• Reading from memory
• How programs run

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 4

Basic Microcomputer Design [1/2]Basic Microcomputer Design [1/2]

• The central processor unit (CPU) is where all the calculations
and logic operations take place.

• Clock synchronizes CPU operations
• Control unit (CU) coordinates sequence of execution steps
• Arithmetic logic unit (ALU) performs arithmetic and bitwise

processing

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 5

Basic Microcomputer Design [2/2]Basic Microcomputer Design [2/2]

• The memory storage unit is where instructions and data are
held while a computer program is running.

• A bus is a group of parallel wires that transfer data from one
part of the computer to another.
• Data bus, address bus and control bus

Central Processor Unit
(CPU)

Memory Storage
Unit

registers

ALU clock

I/O
Device

#1

I/O
Device

#2

data bus

control bus

address bus

CU

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 6

ClockClock

• Synchronizes all CPU and BUS operations
• Machine (clock) cycle measures time of a single operation

• A machine instruction requires at least one clock cycle to
execute.

• A few instructions (e.g., the multiply instruction) requre in
excess of 50 clocks.

• The duration of a clock cycle is the reciprocal of the clock’s
speed

• Clock is used to trigger events

one cycle

1

0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 7

Instruction Execution CycleInstruction Execution Cycle

• Fetch
• Decode
• Fetch operands
• Execute
• Store output

I-1 I-2 I-3 I-4

PC program

I-1
instruction
register

op1
op2

memory fetch

ALU

registers

w
rit

e

decode

execute

read

w
rit

e
(output)

registers

flags

• The execution of a single machine instruction can be divided
into a sequence of individual operations.

• Three primary operations: fetch, decode and execute.
• Two more steps are required when the instruction uses a

memory operand: fetch operand and store output operand.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 8

MultiMulti--Stage PipelineStage Pipeline

• Pipelining makes it possible for a processor to execute
instructions in parallel

• Instruction execution divided into discrete stages

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7
8
9

10
11
12

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

I-1

I-2

Example of a non-
pipelined processor.
Many wasted cycles.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 9

Pipelined ExecutionPipelined Execution

• More efficient use of cycles, greater throughput of instructions:

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages
S6

2
3
4
5
6
7

I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2 I-1
I-2 I-1

I-2

For k states and n
instructions, the
number of required
cycles is:

k + (n – 1)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 10

Wasted Cycles (pipelined)Wasted Cycles (pipelined)

• When one of the stages requires two or more clock cycles, clock
cycles are again wasted.

S1 S2 S3 S4 S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3

I-1
I-2
I-3

I-1
I-2
I-3

I-1

I-2 I-1
I-1

8
9

I-3 I-2
I-2

exe

10
11

I-3
I-3

I-1

I-2

I-3

For k states and n
instructions, the
number of required
cycles is:

k + (2n – 1)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 11

SuperscalarSuperscalar
A superscalar processor has multiple execution pipelines. In the
following, note that Stage S4 has left and right pipelines (u and v).

S1 S2 S3 u S5
1

C
yc

le
s

Stages

S6

2
3
4
5
6
7

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1
I-2
I-3
I-4

I-1

I-3 I-1
I-2 I-1

v

I-2

I-4

S4

8
9

I-3
I-4

I-2
I-3

10 I-4

I-2

I-4

I-1

I-3

For k states and n
instructions, the
number of required
cycles is:

k + n

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 12

Reading from MemoryReading from Memory

• Multiple machine cycles are required when reading from memory,
because it responds much more slowly than the CPU. The steps are:
• address placed on address bus
• Read Line (RD) set low to notify memory that a value is to be read
• CPU waits one cycle for memory to respond. During this cycle, the

memory controller places the operand on the data bus (DATA)
• Read Line (RD) goes to 1, indicating that the data is on the data

bus

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Data

Address

CLK

ADDR

RD

DATA

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 13

Cache MemoryCache Memory

• High-speed expensive static RAM both inside and
outside the CPU.
• Level-1 cache: inside the CPU
• Level-2 cache: outside the CPU

• Cache hit: when data to be read is already in cache
memory

• Cache miss: when data to be read is not in cache
memory.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 14

How a Program Runs [1/2]How a Program Runs [1/2]

Operating
system

User

Current
directory

System
path

Directory
entry

sends program
name to

gets starting
cluster from

searches for
program in

loads and
starts

Program

returns to

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 15

How a Program Runs [2/2]How a Program Runs [2/2]

• The user issues a command to run a certain program.
• The OS searches for the program’s filename (in the

current directory or predetermined list of directories)
• The OS retrieves basic information about the

program’s file from the disk directory.
• The OS loads the program file into memory.
• The CPU begins to execute the program (process).

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 16

MultitaskingMultitasking

• OS can run multiple tasks at the same time.
• Scheduler utility assigns a given amount of CPU time

to each running program.
• Rapid switching of tasks

• Gives illusion that all programs are running at once
• Round-robin scheduling
• The processor must support task switching.

• The processor saves the state (e.g., registers, variables,
program counter) of each task before switching to a new
one.

• OS can assign varying priorities to tasks.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 17

IAIA--32 Processor Architecture32 Processor Architecture

• Modes of operation
• Basic execution environment
• Floating-point unit
• Intel Microprocessor history

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 18

Modes of OperationModes of Operation
• Protected mode

• Programs are given separate memory areas (called segments)
• Windows, Linux

• Real-address mode
• Implements the programming environment of the Intel 8086

processor
• Native MS-DOS
• All Intel processors boot in Real-address mode

• System management mode
• Provides an operating system with a mechanism for

implementing
• Power management, system security, diagnostics

• Implemented by computer manufactures

• Virtual-8086 mode
• hybrid of Protected and Real-address modes
• While in Protected mode, the processor can directly execute

Real-address mode program in a safe multitasking environment.
• each program has its own 8086 computer

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 19

Basic Execution EnvironmentBasic Execution Environment

• Addressable memory
• General-purpose registers
• Index and base registers
• Specialized register uses
• Status flags
• Floating-point, MMX, XMM registers

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 20

Addressable MemoryAddressable Memory

• Protected mode
• 4 GB
• 32-bit address

• Real-address and Virtual-8086 modes
• 1 MB space
• 20-bit address

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 21

RegistersRegisters

CS

SS

DS

ES

EIP

EFLAGS

16-bit Segment Registers

EAX
EBX

ECX

EDX

32-bit General-Purpose Registers

FS

GS

EBP

ESP

ESI

EDI

• Registers are high-speed storage locations directly inside the
CPU

• Optimized for speed (e.g., loop processing)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 22

Accessing Parts of RegistersAccessing Parts of Registers

• Used for arithmetic and data movement
• Use 8-bit name, 16-bit name, or 32-bit name
• Applies to EAX, EBX, ECX, and EDX

AH AL

16 bits

8

AX

EAX

8

32 bits

8 bits + 8 bits

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 23

Index and Base RegistersIndex and Base Registers

• Some registers have only a 16-bit name for their
lower half:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 24

Some Specialized Register Uses [1/2]Some Specialized Register Uses [1/2]

• General-Purpose
• EAX – accumulator (used by multiplication and division

instructions)
• ECX – loop counter
• ESP – stack pointer addresses data on the stack
• ESI, EDI – source/destination index registers (for high-

speed memory transfer)
• EBP – extended frame pointer (used by high-level

languages to reference function parameters and local
variables)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 25

Some Specialized Register [2/2]Some Specialized Register [2/2]

• Segment (as base locations for pre-assigned memory areas)
• CS – code segment
• DS – data segment
• SS – stack segment
• ES, FS, GS - additional segments

• EIP – instruction pointer
• Containing the address of the next instruction to be

executed
• EFLAGS

• Status and control flags
• Control the operation of the CPU or reflect the outcome of

some CPU operation
• each flag is a single binary bit

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 26

FlagsFlags
• Control Flags

• Direction
• Interrupt

• Status Flags
• Carry

• unsigned arithmetic out of range
• Overflow

• signed arithmetic out of range
• Sign

• result is negative
• Zero

• result is zero
• Auxiliary Carry

• carry from bit 3 to bit 4 in an 8-bit operand
• Parity

• sum of “1” bits is an even number

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 27

FloatingFloating--Point, MMX, XMM RegistersPoint, MMX, XMM Registers

• Eight 80-bit floating-point data
registers
• ST(0), ST(1), . . . , ST(7)
• used for high-speed floating-point

arithmetic

• Eight 64-bit MMX registers
• Eight 128-bit XMM registers for

single-instruction multiple-data
(SIMD) operations

ST(0)
ST(1)

ST(2)

ST(3)

ST(4)
ST(5)

ST(6)

ST(7)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 28

Intel Microprocessor HistoryIntel Microprocessor History

• Intel 8086
• Intel 80286
• IA-32 processor family
• P6 processor family
• CISC and RISC

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 29

Early Intel MicroprocessorsEarly Intel Microprocessors

• Intel 8086/8088
• Mark the beginning of the modern Intel

Architecture family
• IBM-PC used 8088
• 1 MB addressable RAM
• 16-bit registers
• 16-bit data bus (8-bit for 8088 – low-cost

microcontroller)
• separate floating-point unit (8087)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 30

The IBMThe IBM--PC/AT ComputerPC/AT Computer

• Intel 80286
• 16 MB addressable RAM
• Protected memory
• several times faster than 8086
• 80287 floating point unit

• Downward Compatibility

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 31

Intel IAIntel IA--32 Family32 Family

• Intel386
• 4 GB addressable RAM, 32-bit registers,

paging (virtual memory)
• Intel486

• instruction pipelining
• Pentium

• superscalar, 32-bit address bus, 64-bit
internal data path

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 32

Intel P6 FamilyIntel P6 Family

• Based on a new micro-architecture design that
improves execution speed (extension of the basic IA-
32 architecture)

• Pentium Pro
• Advanced optimization techniques in microcode

• Pentium II
• MMX (multimedia) instruction set

• Pentium III
• SIMD (streaming extensions) instructions with special

128-bit registers designed to move large amounts of
data quickly

• Pentium 4
• NetBurst micro-architecture, tuned for multimedia

applications

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 33

CISC and RISCCISC and RISC

• CISC – complex instruction set
• large instruction set
• high-level operations
• High-level language compilers would have less work
• requires microcode interpreter
• Complex instructions require a long time for the processor to

decode and execute
• examples: Intel 80x86 family

• RISC – reduced instruction set
• simple, atomic instructions (for pipelining)
• small instruction set
• directly executed by hardware
• High-speed engineering and graphics workstation use RISC

processors
• examples:

• ARM (Advanced RISC Machines)
• DEC Alpha (now Compaq)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 34

IAIA--32 Memory Management32 Memory Management

• Real-address mode
• Calculating linear addresses
• Protected mode
• Multi-segment model
• Paging

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 35

RealReal--Address modeAddress mode

• 1 MB RAM maximum addressable
(00000~FFFFFh)

• Application programs can access any area of
memory

• Single tasking
• Supported by MS-DOS operating system

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 36

Segmented MemorySegmented Memory
• The original 8086 processor had only 16-bit registers, which can

not directly represent a 20-bit address
• Segmented memory addressing: absolute (linear) address is a
combination of a 16-bit segment value added to a 16-bit offset

00000

10000

20000

30000

40000

50000

60000

70000

80000

90000

A0000

B0000

C0000

D0000

E0000

F0000

8000:0000

8000:FFFF

seg ofs

8000:0250

0250

lin
ea

r a
d d

r e
s s

e s

one segment

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 37

Calculating Linear AddressesCalculating Linear Addresses

• Given a segment address, multiply it by 16 (add a
hexadecimal zero), and add it to the offset

• Example: convert 08F1:0100 to a linear address

Adjusted Segment value: 0 8 F 1 0

Add the offset: 0 1 0 0

Linear address: 0 9 0 1 0

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 38

Your turn . . .Your turn . . .

What linear address corresponds to the segment/offset
address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 39

Your turn . . .Your turn . . .

What segment addresses correspond to the linear address
28F30h?

Many different segment-offset addresses can produce the
linear address 28F30h. For example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 40

Protected ModeProtected Mode

• 4 GB addressable RAM
• (00000000 to FFFFFFFFh)

• Each program assigned a memory partition which
is protected from other programs

• Designed for multitasking
• Supported by Linux & MS-Windows

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 41

Flat Segmentation ModelFlat Segmentation Model
• All segments are mapped to the entire 32-bit physical address

space of the computer.
• At least two segments: one for program code and one for

data
• Each segment is defined by a segment descriptor, a 64-bit value

stored in a table known as the global descriptor table (GDT)

00000000 0040 ----

base address limit access

Segment descriptor in the
Global Descriptor Table

not used
P

hysical R
A

M
FFFFFFFF
(4GB)

00040000

00000000

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 42

MultiMulti--Segment ModelSegment Model

• Each program has a local descriptor table (LDT)
• holds descriptor for each segment used by the program

3000

RAM

00003000

Local Descriptor Table

0002
00008000 000A
00026000 0010

base limit access

8000

26000

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 43

PagingPaging

• Supported directly by the CPU
• Divides each segment into 4096-byte blocks called

pages
• Sum of all programs can be larger than physical

memory
• Part of running program is in memory, part is on disk
• Virtual memory manager (VMM) – OS utility that

manages the loading and unloading of pages
• Page fault – issued by CPU when a page must be

loaded from disk

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 44

Components of an IAComponents of an IA--32 Microcomputer32 Microcomputer

• Motherboard
• Video output
• Memory
• Input-output ports

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 45

MotherboardMotherboard

• The heart of a microcomputer
CPU socket

• External cache memory slots
• Main memory slots
• BIOS (a collection of functions that communicate

directly with hardware devices) chips
• Sound synthesizer chip (optional)
• Video controller chip (optional)
• IDE (hard and CD-ROM drives), parallel, serial, USB
• PCI bus connectors (expansion cards)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 46

Intel D850MD MotherboardIntel D850MD Motherboard

dynamic RAM

Intel 486 socket

Speaker

IDE drive connectors

mouse, keyboard,
parallel, serial, and USB
connectors

Battery

Video chip

Power connector

memory controller hub

Diskette connector

PCI slots

I/O Controller

Firmware hub

Audio chip

Source: Intel® Desktop Board D850MD/D850MV Technical Product
Specification

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 47

Video OutputVideo Output

• Video controller
• on motherboard, or on expansion card
• A special-purpose microcomputer, relieving the

primary CPU of the job of controlling video hardware
• Video memory (VRAM)
• Video CRT Display

• uses raster scanning
• horizontal retrace
• vertical retrace

• Direct digital LCD monitors
• no raster scanning required

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 48

MemoryMemory
• ROM

• read-only memory (permanently burned into a chip)
• EPROM

• erasable programmable read-only memory (be erased slowly
with ultraviolet light)

• Dynamic RAM (DRAM)
• inexpensive; must be refreshed constantly

• Static RAM (SRAM)
• expensive; used for cache memory; no refresh required

• Video RAM (VRAM)
• dual ported (refreshing+writing); optimized for constant video

refresh
• Allocated on a video controller

• CMOS RAM
• system setup information
• On the system motherboard

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 49

InputInput--Output Ports [1/2]Output Ports [1/2]

• USB (universal serial bus)
• intelligent high-speed connection to devices
• up to 12 megabits/second
• USB hub connects multiple devices
• enumeration: computer queries devices

• Parallel
• short cable (less than 10 feet), high speed
• common for printers
• bidirectional, parallel data transfer (8 or 16

bits simultaneously)

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 50

InputInput--Output Ports [2/2]Output Ports [2/2]

• Serial
• RS-232 serial port
• one bit at a time
• uses long cables and modems
• 16550 UART (Universal Asynchronous Receiver

Transmitter) controls the serial ports.
• Located either on the motherboard or on an

adapter card

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 51

Levels of InputLevels of Input--OutputOutput

• Level 3: Call a library function (C++, Java)
• easy to do; abstracted from hardware; details hidden
• slowest performance

• Level 2: Call an operating system function
• specific to one OS; device-independent

• E.g., writing entire strings to files, reading string from the
keyboard, allocating blocks of memory for application programs

• medium performance
• Level 1: Call a BIOS (basic input-output system) function

• may produce different results on different systems
• knowledge of hardware required
• usually good performance

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 52

Displaying a String of CharactersDisplaying a String of Characters

When a HLL program displays a string of
characters, the following steps take place:

1. Application program writes the string to
standard output.

2. The library function calls OS, passing a
string pointer.

3. OS passes the ASCII code and color of
each character to BIOS. OS also calls
BIOS function to control the cursor.

4. BIOS maps each character to a particular
system font and sends it to a hardware
port attached to the video controller card.

5. The video controller card generates
hardware signals to the video display.

Application Program

OS Function

BIOS Function

Hardware Level 0

Level 1

Level 2

Level 3

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 53

ASM Programming levelsASM Programming levels

ASM Program

OS Function

BIOS Function

Hardware Level 0

Level 1

Level 2

ASM programs can perform input-output at
each of the following levels:

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003. 54

Playing a WAV filePlaying a WAV file

• At the OS level, you do not have to know what type of
device was installed and the card’s features.

• At the BIOS level, you would query the sound card
and find out whether it belongs to a certain class of
sound cards.

• At the hardware level, you would fine-tune the
program for certain brands of audio cards, to take
advantage of each card’s special features.
• Not all operating system permit user programs to

directly access system hardware.

