Assembly Language for Intel-Based Computers, 4th Edition Kip R. Irvine

> Chapter 2: IA-32 Processor Architecture

Chapter Overview

- General Concepts
- IA-32 Processor Architecture
- IA-32 Memory Management
- Components of an IA-32 Microcomputer
- Input-Output System

General Concepts

- Basic microcomputer design
- Instruction execution cycle
- Reading from memory
- How programs run

Basic Microcomputer Design [1/2]

- The central processor unit (CPU) is where all the calculations and logic operations take place.
- Clock synchronizes CPU operations
- Control unit (CU) coordinates sequence of execution steps
- Arithmetic logic unit (ALU) performs arithmetic and bitwise processing

Basic Microcomputer Design [2/2]

- The memory storage unit is where instructions and data are held while a computer program is running.
- A bus is a group of parallel wires that transfer data from one part of the computer to another.

• Data bus, address bus and control bus

Clock

- Synchronizes all CPU and BUS operations
- Machine (clock) cycle measures time of a single operation
 - A machine instruction requires at least one clock cycle to execute.
 - A few instructions (e.g., the multiply instruction) requre in excess of 50 clocks.
- The duration of a clock cycle is the reciprocal of the clock's speed
- Clock is used to trigger events

Instruction Execution Cycle

- The execution of a single machine instruction can be divided into a sequence of individual operations.
- Three primary operations: fetch, decode and execute.
- Two more steps are required when the instruction uses a memory operand: fetch operand and store output operand.
- Fetch
- Decode
- Fetch operands
- Execute
- Store output

Multi-Stage Pipeline

- Pipelining makes it possible for a processor to execute instructions in parallel
- Instruction execution divided into discrete stages

Example of a nonpipelined processor. Many wasted cycles.

Pipelined Execution

• More efficient use of cycles, greater throughput of instructions:

	Stages							
		S1	S2	S3	S4	S5	S6	
	1	I-1						
	2	I-2	I-1					
Cycles	3		I-2	I-1				
	4			I-2	I-1			
	5				I-2	I-1		
	6					I-2	I-1	
	7						I-2	

For *k* states and *n* instructions, the number of required cycles is:

k + (n - 1)

Wasted Cycles (pipelined)

• When one of the stages requires two or more clock cycles, clock cycles are again wasted.

	Stages exe								
		S1	S2	S3	S4	S5	S6		
	1	I-1							
	2	I-2	I-1						
	3	I-3	I-2	I-1					
Cycles	4		I-3	I-2	I-1				
V CI	5			I-3	I-1				
Ú.	6				I-2	I-1			
	7				I-2		I-1		
	8				I-3	I-2			
	9				I-3		I-2		
	10					I-3			
	11						I-3		

For *k* states and *n* instructions, the number of required cycles is:

k + (2n - 1)

Superscalar

A superscalar processor has multiple execution pipelines. In the following, note that Stage S4 has left and right pipelines (u and v).

Stages									
	S4								
	S1	S2	S3	u	V	S5	S6		
1	I-1								
2	I-2	I-1							
3	I-3	I-2	I-1						
4	I-4	I-3	I-2	I-1					
5		I-4	I-3	I-1	I-2				
6			I-4	I-3	I-2	I-1			
7				I-3	I-4	I-2	I-1		
8					I-4	I-3	I-2		
9						I-4	I-3		
10							I-4		
	2 3 4 5 6 7 8 9	1 I-1 2 I-2 3 I-3 4 I-4 5	1 I-1 2 I-2 I-1 3 I-3 I-2 4 I-4 I-3 5 I-4 I-4 6 I I 7 I I 8 I I 9 I I	S1 S2 S3 1 I-1 - 2 I-2 I-1 - 3 I-3 I-2 I-1 4 I-4 I-3 I-2 5 I-4 I-3 I-2 6 I-4 I-3 I-4 7 I I I-4 9 I I I I	S1 S2 S3 u 1 I-1 I I 2 I-2 I-1 I I 3 I-3 I-2 I-1 I 4 I-4 I-3 I-2 I-1 5 I I-4 I-3 I-1 6 I I I-3 I-3 7 I I I-3 I-3 8 I I I I I 9 I I I I I I	S1 S2 S3 u v 1 I-1 I I I 2 I-2 I-1 I I 3 I-3 I-2 I-1 I 4 I-4 I-3 I-2 I-1 5 I-4 I-3 I-1 I-2 6 I I I-3 I-2 7 I I I-3 I-4 8 I I I I-4 9 I I I I	S1 S2 S3 u v S5 1 I-1 I I I I I 2 I-2 I-1 I I I I 3 I-3 I-2 I-1 I I I 4 I-4 I-3 I-2 I-1 I I 5 I-4 I-3 I-1 I-2 I I 6 I I I I I I I 7 I I I I I I I 8 I I I I I I I 9 I I I I I I I I		

For *k* states and *n* instructions, the number of required cycles is:

k + n

Reading from Memory

- Multiple machine cycles are required when reading from memory, because it responds much more slowly than the CPU. The steps are:
 - address placed on address bus
 - Read Line (RD) set low to notify memory that a value is to be read
 - CPU waits one cycle for memory to respond. During this cycle, the memory controller places the operand on the data bus (DATA)
 - Read Line (RD) goes to 1, indicating that the data is on the data bus

Cache Memory

- High-speed expensive static RAM both inside and outside the CPU.
 - Level-1 cache: inside the CPU
 - Level-2 cache: outside the CPU
- Cache hit: when data to be read is already in cache memory
- Cache miss: when data to be read is not in cache memory.

How a Program Runs [1/2]

How a Program Runs [2/2]

- The user issues a command to run a certain program.
- The OS searches for the program's filename (in the current directory or predetermined list of directories)
- The OS retrieves basic information about the program's file from the disk directory.
- The OS loads the program file into memory.
- The CPU begins to execute the program (process).

Multitasking

- OS can run multiple tasks at the same time.
- Scheduler utility assigns a given amount of CPU time to each running program.
- Rapid switching of tasks
 - Gives illusion that all programs are running at once
 - Round-robin scheduling
 - The processor must support task switching.
 - The processor saves the state (e.g., registers, variables, program counter) of each task before switching to a new one.
- OS can assign varying priorities to tasks.

IA-32 Processor Architecture

- Modes of operation
- Basic execution environment
- Floating-point unit
- Intel Microprocessor history

Modes of Operation

- Protected mode
 - Programs are given separate memory areas (called segments)
 - Windows, Linux
- Real-address mode
 - Implements the programming environment of the Intel 8086 processor
 - Native MS-DOS
 - All Intel processors boot in Real-address mode
- System management mode
 - Provides an operating system with a mechanism for implementing
 - Power management, system security, diagnostics
 - Implemented by computer manufactures
 - Virtual-8086 mode
 - hybrid of Protected and Real-address modes
 - While in Protected mode, the processor can directly execute Real-address mode program in a safe multitasking environment.
 - each program has its own 8086 computer

Basic Execution Environment

- Addressable memory
- General-purpose registers
- Index and base registers
- Specialized register uses
- Status flags
- Floating-point, MMX, XMM registers

Addressable Memory

- Protected mode
 - 4 GB
 - 32-bit address
- Real-address and Virtual-8086 modes
 - 1 MB space
 - 20-bit address

Registers

- Registers are high-speed storage locations directly inside the CPU
- Optimized for speed (e.g., loop processing)

32-bit General-Purpose Registers

Accessing Parts of Registers

- Used for arithmetic and data movement
- Use 8-bit name, 16-bit name, or 32-bit name
- Applies to EAX, EBX, ECX, and EDX

32-bit	16-bit	8-bit (high)	8-bit (low)
EAX	AX	AH	AL
EBX	BX	BH	BL
ECX	CX	СН	CL
EDX	DX	DH	DL

Index and Base Registers

 Some registers have only a 16-bit name for their lower half:

32-bit	16-bit
ESI	SI
EDI	DI
EBP	BP
ESP	SP

Some Specialized Register Uses [1/2]

General-Purpose

- EAX accumulator (used by multiplication and division instructions)
- ECX loop counter
- ESP stack pointer addresses data on the stack
- ESI, EDI source/destination index registers (for highspeed memory transfer)
- EBP extended frame pointer (used by high-level languages to reference function parameters and local variables)

Some Specialized Register [2/2]

- Segment (as base locations for pre-assigned memory areas)
 - CS code segment
 - DS data segment
 - SS stack segment
 - ES, FS, GS additional segments
- EIP instruction pointer
 - Containing the address of the next instruction to be executed
- EFLAGS
 - Status and control flags
 - Control the operation of the CPU or reflect the outcome of some CPU operation
 - each flag is a single binary bit

Flags

- Control Flags
 - Direction
 - Interrupt
- Status Flags
 - Carry
 - unsigned arithmetic out of range
 - Overflow
 - signed arithmetic out of range
 - Sign
 - result is negative
 - Zero
 - result is zero
 - Auxiliary Carry
 - carry from bit 3 to bit 4 in an 8-bit operand
 - Parity
 - sum of "1" bits is an even number

Floating-Point, MMX, XMM Registers

- Eight 80-bit floating-point data registers
 - ST(0), ST(1), . . . , ST(7)
 - used for high-speed floating-point arithmetic
- Eight 64-bit MMX registers
- Eight 128-bit XMM registers for single-instruction multiple-data (SIMD) operations

ST(0)	
ST(1)	
ST(2)	
ST(3)	
ST(4)	
ST(5)	
ST(6)	
ST(7)	
	$-\langle$

Intel Microprocessor History

- Intel 8086
- Intel 80286
- IA-32 processor family
- P6 processor family
- CISC and RISC

Early Intel Microprocessors

- Intel 8086/8088
 - Mark the beginning of the modern Intel Architecture family
 - IBM-PC used 8088
 - 1 MB addressable RAM
 - 16-bit registers
 - 16-bit data bus (8-bit for 8088 low-cost microcontroller)
 - separate floating-point unit (8087)

The IBM-PC/AT Computer

- Intel 80286
 - 16 MB addressable RAM
 - Protected memory
 - several times faster than 8086
 - 80287 floating point unit
- Downward Compatibility

Intel IA-32 Family

- Intel386
 - 4 GB addressable RAM, 32-bit registers, paging (virtual memory)
- Intel486
 - instruction pipelining
- Pentium
 - superscalar, 32-bit address bus, 64-bit internal data path

Intel P6 Family

- Based on a new micro-architecture design that improves execution speed (extension of the basic IA-32 architecture)
- Pentium Pro
 - Advanced optimization techniques in microcode
- Pentium II
 - MMX (multimedia) instruction set
- Pentium III
 - SIMD (streaming extensions) instructions with special 128-bit registers designed to move large amounts of data quickly
- Pentium 4
 - NetBurst micro-architecture, tuned for multimedia applications

CISC and **RISC**

- CISC complex instruction set
 - large instruction set
 - high-level operations
 - High-level language compilers would have less work
 - requires microcode interpreter
 - Complex instructions require a long time for the processor to decode and execute
 - examples: Intel 80x86 family
- RISC reduced instruction set
 - simple, atomic instructions (for pipelining)
 - small instruction set
 - directly executed by hardware
 - High-speed engineering and graphics workstation use RISC processors
 - examples:
 - ARM (Advanced RISC Machines)
 - DEC Alpha (now Compaq)

IA-32 Memory Management

- Real-address mode
- Calculating linear addresses
- Protected mode
- Multi-segment model
- Paging

Real-Address mode

- 1 MB RAM maximum addressable (00000~FFFFFh)
- Application programs can access any area of memory
- Single tasking
- Supported by MS-DOS operating system

Segmented Memory

- The original 8086 processor had only 16-bit registers, which can not directly represent a 20-bit address
- Segmented memory addressing: absolute (linear) address is a combination of a 16-bit segment value added to a 16-bit offset

Calculating Linear Addresses

- Given a segment address, multiply it by 16 (add a hexadecimal zero), and add it to the offset
- Example: convert 08F1:0100 to a linear address

Adjusted Segment value:	0	8	F	1	0
Add the offset:		0	1	0	0
Linear address:	0	9	0	1	0

What linear address corresponds to the segment/offset address 028F:0030?

028F0 + 0030 = 02920

Always use hexadecimal notation for addresses.

Your turn . . .

What segment addresses correspond to the linear address 28F30h?

Many different segment-offset addresses can produce the linear address 28F30h. For example:

28F0:0030, 28F3:0000, 28B0:0430, . . .

Protected Mode

- 4 GB addressable RAM
 - (00000000 to FFFFFFFh)
- Each program assigned a memory partition which is protected from other programs
- Designed for multitasking
- Supported by Linux & MS-Windows

Flat Segmentation Model

- All segments are mapped to the entire 32-bit physical address space of the computer.
 - At least two segments: one for program code and one for data
- Each segment is defined by a segment descriptor, a 64-bit value stored in a table known as the global descriptor table (GDT)

Segment descriptor in the Global Descriptor Table							FFFFFFF (4GB)	
base address limit access							00040000	
	0000	00000	0040			Physical		
						RAM	00000000	

Multi-Segment Model

- Each program has a local descriptor table (LDT)
 - holds descriptor for each segment used by the program

Paging

- Supported directly by the CPU
- Divides each segment into 4096-byte blocks called pages
- Sum of all programs can be larger than physical memory
- Part of running program is in memory, part is on disk
- Virtual memory manager (VMM) OS utility that manages the loading and unloading of pages
- Page fault issued by CPU when a page must be loaded from disk

Components of an IA-32 Microcomputer

- Motherboard
- Video output
- Memory
- Input-output ports

Motherboard

- The heart of a microcomputer CPU socket
- External cache memory slots
- Main memory slots
- BIOS (a collection of functions that communicate directly with hardware devices) chips
- Sound synthesizer chip (optional)
- Video controller chip (optional)
- IDE (hard and CD-ROM drives), parallel, serial, USB
- PCI bus connectors (expansion cards)

Intel D850MD Motherboard mouse, keyboard, parallel, serial, and USB Video chip connectors Audio chip Const Instant PCI slots 8 memory controller hub ence: Intel 486 socket 000 dynamic RAM Firmware hub I/O Controller **Speaker Power connector Battery Diskette connector** Source: Intel® Desktop Board D850MD/D850MV Technical Product IDE drive connectors

Irvine, Kip R. Assembly Language for Intel-Based Computers, 2003.

Specification

Video Output

- Video controller
 - on motherboard, or on expansion card
 - A special-purpose microcomputer, relieving the primary CPU of the job of controlling video hardware
- Video memory (VRAM)
- Video CRT Display
 - uses raster scanning
 - horizontal retrace
 - vertical retrace
- Direct digital LCD monitors
 - no raster scanning required

Memory

- ROM
 - read-only memory (permanently burned into a chip)
- EPROM
 - erasable programmable read-only memory (be erased slowly with ultraviolet light)
- Dynamic RAM (DRAM)
 - inexpensive; must be refreshed constantly
- Static RAM (SRAM)
 - expensive; used for cache memory; no refresh required
- Video RAM (VRAM)
 - dual ported (refreshing+writing); optimized for constant video refresh
 - Allocated on a video controller
- CMOS RAM
 - system setup information
 - On the system motherboard

Input-Output Ports [1/2]

- USB (universal serial bus)
 - intelligent high-speed connection to devices
 - up to 12 megabits/second
 - USB hub connects multiple devices
 - *enumeration*: computer queries devices
- Parallel
 - short cable (less than 10 feet), high speed
 - common for printers
 - bidirectional, parallel data transfer (8 or 16 bits simultaneously)

Input-Output Ports [2/2]

- Serial
 - RS-232 serial port
 - one bit at a time
 - uses long cables and modems
 - 16550 UART (Universal Asynchronous Receiver Transmitter) controls the serial ports.
 - Located either on the motherboard or on an adapter card

Levels of Input-Output

- Level 3: Call a library function (C++, Java)
 - easy to do; abstracted from hardware; details hidden
 - slowest performance
- Level 2: Call an operating system function
 - specific to one OS; device-independent
 - E.g., writing entire strings to files, reading string from the keyboard, allocating blocks of memory for application programs
 - medium performance
- Level 1: Call a BIOS (basic input-output system) function
 - may produce different results on different systems
 - knowledge of hardware required
 - usually good performance

Displaying a String of Characters

- When a HLL program displays a string of characters, the following steps take place:
- 1. Application program writes the string to standard output.
- 2. The library function calls OS, passing a string pointer.
- 3. OS passes the ASCII code and color of each character to BIOS. OS also calls BIOS function to control the cursor.
- 4. BIOS maps each character to a particular system font and sends it to a hardware port attached to the video controller card.
- 5. The video controller card generates hardware signals to the video display.

ASM Programming levels

ASM programs can perform input-output at each of the following levels:

Playing a WAV file

- At the OS level, you do not have to know what type of device was installed and the card's features.
- At the BIOS level, you would query the sound card and find out whether it belongs to a certain class of sound cards.
- At the hardware level, you would fine-tune the program for certain brands of audio cards, to take advantage of each card's special features.
 - Not all operating system permit user programs to directly access system hardware.