Improving Sequence Generation by GAN

Hung-yi Lee

Outline

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

Review: Chat-bot

 Sequence-to-sequence learning A: $\Delta \Delta \Delta$ output Training data: sentence A: 000 Encoder Generator B: XXX A: $\Delta \Delta \Delta$ history Input information sentence A: 000 B: XXX

Hierarchical Encoder

Review: Generator

Review: Training Generator

Review: Maximum Likelihood

Training data: (h, \hat{x})

h: input sentence and history/context \hat{x} : correct response (word sequence) \hat{x}_t : t-th word, $\hat{x}_{1:t}$: first t words of \hat{x} $C_t = -\log P_{\theta}(\hat{x}_t | \hat{x}_{1:t-1}, h)$ $C = -\sum log P(\hat{x}_t | \hat{x}_{1:t-1}, h)$ $= -logP(\hat{x}_1|h)P(\hat{x}_2|\hat{x}_1,h)$ $\cdots P(\hat{x}_T | \hat{x}_{1 \cdot T-1}, h)$ $\dots = -logP(\hat{x}|h)$

Maximizing the likelihood of generating \hat{x} given h

Outline

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, Dan Jurafsky, "Deep Reinforcement Learning for Dialogue Generation ", EMNLP 2016

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

Introduction

https://image.freepik.com/free-vector/varietyof-human-avatars_23-2147506285.jpg http://www.freepik.com/free-vector/varietyof-human-avatars_766615.htm

• Machine obtains feedback from user

Chat-bot learns to maximize the *expected reward*

Maximizing Expected Reward

Maximizing Expected Reward

Policy Gradient

$$\frac{dlog(f(x))}{dx} = \frac{1}{f(x)} \frac{df(x)}{dx}$$

$$\bar{R}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i})$$

$$\overline{ZR}_{\theta} = \sum_{h} P(h) \sum_{x} R(h, x) \overline{VP}_{\theta}(x|h) \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \overline{VlogP}_{\theta}(x|h)$$

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \frac{\overline{VP}_{\theta}(x|h)}{P_{\theta}(x|h)}$$
Sampling

$$= \sum_{h} P(h) \sum_{x} R(h, x) P_{\theta}(x|h) \overline{VlogP}_{\theta}(x|h)$$

$$= E_{h \sim P(h), x \sim P_{\theta}(x|h)} [R(h, x) \overline{VlogP}_{\theta}(x|h)]$$

Policy Gradient

Gradient Ascent

$$\theta^{new} \leftarrow \theta^{old} + \eta \nabla \bar{R}_{\theta^{old}}$$
$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} | h^{i})$$

 $R(h^{i}, x^{i}) \text{ is positive}$ $After updating \ \theta, P_{\theta}(x^{i}|h^{i}) \text{ will increase}$ $R(h^{i}, x^{i}) \text{ is negative}$ $After updating \ \theta, P_{\theta}(x^{i}|h^{i}) \text{ will decrease}$

Imple	ementation	$\begin{array}{c} \leftarrow \text{Encoder} \rightarrow & \text{Genera} \\ \text{tor} \rightarrow & x^{i} \\ \leftarrow & \text{Human} \rightarrow & R(h^{i}, x^{i}) \end{array}$
	Maximum Likelihood	Reinforcement Learning
Objective Function	$\frac{1}{N} \sum_{i=1}^{N} log P_{\theta}(\hat{x}^{i} h^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(h^{i}, x^{i}) log P_{\theta}(x^{i} h^{i})$
Gradient	$\frac{1}{N} \sum_{i=1}^{N} \nabla log P_{\theta}(\hat{x}^{i} h^{i})$	$\frac{1}{N}\sum_{i=1}^{N} R(h^{i}, x^{i}) \nabla log P_{\theta}(x^{i} h^{i})$
Training Data	$\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$ $R(h^i, \hat{x}^i) = 1$	$\{(h^1, x^1),, (h^N, x^N)\}$ Sampling as training data weighted by $R(h^i, x^i)$

Add a Baseline If $R(h^i, x^i)$ is always positive $\frac{1}{N} \sum_{i=1}^{N} R(h^i, x^i) \log \nabla P_{\theta}(x^i | h^i)$

Add a Baseline
If
$$R(h^i, x^i)$$
 is always positive

$$\frac{1}{N} \sum_{i=1}^{N} R(h^i, x^i) \log \nabla P_{\theta}(x^i | h^i) \longrightarrow \frac{1}{N} \sum_{i=1}^{N} (R(h^i, x^i) - b) \log \nabla P_{\theta}(x^i | h^i)$$

There are several ways to obtain the baseline b.

Alpha GO style training !

Let two agents talk to each other

🚴 l thou

I though you were 12.

What make you think so?

Using a pre-defined evaluation function to compute R(h,x)

Example Reward

 The final reward R(h,x) is the weighted sum of three terms r₁(h,x), r₂(h,x) and r₃(h,x)

Example Results

Baseline mutual information model (Li et al. 2015)	Proposed reinforcement learning model

Outline

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

http://www.nipic.com/show/3/83/3936650kd7476069.html

Basic Idea – Chat-bot

Algorithm – Chat-bot

- Initialize generator Gen and discriminator Dis
- In each iteration:
 - Sample real history h and sentence x from database

Training data:

h

Х

A: 000

B: XXX

A: $\Delta \Delta \Delta$

- Sample real history h' from database, and generate sentences \tilde{x} by Gen(h')
- Update Dis to increase Dis(h, x) and decrease $Dis(h', \tilde{x})$

Alternatives

- Gumbel-softmax
 - Matt J. Kusner, José Miguel Hernández-Lobato, "GANS for Sequences of Discrete Elements with the Gumbel-softmax Distribution", arXiv 2016
- MaliGAN
 - Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, Yoshua Bengio, "Maximum-Likelihood Augmented Discrete Generative Adversarial Networks", arXiv 2017

• SeqGAN

- Lantao Yu, Weinan Zhang, Jun Wang, Yong Yu, "SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient", AAAI 2017
- Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, Dan Jurafsky, "Adversarial Learning for Neural Dialogue Generation", arXiv 2017

Reinforcement Learning?

- Consider the output of discriminator as reward
 - Update generator to increase discriminator = to get maximum reward

$$\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \frac{p(h^{i}, x^{i})}{D(h^{i}, x^{i})} - b) \nabla log P_{\theta}(x^{i} | h^{i})$$

Discriminator Score

- Different from typical RL
 - The discriminator would update

g-step New Objective: discriminator θ^t $\frac{1}{N} \sum D(h^{i}, x^{i}) log P_{\theta}(x^{i}|h^{i})$ $(h^1, x^1) \quad D(h^1, x^1)$ $\theta^{t+1} \leftarrow \theta^t + \eta \nabla \bar{R}_{\theta^t}$ $(h^2, x^2) \quad D(h^2, x^2)$ $\sum D(h^i, x^i) \nabla log P_{\theta^t}(x^i | h^i)$ \overline{N} $(h^N, x^N) \quad D(h^N, x^N)$ d-step discriminator $\boldsymbol{\chi}$ hfake real

感謝 段逸林 同學提供實驗結果

Example Results

input | I love you.

input | Do you like machine learning?

input | I thought I have met you before.

in	put Let's go to	the party.
	Human Evaluation	-
MLE	52.6%	input How do you feel about the president?
SeqGAN	56.9%	
ESGAN	60.9%	

Tips: Reward for Every Generation Step $\nabla \overline{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} (D(h^{i}, x^{i}) - b) \nabla log P_{\theta}(x^{i} | h^{i})$

 $h^{i} = \text{``What is your name?''} \quad D(h^{i}, x^{i}) - b \text{ is negative}$ $x^{i} = \text{``I don't know''} \qquad Update \ \theta \text{ to decrease } \log P_{\theta}(x^{i}|h^{i})$ $log P_{\theta}(x^{i}|h^{i}) = log P(x_{1}^{i}|h^{i}) + log P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$ $P("I"|h^{i}) = ?$

 $h^{i} = \text{``What is your name?''} \quad D(h^{i}, x^{i}) - b \text{ is positive}$ $x^{i} = \text{``I am John''} \qquad \text{Update } \theta \text{ to increase } \log P_{\theta}(x^{i}|h^{i})$ $log P_{\theta}(x^{i}|h^{i}) = log P(x_{1}^{i}|h^{i}) + log P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$

 $P("I"|h^i)$

Tips: Reward for Every Generation $log P_{\theta}(x^{i}|h^{i}) = log P(x_{1}^{i}|h^{i}) + log P(x_{2}^{i}|h^{i}, x_{1}^{i}) + log P(x_{3}^{i}|h^{i}, x_{1:2}^{i})$ $P("I"|h^i)$ $P("don't"|h^i, "I")$ $P("know"|h^i, "I don't")$ $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} (\underline{D(h^{i}, x^{i}) - b}) \nabla log P_{\theta}(x^{i} | h^{i})$ $\nabla \bar{R}_{\theta} \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{T} (Q(h^{i}, x_{1:t}^{i}) - b) \nabla log P_{\theta}(x_{t}^{i} | h^{i}, x_{1:t-1}^{i})$ i=1 t=

Method 1. Monte Carlo (MC) Search Method 2. Discriminator For Partially Decoded Sequences

Tips: Monte Carlo Search

• How to estimate $Q(h^i, x_{1:t}^i)$?

$$Q("What is your name?","I")$$

 h^i x_1^i

A roll-out generator for sampling is needed

$$x^{A} = I \text{ am John} \qquad D(h^{i}, x^{A}) = 1.0$$

$$x^{B} = I \text{ am happy} \qquad D(h^{i}, x^{B}) = 0.1$$

$$x^{C} = I \text{ don't know} \qquad D(h^{i}, x^{C}) = 0.1$$

$$x^{D} = I \text{ am superman} \qquad D(h^{i}, x^{D}) = 0.8$$
avg

Tips: Rewarding Partially Decoded Sequences

- Training a discriminator that is able to assign rewards to both fully and partially decoded sequences
 - Break generated sequences into partial sequences

h="What is your name?", x="I am john" h="What is your name?", x="I am"

h="What is your name?", x="I"

h="What is your name?", x="I don't"

h="What is your name?", x="I"

Tips: Adding Good Examples

- The training of generative model is unstable
 - This reward is used to promote or discourage the generator's own generated sequences.
 - Usually It knows that the generated results are bad, but does not know what results are good.

Training Data for SeqGAN: $\{(h^1, x^1), \dots, (h^N, x^N)\}$

 Obtained by sampling

 weighted by $D(h^i, x^i)$ Adding more Data: $\{(h^1, \hat{x}^1), \dots, (h^N, \hat{x}^N)\}$

 Real data

Consider $D(h^i, \hat{x}^i) = 1$

Tips: RankGAN

Kevin Lin, Dianqi Li, Xiaodong He, Zhengyou Zhang, Ming-Ting Sun, "Adversarial Ranking for Language Generation", NIPS 2017

Image caption generation:

Method	BLEU-2	BLEU-3	BLEU-4	Method	Human score
MLE	0.781	0.624	0.589	SeqGAN	3.44
SeqGAN	0.815	0.636	0.587	RankGAN	4.61
RankGAN	0.845	0.668	0.614	Human-written	6.42

More Applications

- Supervised machine translation
 - Lijun Wu, Yingce Xia, Li Zhao, Fei Tian, Tao Qin, Jianhuang Lai, Tie-Yan Liu, "Adversarial Neural Machine Translation", arXiv 2017
 - Zhen Yang, Wei Chen, Feng Wang, Bo Xu, "Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets", arXiv 2017
- Supervised abstractive summarization
 - Linqing Liu, Yao Lu, Min Yang, Qiang Qu, Jia Zhu, Hongyan Li, "Generative Adversarial Network for Abstractive Text Summarization", AAAI 2018
- Image/video caption generation
 - Rakshith Shetty, Marcus Rohrbach, Lisa Anne Hendricks, Mario Fritz, Bernt Schiele, "Speaking the Same Language: Matching Machine to Human Captions by Adversarial Training", ICCV 2017
 - Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang Gan, Eric P. Xing, "Recurrent Topic-Transition GAN for Visual Paragraph Generation", arXiv 2017

Outline

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

Summarization

Extractive Summaries

[Lee, et al., Interspeech 12][Lee, et al., ICASSP 13][Shiang, et al., Interspeech 13]

Audio File to be summarized

- Select the most informative segments to form a compact version
- Machine does not write summaries in its own words

Abstractive Summarization

• Now machine can do **abstractive summary** (write summaries in its own words)

Abstractive Summarization

• Input: transcriptions of audio, output: summary

Unsupervised Abstractive Summarization

- **Document**:澳大利亞今天與13個國家簽署了反興奮劑雙 邊協議,旨在加強體育競賽之外的藥品檢查並共享研究成 果.....
- Summary:
 - Human:澳大利亞與13國簽署反興奮劑協議
 - Unsupervised:澳大利亞加強體育競賽之外的藥品檢查
- **Document**:中華民國奧林匹克委員會今天接到一九九二年 冬季奧運會邀請函,由於主席張豐緒目前正在中南美洲進 行友好訪問,因此尚未決定是否派隊赴賽.....

• Summary:

- Human:一九九二年冬季奧運會函邀我參加
- Unsupervised:奥委會接獲冬季奧運會邀請函

Unsupervised Abstractive Summarization

- **Document**:據此間媒體27日報道,印度尼西亞蘇門答臘島 的兩個省近日來連降暴雨,洪水泛濫導致塌方,到26日為止 至少已有60人喪生,100多人失蹤
- *Summary*:
 - Human:印尼水災造成60人死亡
 - Unsupervised:印尼門洪水泛濫導致塌雨
- **Document**:安徽省合肥市最近為領導幹部下基層做了新規 定:一律輕車簡從,不準搞迎來送往、不準搞層層陪同.....
- Summary:
 - Human:合肥規定領導幹部下基層活動從簡
 - Unsupervised:合肥領導幹部下基層做搞迎來送往規定: 一律簡

More Applications

Unsupervised video summarization

Behrooz Mahasseni, Michael Lam and Sinisa Todorovic, "Unsupervised Video Summarization with Adversarial LSTM Networks", CVPR, 2017

Outline of Part II

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

Unsupervised Translation

- Alexis Conneau, Guillaume Lample, Marc'Aurelio Ranzato, Ludovic Denoyer, Hervé Jégou, Word Translation Without Parallel Data, submitted to ICRL 2018
- Guillaume Lample, Ludovic Denoyer, Marc'Aurelio Ranzato, "Unsupervised Machine Translation Using Monolingual Corpora Only", submitted to ICRL 2018

Approaches

Experimental Results

Outline of Part II

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer

Example: Personalized Chat-bot

- General chat-bots generate plain responses
- Human talks in different styles and sentiments to different people in different conditions.
- We want the response of chat-bot is controllable.
 - Therefore, chat-bot can be personalized in the future
- We only focus on generate positive response below.

Input: How was your day today?

Optimistic Chat-bot

It is wonderful today.

Assumption: We have a sentiment classifier. Given a sentence x, we can evaluate how positive it is, SC(x).

Approaches

Type 1. System Modification

Type 2. Output Transformation

• 1. Persona-Based Model

• 1. Persona-Based Model

• 1. Persona-Based Model

Testing

Response: I love you, too.

Response: I am not ready to start a relationship.

Cycle GAN

 Negative sentence to positive sentence: it's a crappy day \rightarrow it's a great day i wish you could be here \rightarrow you could be here it's not a good idea \rightarrow it's good idea i miss you \rightarrow i love you i don't love you \rightarrow i love you 20 i can't do that \rightarrow i can do that i feel so sad \rightarrow i happy it's a bad day \rightarrow it's a good day it's a dummy day \rightarrow it's a great day sorry for doing such a horrible thing \rightarrow thanks for doing a great thing my doggy is sick \rightarrow my doggy is my doggy my little doggy is sick \rightarrow my little doggy is my little doggy

Experimental Results

	Coherence	Sentiment	Grammar
Seq2seq(baseline)	0.548	0.161	0.999
Persona-based	0.235	0.705	0.746
Reinforcement L.	0.346	0.698	0.925
Plug and Play	0.150	0.483	0.430
Transformation Net	0.020	0.492	0.387
CycleGAN	0.435	0.627	0.912

- Chat-bots were changed (these two method were able to make complicated changes to the output sentences).
- RL model perform better than persona-based models in two out of the three metric, except *sentiment* score
- For persona-based, *sentiment* is high but *coherence* and *grammar* are low.

Experimental Results

	Coherence	Sentiment	Grammar
Seq2seq(baseline)	0.548	0.161	0.999
Persona-based	0.235	0.705	0.746
Reinforcement L.	0.346	0.698	0.925
Plug and Play	0.150	0.483	0.430
Transformation Net	0.020	0.492	0.387
CycleGAN	0.435	0.627	0.912

- These three models modify the responses after they are generated.
- Among the three models, cycle GAN is the best in terms of *coherence, sentiment* and *grammar*.

Example 1

- Input: yeah, i'm just less interested in the how-to and more in the what and why of the things we build
- Seq2seq: it's not a good thing .
- Persona: I'm interested in this .
- RL: it's a good one
- Plug and play: it's not a wrong thing .
- Cycle GAN: it's a good thing .

Example 2

- Input: always learning and self improving is a huge turn on for me so believe me i understand
- Seq2seq: i'm not sure if i can see you in a relationship
- Persona: and you're gonna have a word with your mother .
- RL: i love you so much
- Plug and play: i'm not sure if i can see you a a special
- Cycle GAN: i'm sure if i can see you in a relationship.

Concluding Remarks

Improving Supervised Seq-to-seq Model

- RL (human feedback)
- GAN (discriminator feedback)

Unsupervised Seq-to-seq Model

- Summarization
- Translation

Text Style Transfer