Advanced Tips for Deep Learning Hung-yi Lee

Prerequisite: https://www.youtube.com/watch?v=xki61j7z-30

Do not always blame Overfitting

Deep Residual Learning for Image Recognition http://arxiv.org/abs/1512.03385

Outline

- Batch Normalization
- New Activation Function
- Tuning Hyperparameters
- Interesting facts (?) about deep learning
- Capsule
- New models for QA

Batch Normalization

Sergey Ioffe, Christian Szegedy, "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", 2015

In general, gradient descent converges much faster with feature scaling than without it.

How about Hidden Layer?

Batch

Batch normalization

We do not have *batch* at testing stage.

Ideal solution:

Computing μ and σ using the whole training dataset.

Practical solution:

Computing the moving average of μ and σ of the batches during training.

Batch normalization - Benefit

- BN reduces training times, and make very deep net trainable.
 - Because of less Covariate Shift, we can use larger learning rates.
 - Less exploding/vanishing gradients
 - Especially effective for sigmoid, tanh, etc.
- Learning is less affected by initialization.

$$x^{i} \rightarrow W^{1} \rightarrow z^{i} \xrightarrow{\times k} k \xrightarrow{k \in ep} \hat{z}^{i} \xrightarrow{k \in ep} \hat{z}^{i} \xrightarrow{k} \hat{z}^{i} \xrightarrow$$

• BN reduces the demand for regularization.

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Demo

Activation Function

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, Andreas Mayr, "Self-Normalizing Neural Networks", NIPS, 2017

ReLU

• Rectified Linear Unit (ReLU)

Reason:

- 1. Fast to compute
- 2. Biological reason
- 3. Infinite sigmoid with different biases

4. Vanishing gradient problem

α also learned by gradient descent

 α is sampled from a distribution during training. Fixed during testing.

(1) Definition of scaled exponential linear units (SELUs)

 $\alpha = 1.6732632423543772848170429916717$ $\lambda = 1.0507009873554804934193349852946$

Positive and negative values

The whole ReLU family has this property except the original ReLU.

Saturation region

Slope larger than 1

ELU also has this property

Only SELU also has this property

SELU

$$\mu_{z} = E[z]$$

= $\sum_{k=1}^{K} E[a_{k}] w_{k} = \mu \sum_{k=1}^{K} w_{k} = \mu \cdot K \mu_{w}$
= 0 = 0

The inputs are i.i.d random variables with mean μ and variance $\sigma^2 \cdot \mathbf{1} = 0$

Do not have to be Gaussian

SFLU

 $\mu_z = 0$ $\mu_w = 0$ $\sigma_z^2 = E[(z - \mu_z)^2] = E[z^2]$ $= E[(a_1w_1 + a_2w_2 + \cdots)^2]$ The inputs are i.i.d random K $= \sum_{k=1}^{\infty} (w_k)^2 \sigma^2 = \sigma^2 \cdot K \sigma_w^2 = 1$ =1 =1 variables with mean μ and variance σ^2 . =1 =() $E[(a_k w_k)^2] = (w_k)^2 E[(a_k)^2] = (w_k)^2 \sigma^2$ \mathcal{A}_1 \mathcal{W}_1 $E[a_i a_j w_i w_j] = w_i w_j E[a_i] E[a_j] = 0$ \mathcal{W}_k (z) a_{1} target **Assume Gaussian** $\mu = 0, \sigma = 1$ $a_{\rm K}$ $z = a_1 W_1 + \dots + a_k W_k + \dots + a_k W_k$

Demo

$\frac{2(2x-y)(2x+y)2.911}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}\left(\frac{2x+y}{\sqrt{2}\sqrt{x}}\right)^2 + 2.911^2 + \frac{(2.911-1)\sqrt{7}(2x+y)}{\sqrt{2}\sqrt{x}}\right)}\right)\sqrt{\pi} - 0.0003 - (3x-y) + \left(\frac{\left(\sqrt{2}\sqrt{x}2.911\right)(x-y)(x+y)}{\left(\sqrt{\pi}(x+y)^2 + 2 \cdot 2.911^2x} + (2.911-1)(x+y)\sqrt{\pi}\right)(\sqrt{2}\sqrt{x})} - \frac{2(2x-y)(2x+y)\left(\sqrt{2}\sqrt{x}2.911\right)}{\left(\sqrt{2}\sqrt{x}\right)\left(\sqrt{\pi}(2x+y)^2 + 2 \cdot 2.911^2x} + (2.911-1)(2x+y)\sqrt{\pi}\right)}\right)\sqrt{\pi} - 0.0003 - (2\sqrt{2}\sqrt{x})\left(\sqrt{\pi}(2x+y)^2 + 2 \cdot 2.911^2x} + (2.911-1)(2x+y)\sqrt{\pi}\right)$	93 頁的證明 Source of joke: https://zhuanlan.zhihu.co m/p/27336839
$(3x - y) + 2.911 \left(\frac{(x - y)(x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y)^2 + \frac{2.2.911^2 x}{\pi}}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(2x + y) + \sqrt{(2x + y)^2 + \frac{2.2.911^2 x}{\pi}}} \right) - 0.0003 \geqslant$ $(3x - y) + 2.911 \left(\frac{(x - y)(x + y)}{(2.911 - 1)(x + y) + \sqrt{(\frac{2.911^2}{\pi})^2} + (x + y)^2 + \frac{2.2.911^2 x}{\pi} + \frac{2.2.911^2 x}{\pi}}{(2.911 - 1)(2x + y) + \sqrt{(2x + y)^2 + \frac{2.2.911^2 x}{\pi}}} \right) - 0.0003 =$ $(3x - y) + 2.911 \left(\frac{(x - y)(x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - \frac{2(2x - y)(2x + y)}{(2.911 - 1)(x + y) + \sqrt{(x + y + \frac{2.911^2}{\pi})^2}} - 2($	SELU is actually more general.
$(2.911-1)(2x + (3x-y)+2.911)$ $(3x-y)+\frac{(x-y)}{(x+y)}$ Andrej Karpathy	Following
$\begin{array}{l} \overset{(3x-y)+\frac{(x-y)}{(x+y)}}{(-2(2x-y)^{2.911}} & \text{maybe it's all generated} \\ \overset{(x+y)+\frac{2.911}{\pi}}{(x+y)+\frac{2.911}{\pi}} & \text{suspect we will never k} \end{array}$	d by a char-rnn. I now.
$ \begin{pmatrix} (x-y)(x+y) \\ (x+y) + \frac{2.91}{\pi} \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ $	🕽 🔊 👱 🧕 🗃
2:54 AM - 10 Jun 2017	

FNN method comparison			ML method comparison		
Method	avg. rank diff.	<i>p</i> -value	Method	avg. rank diff.	<i>p</i> -value
SNN	-0.756		SNN	-6.7	
MSRAinit	-0.240*	2.7e-02	SVM	-6.4	5.8e-01
LayerNorm	-0.198*	1.5e-02	RandomForest	-5.9	2.1e-01
Highway	0.021*	1.9e-03	MSRAinit	-5.4*	4.5e-03
ResNet	0.273*	5.4e-04	LayerNorm	-5.3	7.1e-02
WeightNorm	0.397*	7.8e-07	Highway	-4.6*	1.7e-03
BatchNorm	0.504*	3.5e-06			

Demo

Figure 4: The Swish activation function.

Hyperparameters

Source of iamge: https://medium.com/intuitionmachine/the-brute-force-method-of-deep-learning-innovation-58b497323ae5 (Denny Britz's graphic)

Deep Learning研究生

朋友覺得我在

我媽覺得我在

大眾覺得我在

指導教授覺得我在

我以為我在

http://www.deeplearningbook.org/contents/guidelines.html

Grid Search v.s. Random Search -ayer width -ayer width Layer depth Layer depth

Assumption: top K results are good enough

If there are N points, probability K/N that your sample is in top K Sample x times: $1 - (1 - K/N)^x > 90\%$ If N = 1000, K = 10 \longrightarrow x = 230

Model-based Hyperparameter Optimization

objective fn $(f(\cdot))$ observation (x) acquisition max acquisition function (u(-)) t = 3new observation (x,) t = 4posterior mean $(\mu(\cdot))$ posterior uncertainty $(\mu(\cdot)\pm\sigma(\cdot))$

https://cloud.google.com/blog/bigdata/2017/08/hyperparametertuning-in-cloud-machine-learningengine-using-bayesian-optimization

Reinforcement Learning

It can design LSTM as shown in the previous lecture.

One kind of meta learning (or learn to learn)

A Full Convolutional Neural Network (LeNet)

SWISH

- Unary functions: $x, -x, |x|, x^2, x^3, \sqrt{x}, \beta x, x + \beta, \log(|x| + \epsilon), \exp(x) \sin(x), \cos(x), \sinh(x), \cosh(x), \tanh(x), \sinh^{-1}(x), \tan^{-1}(x), \operatorname{sinc}(x), \max(x, 0), \min(x, 0), \sigma(x), \log(1 + \exp(x)), \exp(-x^2), \operatorname{erf}(x), \beta$
- Binary functions: $x_1 + x_2, x_1 \cdot x_2, x_1 x_2, \frac{x_1}{x_2 + \epsilon}, \max(x_1, x_2), \min(x_1, x_2), \sigma(x_1) \cdot x_2, \exp(-\beta(x_1 x_2)^2), \exp(-\beta|x_1 x_2|), \beta x_1 + (1 \beta)x_2$
SWISH

Learning Rate

- **Operands**: $g, g^2, g^3, \hat{m}, \hat{v}, \hat{\gamma}, \operatorname{sign}(g), \operatorname{sign}(\hat{m}), 1$, 2, $\epsilon \sim N(0, 0.01), 10^{-4}w, 10^{-3}w, 10^{-2}w, 10^{-1}w$, Adam and RMSProp.
- Unary functions which map input x to: $x, -x, e^x$, $\log |x|, \sqrt{|x|}$, $clip(x, 10^{-5})$, $clip(x, 10^{-4})$, $clip(x, 10^{-3})$, drop(x, 0.1), drop(x, 0.3), drop(x, 0.5) and sign(x).
- Binary functions which map (x, y) to x + y (addition), x y (subtraction), x * y (multiplication), x/y+δ (division), x^y (exponentiation) or x (keep left).

 $e^{\operatorname{sign}(g) * \operatorname{sign}(m)} * g$ Can transfer to new tasks

Capsule

Sara Sabour, Nicholas Frosst, Geoffrey E. Hinton, "Dynamic Routing Between Capsules", NIPS, 2017

Capsule

A neuron detects a specific pattern.

Neuron A Neuron B

• Neuron: output a value, Capsule: output a vector

c are determined by *dynamic routing* during the testing stage. c.f. pooling Dynamic Routing

$$\begin{split} b_1^0 &= 0, b_2^0 = 0, b_3^0 = 0\\ \text{For } r &= 1 \text{ to T do}\\ c_1^r, c_2^r, c_3^r &= softmax(b_1^{r-1}, b_2^{r-1}, b_3^{r-1})\\ s^r &= c_1 u^1 + c_2 u^2 + c_3 u^3\\ a^r &= Squash(s^r)\\ b_i^r &= b_i^{r-1} + a^r \cdot u^i \end{split}$$

Capsule

- Capsule can also be convolutional.
 - Simply replace filter with capsule

Minimize

error

reconstruction

Experimental Results

 MNIST 	Method	Routing	Reconstruction	MNIST (%)
	Baseline	-	-	0.39
	CapsNet	1	no	$0.34_{\pm 0.032}$
	CapsNet	1	yes	$0.29_{\pm 0.011}$
	CapsNet	3	no	$0.35_{\pm 0.036}$
	CapsNet	3	yes	$0.25_{\pm 0.005}$

- Each example is an MNIST digit with a random small affine transformation.
- However, models were never trained with affine transformations
- CapsNet achieved 79% accuracy on the affnist test set.
- A traditional convolutional model with a similar number of parameters which achieved 66%.

Experimental Results

Top: input Bottom: reconstructed R: reconstructed digits L: true labels

• MultiMNIST

Discussion

• Invariance v.s. Equivariance

Equivariance

Max pooling has invariance, but not equivariance.

Capsule has both invariance and equivariance.

To Learn More

- Hinton's talk: https://www.youtube.com/watch?v=rTawFwUvnLE
- Keras:
 - <u>https://github.com/XifengGuo/CapsNet-Keras</u>
- Tensorflow:
 - <u>https://github.com/naturomics/CapsNet-Tensorflow</u>
- PyTorch
 - <u>https://github.com/gram-ai/capsule-networks</u>
 - https://github.com/timomernick/pytorch-capsule
 - https://github.com/nishnik/CapsNet-PyTorch

Interesting Facts (?) about Deep Learning http://www.deeplearningbook.org/contents/optimization.html

Training stuck because ?

http://www.deeplearningbook.org/contents/optimization.html

Training stuck because ?

• People believe training stuck because the parameters are around a critical point

Brute-force Memorization ?

Final of 2017 Spring: https://ntumlds.wordpress.com/2017/03/27/r05922018_drliao/

Demo

https://arxiv.org/pdf/1706.05394.pdf

Brute-force Memorization ?

• Simple pattern first, then memorize exception

(b) Noise added on classification labels.

Knowledge Distillation

Knowledge Distillation https://arxiv.org/pdf/1503.02531.pdf Do Deep Nets Really Need to be Deep? https://arxiv.org/pdf/1312.6184.pdf

https://arxiv.org/pdf/1312.6184.pdf

Deep Learning for Question Answering

Question Answering

- Given a document and a query, output an answer
- bAbl: the answer is a word
 - https://research.fb.com/downloads/babi/
- SQuAD: the answer is a sequence of words (in the input document)
 - https://rajpurkar.github.io/SQuAD-explorer/
- MS MARCO: the answer is a sequence of words
 - http://www.msmarco.org
- MovieQA: Multiple choice question (output a number)
 - http://movieqa.cs.toronto.edu/home/
- More: https://github.com/dapurv5/awesome-questionanswering

Rank	Model	EM	F1
1 Oct 17, 2017	Interactive AoA Reader+ (ensemble) Joint Laboratory of HIT and iFLYTEK	79.083	86.450
2 Oct 24, 2017	FusionNet (ensemble) Microsoft Business AI Solutions Team	78.978	86.016
3 Nov 03, 2017	BiDAF + Self Attention + ELMo (single model) Allen Institute for Artificial Intelligence	78.580	85.833
3 Oct 12, 2017	r-net (ensemble) Microsoft Research Asia http://aka.ms/rnet	78.926	85.722
3 Oct 22, 2017	DCN+ (ensemble) Salesforce Research	78.852	85.996
4 Oct 22, 2017	BiDAF + Self Attention + ELMo (single model) Allen Institute for Artificial Intelligence	77.856	85.344
5 Jul 25, 2017	Interactive AoA Reader (ensemble) Joint Laboratory of HIT and iFLYTEK Research	77.845	85.297
6 Aug 21, 2017	Reinforced Mnemonic Reader (ensemble) NUDT and Fudan University https://arxiv.org/abs/1705.02798	77.678	84.888

Demo: http://35.165.153.16:1995

Bi-directional Attention Flow

Figure 1: Overview of the Dynamic Coattention Network.

• Experimental Results

Question 1: Who recovered Tolbert's fumble?

DCN+: https://arxiv.org/pdf/1711.00106.pdf

Attention-over-Attention (AoA)

1	Interactive AoA Reader+ (ensemble)	79.083	86.450
Oct 17, 2017	Joint Laboratory of HIT and iFLYTEK		

Reinforced Mnemonic Reader

Reinforcement Learning for Machine Comprehension One way to tackle this problem is to directly optimizing the F1 score with reinforcement learning. The F1 score measures the overlap between the predicted answer and the ground-truth answer, serving as a "soft" metric compared to the "hard" EM. Taking the F1 score as reward, we use the REINFORCE algorithm (Williams 1992) to maximize the model's expected reward. For each sampled answer \hat{A} , we define the loss as:

$$J_{RL}(\theta) = -\mathbb{E}_{\hat{A} \sim p_{\theta}(A|C,Q)}[R(\hat{A}, A^*)]$$
(10)

where p_{θ} is the policy to be learned, and $R(\hat{A}, A^*)$ is the reward function for a sampled answer, computed as the F1 score with the ground-truth answer A^* . \hat{A} is obtained by sampling from the predicted probability distribution $p_{\theta}(A|C, Q)$.

6	Reinforced Mnemonic Reader (ensemble)	77.678	84.888
Aug 21, 2017	NUDT and Fudan University		
	https://arxiv.org/abs/1705.02798		

Multiple-hop

FusionNet

Architectures	(1)	(2)	(2')	(3)	(3')	\sim			
Match-LSTM (Wang & Jiang, 2016)		✓			(3				
DCN (Xiong et al., 2017)		\checkmark			✓ ⁽⁰				
FastQA (Weissenborn et al., 2017)	~						(2)		
FastQAExt (Weissenborn et al., 2017)	\checkmark	\checkmark		\checkmark	(3'		1		
BiDAF (Seo et al., 2017)		\checkmark			✓	\sim		\sim	/
RaSoR (Lee et al., 2016)	1		\checkmark			(2')	1	
DrQA (Chen et al., 2017)	1					\sim		\sim	/
MPCM (Wang et al., 2016)	~	\checkmark					1.	nna t	
Mnemonic Reader (Hu et al., 2017)	1	\checkmark		\checkmark			(1)		UUU
R-net (Wang et al., 2017)		~		\checkmark		Context	(•)	Questi	ion

Table 1: A summarized view on the fusion processes usedFigure 2: A conceptual architecture il-in several state-of-the-art architectures.lustrating recent advances in MRC.

Recurrent Entity Networks

Task	NTM	D-NTM	MemN2N	DNC	DMN+	EntNet	
1.1 supporting fact	31.5	ΔΔ	0	0	0	0	
2: 2 supporting facts	54.5		03	0 4	03	0 1	
3: 3 supporting facts	<u> </u>	71.3	2.1	1.8	0.5	$\begin{array}{c} 0.1 \\ 4 \end{array}$	
4. 2 argument relations	0	0	0	0	0	$\overset{+.1}{0}$	
5: 3 argument relations	0.8	17	0.8	0.8	05	03	
6: ves/no questions	17 1	1.7	0.0	0.0	0.5	0.3	
7: counting	17.1	6.0	2.0	06	$\frac{0}{24}$	0.2	
8. lists/sets	13.8	17	0.9	0.0	0.0	05	
9. simple negation	16.4	0.6	0.3	0.2	0.0	0.0	
10: indefinite knowledge	16.6	19.8	0.5	0.2	0	0.6	
11: basic coreference	15.2	0	0.0	0	0.0	0.3	
12: conjunction	8.9	6.2	0	0 0	0.2	0	
13: compound coreference	7.4	7.5	0	0	0	1.3	
14: time reasoning	24.2	17.5	0.2	0.4	0.2	0	
15: basic deduction	47.0	0	0	0	0	0	
16: basic induction	53.6	49.6	51.8	55.1	45.3	0.2	
17: positional reasoning	25.5	1.2	18.6	12.0	4.2	0.5	
18: size reasoning	2.2	0.2	5.3	0.8	2.1	0.3	
19: path finding	4.3	39.5	2.3	3.9	0.0	2.3	
20: agent's motivation	1.5	0	0	0	0	0	
Failed Tasks $(> 5\%$ error):	16	9	3	2	1	0	
Mean Error:	20.1	12.8	4.2	- 3.8	2.8	0.5	

Query-Reduction Networks for Question Answering

https://arxiv.org/pdf/1606.04582.pdf

Query-Reduction Networks for Question Answering

https://arxiv.org/pdf/1606.04582.pdf

	1k											10k						
Task	Previous works				QRN							Previous	QRN					
	LSTM	N2N	DMN+	GMemN2N	lr	2	2r	3r	6r	6r200*	N2N	DMN+	GMemN2N	2r	2rv	3r	6r200	
1: Single supporting fact	50.0	0.1	1.3	0.0	0.0	0.0	0.0	0.0	0.0	13.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2: Two supporting facts	80.0	18.8	72.3	8.1	65.7	1.2	0.7	0.5	1.5	15.3	0.3	0.3	0.0	0.4	0.8	0.4	0.0	
3: Three supporting facts	80.0	31.7	73.3	38.7	68.2	17.5	5.7	1.2	15.3	13.8	2.1	1.1	4.5	0.4	1.4	0.0	0.0	
4: Two arg relations	39.0	17.5	26.9	0.4	0.0	0.0	0.0	0.7	9.0	13.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5: Three arg relations	30.0	12.9	25.6	1.0	1.0	1.1	1.1	1.2	1.3	12.5	0.8	0.5	0.2	0.5	0.2	0.3	0.0	
6: Yes/no questions	52.0	2.0	28.5	8.4	0.1	0.0	0.9	1.2	50.6	15.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
7: Counting	51.0	10.1	21.9	17.8	10.9	11.1	9.6	9.4	13.1	15.3	2.0	2.4	1.8	1.0	0.7	0.7	0.0	
8: Lists/sets	55.0	6.1	21.9	12.5	6.8	5.7	5.6	3.7	7.8	15.1	0.9	0.0	0.3	1.4	0.6	0.8	0.4	
9 : Simple negation	36.0	1.5	42.9	10.7	0.0	0.6	0.0	0.0	32.7	13.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	
Indefinite knowledge	56.0	2.6	23.1	16.5	0.8	0.6	0.0	0.0	3.5	12.9	0.0	0.0	0.2	0.0	0.0	0.0	0.0	
 Basic coreference 	38.0	3.3	4.3	0.0	11.3	0.5	0.0	0.0	0.9	14.7	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
12: Conjunction	26.0	0.0	3.5	0.0	0.0	0.0	0.0	0.0	0.0	15.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
13: Compound coreference	6.0	0.5	7.8	0.0	5.3	5.5	0.0	0.3	8.9	13.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
14: Time reasoning	73.0	2.0	61.9	1.2	20.2	1.3	0.8	3.8	18.2	14.5	0.1	0.0	0.0	0.2	0.0	0.0	0.1	
15: Basic deduction	79.0	1.8	47.6	0.0	39.4	0.0	0.0	0.0	0.1	14.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
16: Basic induction	77.0	51.0	54.4	0.1	50.6	54.8	53.0	53.4	53.5	15.5	51.8	45.3	0.0	49.4	50.4	49.1	0.0	
17: Positional reasoning	49.0	42.6	44.1	41.7	40.6	36.5	34.4	51.8	52.0	13.0	18.6	4.2	27.8	0.9	0.0	5.8	4.1	
18: Size reasoning	48.0	9.2	9.1	9.2	8.2	8.6	7.9	8.8	47.5	14.9	5.3	2.1	8.5	1.6	8.4	1.8	0.7	
19: Path finding	92.0	90.6	90.8	88.5	88.8	89.8	78.7	90.7	88.6	13.6	2.3	0.0	31.0	36.1	1.0	27.9	0.1	
20: Agents motivations	9.0	0.2	2.2	0.0	0.0	0.0	0.2	0.3	5.5	14.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
# Failed	20	10	16	10	12	8	7	5	13	20	3	1	3	2	2	3	0	
Average error rates (%)	51.3	15.2	33.2	12.7	20.1	11.7	9.9	11.3	20.5	14.2	4.2	2.8	3.7	4.6	3.2	4.3	0.3	

Acknowledgement

• 感謝 曹爗文 同學發現投影片上的錯字