

Sequence Modeling
 Sep $25^{\text {th }} \& 28^{\text {th }}, 2017$

ADL \times MLDS
Yun－NuNg（VIVIAN）Chen Hitp：／／AdL．MIULAB．tw
圈立娄学大学

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the output domain Y

$$
f \cdot X>Y
$$

Input domain: word, word sequence, audio signal, click logs
Output domain: single label, sequence tags, tree structure, probability distribution

Output Domain－Classification

Sentiment Analysis

＂太爛了吧～＂
Speech Phoneme Recognition

Handwritten Recognition
2

$$
\longrightarrow 2
$$

Output Domain－Sequence Prediction

POS Tagging

＂推薦我台大後門的餐廳＂
推薦／VV 我／PN 台大／NR 後門／NN的／DEG 餐廳／NN
Speech Recognition

\longrightarrow＂大家好＂

Machine Translation
＂How are you doing today？＂\longrightarrow＂你好嗎？＂

Learning tasks are decided by the output domains

Input Domain How to Aggregate Information

Input: word sequence, image pixels, audio signal, click logs
Property: continuity, temporal, importance distribution
Example
CNN (convolutional neural network): local connections, shared weights, pooling
AlexNet, VGGNet, etc.
${ }^{\circ}$ RNN (recurrent neural network): temporal information
${ }^{\circ} \mathrm{RvNN}$ (recursive neural network): compositionality

Network architectures should consider the input domain properties

How to Frame the Learning Problem?

The learning algorithm f is to map the input domain X into the output domain Y

$$
f: X \rightarrow Y
$$

Input domain: word, word sequence, audio signal, click logs
Output domain: single label, sequence tags, tree structure, probability distribution

Network design should leverage input and output domain properties

Review

Word Vector Space

The words can be represented as vectors in the high-dim space

How can we represent the meaning of longer phrases?
Mapping them into same vector space!!

Word Embedding Benefit

Given an unlabeled training corpus, produce a vector for each word that encodes its semantic information. These vectors are useful because:
(1) semantic similarity between two words can be calculated as the cosine similarity between their corresponding word vectors
(2) word vectors as powerful features for various supervised NLP tasks since the vectors contain semantic information
(3) propagate any information into them via neural networks and update during training

Target Function

Classification Task

$$
f(x)=y \quad \Longleftrightarrow \quad f: R^{N} \rightarrow R^{M}
$$

- x : input object to be classified
\rightarrow a N -dim vector
$\circ y$: class/label
\rightarrow a M-dim vector
Assume both x and y can be represented as fixed-size vectors
How to use word embeddings for the subsequent tasks

Deep Neural Networks (DNN) $f: R^{N} \rightarrow R^{M}$

Fully connected feedforward network

From input vector x to output class vector y

Word Sequence as a Vector

Combine word embeddings into a single input vector

How to compute x ？

$$
\begin{aligned}
& \text { "這規格有誠意! }{ }^{(1)}+ \\
& \text { "太爛了吧~" } \longrightarrow \text { - } \\
& \underset{\text { (this) }}{\text { 這 }}\left[\begin{array}{lllll}
0.2 & 0.6 & 0.3 & \cdots & 0.4
\end{array}\right] \\
& \underset{\text { (specification) }}{\text { 規格 }}\left[\begin{array}{lllll}
0.9 & 0.8 & 0.1 & \cdots & 0.1
\end{array}\right] \\
& \underset{\substack{\text { (have) } \\
\text { (誠意 } \\
(\text { sincerity }}}{\text { 有 }}\left[\begin{array}{llllll}
0.5 & {\left[\begin{array}{llllll}
0.1 & 0.3 & 0.1 & \cdots & 0.7
\end{array}\right]}
\end{array}\right. \\
& \vec{x}=\left[\begin{array}{lllll}
x_{1} & x_{2} & x_{3} & \cdots & x_{N}
\end{array}\right]
\end{aligned}
$$

Semantic Vector Space

single word vector
document vector

Single word vector
Distributional representation

- Useful features inside models

Cannot capture meaning of longer phrases

Document vector
Bag of words models PCA/LSA/LDA
Great for IR, document exploration
Ignore word ordering, no detail understanding

Vectors representing Phrases and Sentences with word order and capture semantics for NLP tasks

Sequence Modeling

Idea: aggregate the meaning from all words into a vector
\rightarrow Compositionality
Method:

- Basic combination: average, sum

Neural combination:
\checkmark Recursive neural network (RvNN)
\checkmark Recurrent neural network (RNN)
\checkmark Convolutional neural network (CNN)

Concluding Remarks

Sequence Modeling

- aggregate information from the input

Method

- basic combination: average, sum
- neural combination: network architectures should consider input domain properties
\checkmark Convolutional neural network (CNN): local connections, shared weights, pooling
\checkmark Recurrent neural network (RNN): temporal information
\checkmark Recursive neural network (RvNN): compositionality

