

# **Course Logistics**

Sep 14<sup>th</sup>, 2017



Machine Learning and Having it Deep and Structured HUNG-YI LEE









# Course Logistics

MACHINE LEARNING AND HAVING IT DEEP AND STRUCTURED AKA APPLIED DEEP LEARNING

APPLIED DEEP LEARNING AKA MACHINE LEARNING AND HAVING IT DEEP AND STRUCTURED

### Course Logistics

#### Instructors

- •李宏毅 Hung-Yi Lee
- 陳縕儂 Yun-Nung (Vivian) Chen

#### Time:

- 。Monday, 14:20-17:20 / Location: 資工101
- •Thursday, 09:10-12:10 / Location: 電二106

Website: MLDS.MIULAB.TW, ADL.MIULAB.TW

Slides uploaded before each lecture

Always check the up-to-date information from the website

FB group: ADLxMLDS (2017,Fall)

https://www.facebook.com/groups/1856571231300201/



#### Course Goal

The students are expected to understand

- 1. how deep learning works
- 2. how to frame tasks into learning problems
- 3. how to use toolkits to implement designed models, and
- 4. when and why specific deep learning techniques work for specific problems

### Pre-requisites

#### Course

- Required: college-level calculus, linear algebra
- Preferred: probability, statistics

#### Programming

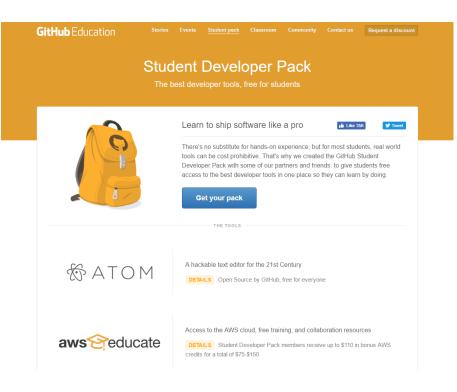
- proficiency in Python; all assignments will be in Python
- GitHub; all assignments will be handed in via GitHub
- Kaggle; all assignments will be submitted to Kaggle







(tutorial from Stanford)


(tutorial)

GPU resources are LIMITED, so please consider your available resources for taking this course

### GitHub Student Pack

The student plan provides unlimited private repositories

- make your assignments private before the due date
- make them public afterwards





## Grading Policy

- 4 Individual Assignment: 18% x 4 = 72%
  - Kaggle submission, GitHub code w/ README
    - The score is given based on the ranking list
    - Bonus points for outstanding performance
    - Late policy: 25% off per day late afterwards

Final Group Project: 25%

- GitHub code, Project document
  - Bonus points for the outstanding work

Others: 5%

Write-up for the guest lecture

Understanding the difference between "collaboration" and "academic infraction"

### Individual Assignments



A1. Sequence Labeling



A2. Caption Generation



A3. Game Playing



A4. Comics Generation

# Final Group Project (2~5 persons)

#### Choose your preferred project topic

- Proposal (BONUS!): submit your proposal
  - Get additional bonus if other groups choose the same the proposed topics
- Presentation
  - Poster presentation
  - Outstanding projects will be selected for company-sponsored awards/prizes
- Project Report & Code
  - Wrap-up project report
  - GitHub code submission w/ README







## How to Get the Registration Code?

Limit: ~100 students per course

#### Requirements

- Did not take ADL (Fall 2016) & MLDS (Spring 2017)
- Finish the assignment 0 by Sep 17 (Sunday) 11:59AM
  - A simple classification task
  - Announced in the website on Sep 14 (Thursday) noon
- Fill in the Google Form

#### Selection order if out of limit

EECS Graduate = EECS (4-yr up) > EECS Others > Others



深度學習及其應用

授課教師:陳縕儂

# High-Level Schedule

| Week                 | Topic                                 | Assignment            |
|----------------------|---------------------------------------|-----------------------|
| <b>1</b> 09/14/2017  | Introduction                          | A0-Basics             |
| <b>2</b> 09/21/2017  | Neural Networks                       |                       |
| <b>3</b> 09/28/2017  | Backpropagation + Sequence Modeling   |                       |
| <b>4</b> 10/05/2017  | Recurrent Neural Networks             | A1-Sequence Labeling  |
| <b>5</b> 10/12/2017  | Company Workshop (Microsoft)          |                       |
| <b>6</b> 10/19/2017  | Guest Lecture (HTC)                   | A2-Caption Generation |
| <b>7</b> 10/26/2017  | Word Embeddings                       |                       |
| <b>8</b> 11/02/2017  | Gated Mechanism + Attention Mechanism |                       |
| <b>9</b> 11/09/2017  | Convolutional Neural Networks         |                       |
| <b>10</b> 11/16/2017 | NN Practical Tips                     | A3-Game Playing       |
| <b>11</b> 11/23/2017 | Deep Reinforcement Learning           |                       |
| <b>12</b> 11/30/2017 | Guest Lecture (Dr. Gao from MSR)      |                       |
| <b>13</b> 12/07/2017 | Deep Reinforcement Learning           |                       |
| <b>14</b> 12/14/2017 | Unsupervised Learning                 | A4-Comics Generation  |
| <b>15</b> 12/21/2017 | Generative Adversarial Networks       |                       |
| <b>16</b> 12/28/2017 | Generative Adversarial Networks       |                       |
| 01/04/2018           | Break                                 |                       |
| <b>17</b> 01/XX/2018 | Final Project Presentation            |                       |

## Teaching Assistant Team





























adlxmlds@gmail.com

### Rules



Asking questions is encouraged!!

Any comment or feedback is preferred!! (speed, style, etc)





Going to TA hours!!