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Abstract. The single-source shortest paths problem (SSSP) is one of the classic problems in
algorithmic graph theory: given a positively weighted graph G with a source vertex s, find the shortest
path from s to all other vertices in the graph.

Since 1959, all theoretical developments in SSSP for general directed and undirected graphs have
been based on Dijkstra’s algorithm, visiting the vertices in order of increasing distance from s. Thus,
any implementation of Dijkstra’s algorithm sorts the vertices according to their distances from s.
However, we do not know how to sort in linear time.

Here, a deterministic linear time and linear space algorithm is presented for the undirected single
source shortest paths problem with positive integer weights. The algorithm avoids the sorting
bottleneck by building a hierarchical bucketing structure, identifying vertex pairs that may be visited
in any order.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computa-
tion—bounded-action devices (random access machines); F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures, sorting
and searching; G.2.2 [Discrete Mathematics]: Graph algorithms—computations on discrete structures,
sorting and searching

General Terms: Algorithms

Additional Key Words and Phrases: RAM algorithms, shortest paths

1. Introduction

Let G 5 (V, E), uV u 5 n, uE u 5 m, be an undirected connected graph with a
positive integer edge weight function ,: E 3 N and a distinguished source
vertex s [ V. If (v, w) [y E, define ,(v, w) 5 `. The single source shortest path
problem (SSSP) is for every vertex v to find the distance d(v) 5 dist(s, v) from s
to v. This is one of the classic problems in algorithmic graph theory. In this

A preliminary short version of this paper appeared in Proceedings of the 38th IEEE Symposium on
Foundations of Computer Science (FOCS ’97). IEEE Computer Society Press, Los Alamitos, Calif.,
pp. 12–21.
Some of this work was done while the author was at the University of Copenhagen.
Author’s address: AT&T Labs, 180 Park Avenue, Florham Park, NJ 07932, e-mail: mthorup@
research.att.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0500-0362 $5.00

Journal of the ACM, vol. 46, No. 3, May 1999, pp. 362–394.



paper, we present a deterministic linear time and linear space algorithm for
undirected SSSP with positive integer weights. So far a linear time SSSP
algorithm has only been known for planar graphs [Henzinger et al. 1997].

1.1. MODEL. Our algorithm runs on a RAM, which models what we program
in imperative programming languages such as C. The memory is divided into
addressable words of length v. Addresses are themselves contained in words, so
v $ log n. Moreover, we have a constant number of registers, each with capacity
for one word. The basic assembler instructions are: conditional jumps, direct and
indirect addressing for loading and storing words in registers, and some compu-
tational instructions, such as comparisons, addition, and multiplication, for
manipulating words in registers. The space complexity is the maximal memory
address used, and the time complexity is the number of instructions performed.
All weights and distances are assumed to be integers represented as binary
strings. For simplicity, we assume they all weights and distances each fit in one
word so that the input and output size is O(m); otherwise, the output size may
be asymptotically larger than the input size, say, if we start with a huge weight
when leaving the source. Our algorithm is easily modified to run in time and
space linear in the output size for arbitrarily large integer weights.

Within the RAM model, one may prefer to use only the AC0 operations among
the computational instructions. A computational instruction is an AC0 operation
if it is computable by an vO(1)-sized constant depth circuit with O(v) input and
output bits. In the circuit we may have negation and and-gates and or-gates with
unbounded fan-in. Addition, shift, and bit-wise Boolean operations are all AC0

operations. On the other hand, multiplication is not. Our linear time algorithm
does use multiplication, but if we restrict ourselves to AC0 operations, it can be
implemented in O(a(m, n)m) time.

In contrast to the RAM, we have the pointer machine model, disallowing
address arithmetic, and hence bucketing which is essential to our algorithm.
Also, we have the comparison based model where weights may only be com-
pared. Of all the algorithms mentioned below, it is only those from Dijkstra
[1959]; Williams [1964]; and Fredman and Tarjan [1987] that work in any of
these two restricted models. All the other algorithms assume a RAM model with
integer weights, like ours.

1.2. HISTORY. Since 1959, all theoretical developments in SSSP for general
directed or undirected graphs have been based on Dijkstra’s algorithm [Dijkstra
1959]. For each vertex we have a super distance D(v) $ d(v). Moreover, we
have a set S # V such that @v [ S;D(v) 5 d(v) and @v [y S;D(v) 5
minu[S{d(u) 1 ,(u, v)}. Initially, S 5 {s}, D(s) 5 d(s) 5 0 and @v Þ
s;D(v) 5 ,(s, v). In each round of the algorithm, we visit a vertex v [y S
minimizing D(v). Then, as proved by Dijkstra, D(v) 5 d(v), so we can move v
to S. Consequently, for all (v, w) [ E, if D(v) 1 ,(v, w) , D(w), we have to
decrease D(w) to D(v) 1 ,(v, w). Dijkstra’s algorithm finishes when S 5 V,
returning D[ 5 d[.

The complexity of Dijkstra’s algorithm is determined by the n 2 1 times that
we find a vertex v [ V\S minimizing D(v) and the at most m times we
decrement some D(w). All subsequent theoretical developments in SSSP for
general graphs have been based on various speed-ups and trade-offs in priority
queues/heaps supporting these two operations. If we just find the minimum by
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searching all vertices, we solve SSSP in O(n2 1 m) time. Applying Williams’
heap [Williams 1964], we get O(m log n) time. Fredman and Tarjan’s Fibonacci
heaps [Fredman and Tarjan 1987] had SSSP as a prime application, and reduced
the running time to O(m 1 n log n). They noted that this was an optimal
implementation of Dijkstra’s algorithm in a comparison model since Dijkstra’s
algorithm visits the vertices in sorted order. Using Fredman and Willard’s fusion
trees, we get an O(m=log n) randomized bound [Fredman and Willard 1993].
Their later atomic heaps give an O(m 1 n log n/log log n) bound [Fredman and
Willard 1994]. More recently, Thorup’s priority queues gave an O(m log log n)
bound and an O(m 1 n=log n11«) bound [Thorup 1996]. These bounds are
randomized assuming that we want linear space. Finally, Raman has obtained an
O(m 1 n=log n log log n) bound in deterministic linear space [Raman 1996]
and an O(m 1 n=3 log n11«) randomized bound [Raman 1997].

There has also been a substantial development based on the maximal edge
weight C, again assuming integer edge weights, each fitting in one word. First
note that using van Emde Boas’s general search structure [van Emde Boas 1977;
van Emde Boas et al. 1977; Melhorn and Nähler 1990], and bucketing according
to D(v)/n, we get an O(m log log C) algorithm for SSSP. Ahuja, Melhorn,
Orlin, and Tarjan have found a priority queue for SSSP giving a running time of
O(m 1 n=log C) [Ahuja et al. 1990]. Recently, this has been improved by
Cherkassky et al. [1997] to O(m 1 n=3 log C log log C) expected time and a
further improvement to O(m 1 n(log C)1/41«) has been presented by Raman
[1997].

For the case of undirected graphs, we end the above quest by presenting an
O(m) algorithm.

1.3. TECHNIQUES. As observed in Fredman and Tarjan [1987], implementing
Dijkstra’s algorithm in linear time would require sorting in linear time. In fact,
the converse also holds, in that Thorup has shown that linear time sorting implies
that Dijkstra’s algorithm can be implemented in linear time [Thorup 1996]. In
this paper, we solve the undirected version of SSSP deterministically in O(m)
time and space. Since we do not know how to sort in linear time, this implies that
we are deviating from Dijkstra’s algorithm in that we do not visit the vertices in
order of increasing distance from s. Our algorithm is based on a hierarchical
bucketing structure, where the bucketing helps identifying vertex pairs that can
be visited in any order. It should be mentioned that using bucketing is not in
itself new in connection with SSSP. In 1978, Dinitz [Dinic 1978] argued that if d
is the minimum edge weight, then in Dijkstra’s algorithm, we can visit any vertex
v minimizing D(v)/d. Thus, bucketing according to D(v)/d, we can visit the
vertices in the minimal bucket in any order. In this paper, we are in some sense
applying Dinitz’s idea recursively, identifying cuts where the minimum weight d
of the crossing edges is large.

1.4. CONTENTS. The paper is divided as follows: After the preliminaries in
Section 2, in Section 3, we present the general idea of using bucketing to avoid
the sorting bottle-neck. This idea is then implemented recursively over Sections
4 – 8, allowing us to conclude in Section 9 with a linear time algorithm for the
undirected SSSP problem with positive integer weights. Finally, in Appendix A,
we discuss how to get a linear time algorithm if the weights are not integers but
floating point numbers.
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2. Preliminaries

Throughout the paper, we will assume that G, V, E, ,, s, D, d, S are as defined
in the introduction in the description of Dijkstra’s algorithm. In particular,
concerning S and D, @v [ S;D(v) 5 d(v) and @v [ V\S;D(v) 5
minu[s{d(u) 1 ,(u, v)}. As in Dijkstra’s algorithm, initially, S 5 {s}, D(s) 5
d(s) 5 0, and @v Þ s;D(v) 5 ,(s, v). We also inherit that we can visit a vertex
v [y S only if D(v) 5 d(v). Visiting v implies that v is moved to S and that for
all (v, w) [ E, w [y S, we set D(w) 5 min{D(w), D(v) 1 ,(v, w)}. As for
Dijkstra’s algorithm, we have:

LEMMA 1. If v [ V\S minimizes D(v), D(v) 5 d(v).

PROOF. Let u be the first vertex outside S on a shortest path from s to v.
Then D(u) 5 d(u) by definition of S. Hence, we have D(v) $ d(v) $ d(u) 5
D(u) $ D(v), implying D(v) 5 d(v). e

However, in contrast to Dijkstra’s algorithm, we may visit a vertex v [y S that
does not minimize D(v). Nevertheless, we inherit the following additional result
from Dijkstra’s algorithm:

LEMMA 2. min D(V\S) 5 min d(V\S) is nondecreasing.

PROOF. If S 5 V, min D(V\S) 5 min d(V\S) 5 min À 5 `. Otherwise, there
is a v [ V\S minimizing d(v). Let u be the first vertex outside S on a shortest
path from s to v. Then, D(u) 5 d(u) and d(u) # d(v). However, v minimized
d(v), so d(u) 5 d(v). Hence, we have min D(V\S) # D(u) 5 d(u) 5
min d(V\S). On the other hand, D(w) $ d(w) for all w [ V, so min D(V\S) $
min d(V\S). Hence, we conclude that min D(V\S) 5 min d(V\S). Now,
min d(V\S) is nondecreasing because S is only increased and d(w) does not
change for any w [ V. Thus, we are minimizing over a smaller and smaller set of
constant d-values, implying that min d(V\S) can only increase. e

We will let v denote the word length. We will write x/ 2 i as x .. i to
emphasize that it may be calculated simply by shifting the i least significant bits
out to the right. Note that x # y f x .. i # y .. i while x , y d x .. i ,
y .. i. If f is a function on the elements from a set X, we let f(X) denote
{ f( x) ux [ X}. We also adopt the standard that min À 5 `. We define ‘..’ to
have lower precedence than ‘min’, ‘1’, and ‘2’. For example, if W # V,
min D(W) .. i 2 1 5 (min{D(w) uw [ W}) .. (i 2 1).

By a bucket, we refer to a dynamic set B into which elements can be inserted
and deleted, and from which we can pick out an unspecified element. Each
operation should be supported in constant time. A bucket could, for example, be
implemented as a doubly-linked list where one can just insert and pick elements
from the head. Using the indirect addressing of the RAM, we typically create an
array B(1 . . . l ) of buckets. Then, we can insert and pick elements from an
arbitrary bucket B(i) in constant time. Also, in constant time, we can delete an
element from whatever bucket it is in.

3. Avoiding the Sorting Bottleneck

We will now briefly indicate how the sorting bottleneck can be avoided. That is,
we will discuss some simple conditions for D(v) 5 d(v) where possibly D(v) .
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min D(V\S). The resulting algorithm is far from efficient but over the subse-
quent sections, we will apply the ideas recursively, so as to achieve a linear time
solution to the SSSP problem.

LEMMA 3. Suppose the vertex set V divides into disjoint subsets V1, . . . , Vk and
that all edges between the subsets have length at least d. Further suppose for some i,
v [ Vi\S that D(v) 5 min D(Vi\S) # min D(V\S) 1 d. Then d(v) 5 D(v).

PROOF. To see that d(v) 5 D(v), let u be the first vertex outside S on a
shortest path from s to v. Then, d(u) 5 D(u) follows by definition of S. If u [
Vi, as in the proof of Lemma 1, we have D(v) $ d(v) $ d(u) 5 D(u) $ D(v),
implying d(u) 5 D(u), as desired. Now, suppose u [y Vi. Since all edges from
V\Vi to Vi are of length d, we have D(v) $ d(v) $ d(u) 1 d 5 D(u) 1 d. On
the other hand, D(u) 1 d $ min D(V\S) 1 d $ min D(Vi\S) 5 D(v), so we
conclude that we have equality everywhere. In particular, this allows us to
conclude that d(v) 5 D(v). e

Approaching a first simple SSSP bucketing algorithm, suppose d 5 2a. Then
min D(Vi\S) # min D(V\S) 1 d is implied by min D(Vi\S) .. a #
min D(V\S) .. a. Algorithmically, we will now bucket each i [ {1, . . . , k}
according to min D(Vi\S) .. a. That is, we have an array B of buckets where i
belongs in bucket B(min D(Vi\S) .. a). Note that min D(V\S) .. a 5
mini(min D(Vi\S) .. a). Hence, if i is in the smallest indexed nonempty bucket,
min D(Vi\S) .. a 5 min D(V\S) .. a. In more algorithmic terms, suppose ix
is maintained as # the smallest index of a nonempty bucket. If i [ B(ix) and
v [ Vi\S minimizes D(v), then D(v) 5 min D(Vi\S) # min D(V\S) 1 d, so
D(v) 5 d(v) by Lemma 3, and hence v can be visited.

For the maintenance of ix recall that min D(V\S) is nondecreasing by Lemma
2. Hence, min D(V\S) .. a is nondecreasing, so ix will never need to be
decreased. Also, note that D(v) , ` implies that there is a path in G from s to
v of length D(v), and hence D(v) # (e[E,(e). Consequently, the maximum
index , ` of any non-empty bucket is bounded by D 5 (e[E,(e) .. a . That is,
the only bucket indices used are 0, . . . , D, `. Viewing ` as the successor of D, we
only need an array of D 1 2 buckets.

Based on the above discussion, we get the following SSSP algorithm.

Algorithm A. Solves the SSSP problem where V is partitioned into subsets V1 . . . , Vk
where all edges between the subsets have length at least 2a.

A.1. S 4 {s}; D(s) 4 0; for all v Þ s: D(v) 4 ,(s , v)
A.2. for ix 4 0, 1, . . . , D , ` , B(ix) 4 À
A.3. for i 4 1, . . . , k , add i to B(min D(Vi\S) .. a)
A.4. for ix 4 0 to D,
A.4.1. while B(ix) Þ À ,
A.4.1.1. pick i [ B(ix)
A.4.1.2. pick v [ Vi\S minimizing D(v)
A.4.1.3. for all (v , w) [ E , w [y S ,
A.4.1.3.1. let j be such that w [ Vj

A.4.1.3.2. D(w) 4 min{D(w), D(v) 1 ,(v , w)}: if min D(Vj\S) .. a is thereby
decreased, move j to B(min D(Vj\S) .. a).

A.4.1.4. S 4 S ø {v}; if min D(Vi\S) .. a is thereby increased, move i to
B(min D(Vi\S) .. a).

366 MIKKEL THORUP



The complexity of the above algorithm is O(m 1 D) plus the cost of
maintaining min D(Vi\S) for each i. The latter will essentially be done recur-
sively, and D 5 (e[E,(e) .. a will be kept small by choosing a large.

4. The Component Hierarchy

We are now going to present a recursive condition for concluding D(v) 5 d(v)
which will later be used in a linear time SSSP algorithm. It is based on a
component hierarchy defined as follows: By Gi, we denote the subgraph of G
whose edge set is the edges e from G with ,(e) , 2 i. Then, G0 consists of
singleton vertices. Recall that v denotes the word length. Hence, all edge lengths
and distances are , 2v, so Gv 5 G. On level i in the component hierarchy, we
have the components (maximal connected subgraphs) of Gi. The component on
level i containing v is denoted [v] i. The children of [v] i are the components
[w] i21 with [w] i 5 [v] i, that is, with w [ [v] i.

LEMMA 4. If [v]i Þ [w]i, dist(v, w) $ 2i.

PROOF. Since [v] i Þ [w] i, any path from v to w contains an edge of length $
2 i. e

By [v] i
2, we will denote [v] i\S, noting that [v] i

2 may not be connected. We say
that [v] i is a min-child of [v] i11 if min(D([v] i

2) .. i 5 min(D([v] i11
2 ) .. i. We

say that [v] i is minimal if [v] i
2 Þ À and for j 5 i, . . . , b 2 1, [v] j is a min-child

of [v] j11. The requirement [v] i
2 Þ À is only significant if V 5 S. If V 5 S,

min D([v] i
2) 5 ` for all [v] i, and hence all [v] i would be minimal without the

requirement [v] i
2 Þ À; now, no [v] i is minimal if V 5 S.

Below, in Lemma 8, we will show that D(v) 5 d(v) if [v]0 is minimal. If v [
V\S minimizes D(v), as in Dijkstra’s algorithm, @i;min D([v] i

2) .. i 5
D([v] i11

2 ) .. i 5 D(v) .. i, so [v]0 is minimal. The point is that [v]0 may be
minimal even if D(v) is not minimized, thus providing us with a more general
condition for D(v) 5 d(v) than the one used in Dijkstra’s algorithm.

The condition for D(v) 5 d(v) that [v]0 is minimal also holds for directed
graphs. Our efficient use of the condition hinges, however, on the property of
undirected graphs that @u, w [ [v] i; dist(u, v) # (e[[v] i

,(e). We shall return
to the latter property in Section 6, where it will be used to limit the size of an
underlying bucketing structure.

We will now prove several properties of the component hierarchy, one of
which is that D(v) 5 d(v) if [v]0 is minimal. All these properties will prove
relevant in our later algorithmic developments.

LEMMA 5. If v [y S, [v]i is minimal, and i # j # v, min D([v]i
2) .. j 2 1 5

min D([v]j
2) .. j 2 1.

PROOF. The proof is by induction on j. If j 5 i, the statement is vacuously
true. If j . i, inductively, min D([v] i

2) .. j 2 2 5 min D([v] j21
2 ) .. j 2 2,

implying min D([v] i
2) .. j 2 1 5 min D([v] j21

2 ) .. j 2 1. Moreover, the
minimality of [v] i implies that [v] j21 is a min-child of [v] j; hence, that
min D([v] j21

2 ) .. j 2 1 5 min D([v] j
2) .. j 2 1. e

LEMMA 6. Suppose v [y S and there is a shortest path to v where the first vertex
u outside S is in [v]i. Then d(v) $ min D([v]i

2).
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PROOF. Since u is the first vertex outside S on our path, D(u) is a lower
bound on its length, so D(u) # d(v). Moreover, since u [ [v]2, D(u) $
min D([v] i

2). e

LEMMA 7. Suppose v [y S and [v]i11 is minimal. If there is no shortest path to v
where the first vertex outside S is in [v]i, d(v) .. i . min D([v]i11

2 ) .. i.

PROOF. Among all shortest paths to v, pick one P so that the first vertex u
outside S is in [v]k with k minimized. Then k . i and d(v) 5 ,(P) 5 D(u) 1
dist(u, v).

We prove the statement of the lemma by induction on v 2 i. If u [y [v] i11,
we have i 1 1 , v and the minimality of [v] i11 implies minimality of [v] i12.
Hence, by induction, d(v) .. i 1 1 . min D([v] i12

2 ) .. i 1 1. By minimality
of [v] i11, min D([v] i12

2 ) .. i 1 1 5 min D([v] i11
2 ) .. i 1 1. Thus, d(v) ..

i 1 1 . min D([v] i11
2 ) .. i 1 1, implying d(v) .. i . min D([v] i11

2 ) .. i.
If u [ [v] i11

2 , D(u) .. i $ min D([v] i11
2 ) .. i. Moreover, since u [y [v] i, by

Lemma 4, dist(u, v) $ 2 i. Hence, d(v) .. i 5 (D(u) 1 dist(u, v)) .. i $
(min D([v] i11

2 ) .. i) 1 1. e

We are now in the position to prove that the minimality of [v]0 implies D(v) 5
d(v):

LEMMA 8. If v [y S and [v]i is minimal, min D([v]i
2) 5 min d([v]i

2). In
particular, D(v) 5 d(v) if [v]0 5 {v} is minimal.

PROOF. Since D(w) $ d(w) for all w, min D([v] i
2) $ min d([v] i

2). Viewing
v as an arbitrary vertex in [v] i, it remains to show that d(v) $ min D([v] i

2).
Among all shortest paths to v, pick one P so that the first vertex u outside S is

in [v] i if possible. If u [ [v] i, Lemma 6 gives the result directly. If u [y [v] i,
by Lemma 7, d(v) .. i . min D([v] i11

2 ) .. i. However, [v] i is min-child of
[v] i11, so min D([v] i11

2 ) .. i 5 min D([v] i
2) .. i. Thus, d(v) .. i .

min D([v] i
2) .. i, implying d(v) . min D([v] i

2). e

The above lemma gives us our basic condition for visiting vertices, moving
them to S. Our algorithms will need one more consequence of Lemma 6 and 7.

LEMMA 9. If v [y S and [v]i is not minimal but [v]i11 is minimal, then min
d([v]i

2) .. i . min D([v]i11
2 ) .. i.

PROOF. Consider any w [ [v] i
2. If there is no shortest path to w where the

first vertex outside S is in [v] i, d(w) .. i . min D([v] i11
2 ) .. i follows directly

from Lemma 7. Otherwise, by Lemma 6, d(w) $ min D([v] i
2). Moreover,

the nonminimality of [v] i implies min D([v] i
2) .. i . min D([v] i11

2 ) .. i.
Hence, we conclude that d(w) .. i . min D([v] i11

2 ) .. i for all w [ [v] i
2, as

desired. e

5. Visiting Minimal Vertices

In this section, we will discuss the basic dynamics of visiting vertices v with [v]0
minimal. First, we show a series of lemmas culminating in Lemma 13, stating that
if [v] i has once been minimal, min D([v] i

2) .. i 5 min d([v] i
2) .. i in all

future. Based on this, we will present an abstract SSSP algorithm displaying the
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basic order in which we want to visit the vertices of G in our later linear time
algorithm.

Definition 1. In the rest of this paper, visiting a vertex v requires that [v]0 5
{v} is minimal. When v is visited, it is moved to S, setting D(w) to min{D(w),
D(v) 1 ,(v, w)} for all (v, w) [ E.

Note by Lemma 8 that D(v) 5 d(v) whenever we visit a vertex v.

LEMMA 10. For all [v]i, max d([v]i\[v]i
2) .. i 2 1 # min d([v]i

2) .. i 2 1.

PROOF. Since d is a constant function, it suffices to show that just before w [
[v] i

2 is visited, d(w) .. i 2 1 5 min d([v] i
2) .. i 2 1. By definition, [w]0 is

minimal just before the visit, so by Lemma 5, D(w) .. i 2 1 5 min D([w]0
2) ..

i 2 1 5 min D([w] i
2) .. i 2 1. On the other hand, by Lemma 8, D(w) 5

d(w) and min D([w] i
2) 5 min d([w] i

2), so we conclude that d(w) .. i 2 1 5
min d([v] i

2) .. i 2 1, as desired. e

In the following, we will frequently study the situation before and after the
event of visiting some vertex. We will then use the notation ^e&b and ^e&a to
denote that the expression e should be evaluated before respectively after the
event. By Lemma 10, if j $ i 2 1, ^min d([v] i

2) .. j&a $ ^min d([v] i
2) .. j&b.

Hence, since @w;D(w) $ d(w),

^min D~@v# i
2! .. j&b 5 ^min d~@v# i

2! .. j&b f

^min D~@v# i
2! .. j&a $ ^min D~@v# i

2! .. j&b (1)

LEMMA 11. Suppose min D([v]i
2) .. i 5 min d([v]i

2) .. i and that visiting a
vertex w [ V\S changes min D([v]i

2) .. i. Then w [ [v]i and if [v]i
2 is not emptied,

the change in min D([v]i
2) .. i is an increase by one.

PROOF. We are studying the event of visiting the vertex w. By assumption,
^min D((v]i

2) .. i&b 5 ^min d([v]i
2) .. i&b. Hence, by (1), ^min D([v]i

2) .. i&a $
^min D([v]i

2) .. i&b. By assumption, ^min D([v]i
2) .. i&a Þ ^min D([v]i

2) .. i&b,
so ^min D([v] i

2) .. i&a . ^min D([v] i
2) .. i&b. Since D-values never increase,

we conclude ^[v] i
2&a , ^[v] i

2&b; hence that w [ ^[v] i
2&b and ^[v] i

2&a 5
^[v] i

2&b\{w}.
Suppose ^[v] i

2&a is nonempty. Since [v] i is connected, there must be an edge
(u, x) in [v] i with u [y ^[v] i

2&a and x [ ^[v] i
2&a. We will now argue that

d~u! .. i # min^D~@v# i
2! .. i&b. (2)

If u [y ^[v] i
2&b, (2) follows from Lemma 10. Otherwise, u 5 w. By Lemma 8 and

Lemma 5, the minimality of [u]0 5 [w]0 implies d(u) .. i 5 D(u) .. i 5
^min D([v] i

2) .. i&b. Thus, (2) follows.
Based on (2), since ,(u, x) , 2 i, we conclude

^min D~@v# i
2! .. i&a # ^D~ x! .. i&a

# ~d~u! 1 ,~u , x!! .. i

# ^min D~@v# i
2! .. i&b 1 1. e
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In connection with Lemma 11, it should be noted that with directed graphs, the
increase could be by more than one. This is the first time in this paper, that we
use the undirectedness.

LEMMA 12. If [v]i is minimal, it remains minimal until min D([v]i
2) .. i is

increased, in which case min d([v]i
2) .. i is also increased.

PROOF. Suppose [v] i is minimal, but visiting some vertex w stops [v] i from
being minimal. If w was the last vertex not in S, the visit increases both
min D([v] i

2) and min d([v] i
2) to `. Otherwise, some ancestor of [v] i is minimal,

and we pick the smallest j such that [v] j11 is minimal. Moreover, we pick u [
[v] j11

2 such that [u] j is a min-child of [v] j11. Hence, [u] j is minimal while [v] j is
not minimal.

Before the visit to w, [v] i was minimal, so ^min D([v] i
2) .. j&b 5

^min D([v] j11
2 ) .. j&b by Lemma 5. Also, [v] j11 was minimal, so by Lemma 8

and (1), ^min D([v] j11
2 ) .. j&a $ ^min D([v] j11

2 ) .. j&b.
After the visit, since [v] j11 is minimal and [v] j is not a min-child of [v] j11, by

Lemma 9, ^min d([v] j
2) .. j&a . ^min D([v] j11

2 ) .. j&a. Thus

^min D~@v# i
2! .. j&a $ ^min d~@v# i

2! .. j&a

$ ^min d~@v# j
2! .. j&a

. ^min D~@v# j11
2 ! .. j&a

$ ^min D~@v# j11
2 ! .. j&b

5 ^min D~@v# i
2! .. j&b

5 ^min d~@v# i
2! .. j&b.

LEMMA 13. If [v]i has once been minimal, in all future,

min D~@v# i
2! .. i 5 min d~@v# i

2! .. i. (3)

PROOF. First time [v] i turns minimal, (3) gets satisfied by Lemma 8. Now,
suppose (3) is satisfied before visiting some vertex w. Since @u;D(u) $ d(u),
(3) can only be violated by an increase in min D([v] i

2). If min D([v] i
2) .. i is

increased, by Lemma 11, w [ [v] i and the increase is by one. Visiting w requires
that [w]0 is minimal, hence that [w] i 5 [v] i is minimal. If [v] i is minimal after
the visit, (3) follows from Lemma 8. Also, if [v] i

2 is emptied, (3) follows with
min D([v] i

2) .. i 5 min d([v] i
2) .. i 5 `. If [v] i becomes nonminimal and

[v] i
2 is not emptied, by Lemma 12, min d([v] i

2) .. i is also increased. Since
min d([v] i

2) .. i # min D([v] i
2) .. i and min D([v] i

2) .. i was increased by
one, we conclude that (3) is restored. e

We are now ready to derive an algorithm for the undirected SSSP problem
based on the component hierarchy. The algorithm is so far inefficient, but it
shows the ordering in which we intend to visit the vertices in a later linear time
algorithm. As our main routine, we have:

Algorithm B. SSSP is given an input graph G 5 (V , E) with weight function , and
distinguished vertex s . It outputs D with D(v) 5 d(v) 5 dist(s , v) for all v [ V .
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B.1. S 4 {s}
B.2. D(s) 4 0, for all v Þ s;D(v) 4 ,(s , v)
B.3. Visit([s]v) (Algorithm C below and later Algorithm F)
B.4. return D

A recursive procedure is now presented for visiting a minimal component [v] i.
The goal is to visit all w [ [v] i

2 with d(w) .. i equal to the call time value of
min D([v] i

2) .. i. By Lemma 13, the call time minimality of [v] i implies that we
preserve min D([v] i

2) .. i 5 min d([v] i
2) .. i throughout the call. Thus,

min D([v] i
2) .. i will not increase until we have visited the last vertex w with

d(w) .. i equal to the call time value of min D([v] i
2) .. i. By Lemma 12, this

in turn implies that [v] i will remain minimal until we have visited the last vertex
we want to visit. We will maintain an index ix([v] i) that essentially equals
min D([v] i

2) .. i 2 1. Then, a child [w] i21 of [v] i is minimal if min D([w] i21
2 )

.. i 2 1 5 ix([v] i). Hence, recursively, we can visit all vertices z [ [w] i21
2 with

d( z) .. i 2 1 5 min D([w] i21
2 ) .. i 2 1. Since min D([w] i21

2 ) .. i 2 1 5
ix([v] i) 5 min D([v] i

2) .. i 2 1, d( z) .. i 5 min D([v] i
2) .. i, as desired.

Finally, the visiting of [v] i is completed when ix([v] i) .. 1 5 D([v] i
2) .. i is

increased. Formalizing in pseudo-code, we get

Algorithm C. Visit([v] i) presumes that [v] i is minimal. It visits all w [ [v] i
2 with d(w) ..

i equal to the value of min D([v] i
2) .. i when the call is made.

C.1. if i 5 0, visit v and return
C.2. if [v] i has not been visited previously, ix([v] i) 4 min D([v] i

2) .. i 2 1.
C.3. repeat until [v] i

2 5 À or ix([v] i) .. 1 is increased:
C.3.1. while ? child [w] i21 of [v] i such that min D([w] i21

2 ) .. i 2 1 5 ix([v] i),
C.3.1.1. let [w] i21 be a child of [v] i with min D([w] i21

2 ) .. i 2 1 5 ix([v] i)
C.3.1.2. Visit([w] i21)
C.3.2. increment ix([v] i) by one

Correctness. We now prove that Algorithm C is correct, that is, if [v] i is
minimal, Visit([v] i) visits exactly the vertices w [ [v] i

2 with d(w) .. i equal to
the value of min D([v] i

2) .. i when the call is made. The proof is by induction
on i.

If i 5 0, we just visit v in Step C.1. By Lemma 8, D(v) 5 d(v). Hence,
d(v) .. i equals the call time value of min D([v] i

2) .. i 5 D(v) .. i, as
desired. After the visit to v, [v] i

2 5 À, and we are done.
Now, assume i . 0. Inductively, if a subcall Visit([w] i21) (step C.3.1.2) is

made with [w] i21 minimal, we may assume that it correctly visits all u [ [w] i21
2

with d(u) .. i 2 1 equal to the value of min D([w] i21
2 ) .. i 2 1 when the

subcall is made. We will prove the following invariants for when [v] i
2 Þ À:

ix~@v# i! .. 1 5 min D~@v# i
2! .. i 5 min d~@v# i

2! .. i (4)

ix~@v# i! # min d~@v# i! .. i 2 1 (5)

When ix([v] i) is first assigned in step C.2, it is assigned min D([v] i
2) .. i 2 1.

Also, at that time, [v] i is minimal, so min D([v] i
2) 5 min d([v] i

2) by Lemma 8.
Thus ix([v] i) 5 min D([v] i

2) .. i 2 1 5 min d([v] i
2) .. i 2 1, implying both

(4) and (5). Now, assume (4) and (5) both hold at the beginning of an iteration of
the repeat-loop C.3.
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LEMMA 14. If min D([v]i
2) .. i has not increased, [v]i remains minimal and

(4) and (5) remain true.

PROOF. By Lemma 12 and Lemma 8, [v] i remains minimal with
min D([v] i

2) 5 min d([v] i
2). Then, by (1), min D([v] i

2) .. i 2 1 is nonde-
creasing, so a violation of (5) should be due to an increase in ix([v] i). However,
ix([v] i) is only increased in step C.3.2, which is only entered if @[w] i21 #
[v] i;min D([w] i21

2 ) .. i 2 1 Þ ix([v] i). In particular, before the increase,
ix([v] i) Þ min D([v] i

2) .. i 2 1 5 min[w] i21#[v] i
(min D([w] i21

2 ) .. i 2 1).
Moreover, by (5), ix([v] i) # min D([v] i

2) .. i 2 1. Hence, ix([v] i) ,
min D([v] i

2) .. i 2 1 5 min d([v] i
2) .. i 2 1, so the increase in ix([v] i) by

one cannot violate (5). Moreover, since min D([v] i
2) .. i is not increased and

min D([v] i
2) 5 min d([v] i

2), (5) implies that (4) is preserved. e

LEMMA 15. If a subcall Visit([w]i21) (step C.3.1.2) is made before min
D([v]i

2) .. i is increased, all vertices u visited have d(u) .. i equal to the original
value of min D([v]i

2) .. i (as required for visits within Visit([v]i)).

PROOF. By assumption, Lemma 14 applies when the subcall Visit([w] i21) is
made, so (4) and (5) hold true. The assignment C.3.1.1 implies that ix([v] i) 5
min D([w] i21

2 ) .. i 2 1, and clearly, min D([w] i21
2 ) .. i 2 1 $

min D([v] i
2) .. i 2 1 $ min d([v] i

2) .. i 2 1. Then (5) implies equality
everywhere, so min D([w] i21

2 ) .. i 2 1 5 min D([v] i
2) .. i 2 1, and hence

[w] i21 inherits the minimality of [v] i. Thus, by induction, Visit([w] i21) correctly
visits the vertices u [ [w] i

2 with d(u) .. i 2 1 equal to the value of
min D([w] i21

2 ) .. i 2 1 at the time of the subcall. However, at the time of the
subcall, min D([w] i21

2 ) .. i 2 1 5 ix([v] i) and by (4), ix([v] i) .. 1 5
min D([v] i

2) .. i, so d(u) .. i 5 min D([v] i
2) .. i. e

LEMMA 16. min D([v]i
2) .. i has increased when the repeat-loop C.3 termi-

nates.

PROOF. If min D([v] i
2) .. i did not increase, (5) holds by Lemma 14, and

(5) implies ix([v] i) .. 1 # min D([v] i
2) .. i. Initially, we have equality by (4).

However, the repeat-loop can only terminate if ix([v] i) .. 1 increases or [v] i
2

becomes empty, setting min D([v] i
2) .. i 5 `. e

So far, we will just assume termination deferring the proof of termination to
the proof of efficiency in the next section. Thus, by Lemma 16, min D([v] i

2) ..
i increases eventually. Let Visit([w] i21) be the subcall during which the increase
happen.

By Lemma 13, min d([v] i
2) .. i increases with min D([v] i

2) .. i. Hence, by
Lemma 15, Visit([w] i) will visit no more vertices. Moreover, it implies that we
have visited all vertices u [ [v] i with d(u) .. i equal to the original value of
min D([v] i

2), so we have now visited all vertices u [ [v] i with d(u) .. i equal
to the original value of min D([v] i

2), so we have now visited exactly the required
vertices.

Since min d([v] i
2) .. i is increased and @[w] i21 # [v] i;min D([w] i21

2 ) ..
i 2 1 $ min D([v] i

2) .. i 2 1 $ min d([v] i
2) .. i 2 1, ix([v] i) will now just

be incremented without recursive subcalls Visit([w] i21) until either [v] i
2 is

emptied, or ix([v] i) .. 1 is increased by one.

372 MIKKEL THORUP



Since no more vertices are visited after the increase of min D([v] i
2) .. i, by

Lemma 11, the increase is by one. Thus, we conclude that all of ix([v] i),
D([v] i

2) .. i, and min d([v] i
2) .. i are increased by one, restoring the

equalities of (4). Since, ix([v] i) now has the smallest value such that ix([v] i) ..
1 5 min d([v] i

2) .. i, we conclude that (5) is also satisfied.
By Lemma 13, in all future min d([v] i

2) .. i 5 min D([v] i
2) .. i. Moreover,

ix([v] i) and min d([v] i
2) can only change in connection with calls Visit([v] i), so

we conclude that (4) and (5) will remain satisfied until the next such call. This
completes the proof that Algorithm C is correct. e

6. Towards a Linear Time Algorithm

In this section, we present the ingredients of a linear-time SSSP algorithm.

6.1. THE COMPONENT TREE. Define the component tree 7 representing the
topological structure of the component hierarchy, skipping all nodes [v] i 5
[v] i21. Thus, the leaves of 7 are the singleton components [v]0 5 {v}, v [ V.
The internal nodes are the components [v] i, i . 0, [v] i21 , [v] i. The root in 7
is the node [v] r 5 G with r minimized. The parent of a node [v] i is its nearest
degree $ 2 ancestor in the component hierarchy. Since 7 have no degree one
nodes, the number of nodes is # 2n 2 1. In Section 7, we show how to construct
7 in time O(m). Given 7, it is straightforward to modify our implementation of
Visit in Algorithm C so that it recurses within 7, thus skipping the components
in the component hierarchy that are not in 7. In the rest of this paper, when we
talk about children or parents, it is understood that we refer to 7 rather than to
the component hierarchy. A min-child [w]h of [v]i is minimizing min D([w]h

2) ..
i 2 1. Thus, a component of 7 is minimal if and only if it is minimal in the
component hierarchy to 7.

6.2. A LINEAR-SIZED BUCKET STRUCTURE. We say a component [v] i [ 7 is
visited the first time Visit([v] i) is called. Note that if a component is visited, then
so are all its ancestors in 7. The idea now is that for each visited component [v] i,
we will bucket the children [w]h according to min D([w]h

2) .. i 2 1. That
is, [w]h is found in a bucket denoted B([v] i, min D([w]h

2) .. i 2 1). With
ix([v] i) 5 min D([v] i

2) .. i 2 1 as in Algorithm C, the minimal children of [v] i

are then readily found in B([v] i, ix([v] i)).
Concerning the bucketing of a visited component [v] i, we can again use the

index ix([v] i), for if [v] i has parent [v] j in 7, [v] i belongs in B([v] j, ix([v] i) ..
j 2 i) 5 B([v] j, min D([v] i

2) .. j 2 1). The bucketing of unvisited children of
visited components is deferred till later. In the rest of this subsection, the point is
to show that we can efficiently embed all “relevant” buckets from B( z, z) into one
bucket array A with O(m) entries.

LEMMA 17. If [w]h is a minimal child of vi, min d([v]i) .. i 2 1 #
min D([w]h

2) .. i 2 1 # max d([v]i) .. i 2 1.

PROOF. By Lemma 8, min D([w]h
2) 5 min d([w]h

2), and by definition of
minimality, [w]h

2 is a nonempty subset of [v] i. e

Let ix0([v] i) denote min d([v] i) .. i 2 1. We are going to compute some
ix` $ max d([v] i) .. i 2 1. Then, by Lemma 17, any minimal child of [v] i
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should be found in B([v]i, ix0([v]i) . . . ix`([v]i)). Conversely, if min D([w]h
2) ..

i 2 1 [y {ix0([v] i), . . . , ix`([v] i)}, we know [w]h is not minimal, and hence it
is not necessary to have [w]h placed in B([v] i, z). We therefore define that
B([v] i, q) is relevant if and only if ix0([v] i) # q # ix`([v] i).

Note that the diameter of [v] i is bounded by (e[[v] i
,(e). This immediately

implies max d([v] i) # min d([v] i) 1 ( e[[v] i
,(e). Define D([v] i) 5 (e[[v] i

,(e)/ 2 i21 and ix`([v] i) 5 ix0([v] i) 1 D([v] i). Then, max d([v] i) .. i 2 1 #
ix`([v] i), as desired.

LEMMA 18. The total number of relevant buckets is , 4m 1 4n.

PROOF. In connection with [v] i, we have D([v] i) 1 1 # 2 1 (e[[v] i
,(e)/

2 i21 relevant buckets. Since 7 is a rooted tree with n leaves, where all internal
nodes have at least two children, the number of nodes [v] i in 7 is # 2n 2 1.
Thus, the total number of relevant buckets is at most

O
[v]i[7

S2 1 O
e[@v#i

,~e!/2i21D , 4n 1 O
[v]i[7,e[@v#i

,~e!/2i21 5 4n 1 O
e[E

O
[v]i]e

,~e!/2i21.

Now, consider any edge e 5 (u, w) [ E. Set j 5 log2,(e) 1 1. Then e [
[v] i N i $ j ` [v] i 5 [u] i. Since ,(e) , 2 j, we get

O
[v] i]e

,~e!/ 2 i21 , O
i$j

2 j/ 2 i21 , 4.

Thus, the total number of relevant buckets , 4m 1 4n. e

We will now show how to efficiently embed the relevant buckets of B( z, z) into
a single bucket array A with index set {0, . . . , N } where N 5 O(m) is the total
number of relevant buckets.

The D-values, or in fact something better, will be found in connection with the
construction of 7 in Section 7. Also, the value of min d([v] i

2) will turn out to be
available when we first visit [v] i. Hence both ix0([v] i) and ix`([v] i) can be
identified as soon as we start visiting [v] i.

For each component [v] i [ 7, let N([v] i) denote ( [w] j,[v] i
(D([v] j) 1 1).

Here , is an arbitrary total ordering of the components in 7, say, postorder. The
prefix sum N[ is trivially computed in time O(n) as soon as we have computed
D[. Now, for any [v] i [ 7, x [ N0, if B([v] i, x) is relevant, that is, if x [
{ix0([v] i), . . . , ix`([v] i)}, we identify B([v] i, x) with A( x 2 ix0([v] i) 1
N([v] i)); otherwise, the contents of B([v] i, x) is deferred to a “waste” bucket
A(N). In conclusion, the bucket structure B( z, z) is implemented in linear time
and space.

6.3. BUCKETING UNVISITED CHILDREN. Let 8 denote the unvisited subforest
of 7. An unvisited component [v] i is a child of a visited component if and only if
[v] i is a root of a tree in 8. In Section 8, we will present a data structure that for
the changing set of roots [v] i in 8, maintains the changing values min D([v] i

2) in
linear total time. Assuming the above data structure, the rest of this subsection
presents the pseudo-code needed to maintain that every unvisited child [w]h of a
visited component [v] j is correctly bucketed in B([v] i, min D([w]h) .. i 2 1).
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When a component [v] i is first visited, all its children need to be bucketed for
the first time:

Algorithm D. Expand([v] i), i . 0, assumes that Visit([v] i) has just been called for the
first time. It buckets the children of [v] i in B([v] i, z). Further, it initiates ix0([v] i) and
ix`([v] i).

D1. ix0([v] i) 4 min D([v] i
2) .. i 2 1

D.2. ix`([v]i) 4 ix0([v]i) 1 D([v]i)
D.3. for q 5 ix0([v] i) to ix`([v] i), B([v] i, q) 4 À .
D.4. delete [v] i from 8, turning the children [w]h of [v] i into roots in 8.
D.5. for all children [w]h of [v] i,
D.5.1. bucket [w]h in B([v] i, min D([w]h

2) .. i 2 1).

When a vertex v is visited, we may decrement the D-values of some of its
neighbors. Accordingly, we may need to re-bucket the unvisited roots of these
neighbors.

Algorithm E. Visit(v) where [v]0 is minimal and all ancestors of [v]0 in 7 are expanded,
visits v and restores the bucketing of unvisited children of visited components.

E.1. S 4 S ø {v}
E.2. for all (v , w) [ E , if D(v) 1 ,(v , w) , D(w) then
E.2.1. let [w]h be the unvisited root of [w]0 in 8 and let [w] i be the visited parent of

[w]h in 7
E.2.2. decrease D(w) to D(v) 1 ,(v, w); if this decreases min D([w]h

2) .. i 2 1 then
E.2.2.1. move [w]h to B([w] i, min D([w]h) .. i 2 1)

6.4. AN EFFICIENT VISITING ALGORITHM. We are now ready to present an
efficient bucketing based implementation of Visit([v] i). The point in the compo-
nent tree 7 is that it allows us to skip components in the component hierarchy
that have only one child. Consequently, if [v] j is the parent of [v] i in 7, we may
have j . i 1 1. Our goal now is to visit all vertices w [ [v] i

2 with d(w) .. j 2
1 equal to the call time value of min D([v] i

2) .. j 2 1.
As in Algorithm C, we will maintain an index ix([v] i) which essentially equals

min D([v] i
2) .. i 2 1. Min-children [w]h of [v] i are then readily available in

B([v] i, ix([v] i)). By definition of 7, [v] i 5 [v] j21. Hence, ix([v] i) 5
min D([v] i

2) .. i 2 1 implies ix([v] i) .. j 2 i 5 min D([v]) j21
2 ) .. j 2 1.

Thus, as in Algorithm C, we can use Lemma 12 to argue that [v] i 5 [v] j21
remains minimal until ix([v] i) .. j 2 i is increased. Until this increase, the
minimality of [v] i implies minimality of the min-children [w]h of [v] i in B([v] i,
ix([v] i)). Recursively, we then visit [w]h, thus visiting all vertices x [ [w]h with
d( x) .. i 2 1 5 min D([w]h

2) .. i 2 1 5 min D([v] i
2) .. i 2 1 5 ix([v] i).

Since ix([v] i) .. j 2 i has not increased, d( x) .. j 2 1 5 ix([v] i) .. j 2 i is
still the call time value of min D([v] i

2) .. j 2 1, as desired.
For the bucketing of unvisited children of visited components, we make

appropriate calls to Algorithm E and D. For the bucketing of a visited compo-
nent [v] i with parent [v] j, we note that [v] i belongs in bucket B([v] j, ix([v] i) ..
j 2 i). Hence, we just need to update the positioning of [v] i in B([v] j, z) when
ix([v] i) .. j 2 i changes. The above ideas are implemented in the following
pseudo-code:

Algorithm F. Visit([v] i) assumes that [v] i is minimal. Let [v] j be the parent of [v] i in 7–if
[v] i is the root of 7, technically, we just set j 5 v 1 1. Then Visit([v] i) visits all w [
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[v] i
2 with d(w) .. j 2 1 equal to the call time value of min D([v] i

2) .. j 2 1.
Moreover, Visit([v] i) maintains a correct bucketing of [v] i in B([v] j, z).

F.1. if i 5 0,
F.1.1. Visit(v) (Algorithm E)
F.1.2. remove [v] i from B([v] j, z)
F.1.3. return
F.2. if [v] i has not been visited previously,
F.2.1. Expand([v] i) (Algorithm D)
F.2.2. ix([v]i) 4 ix0([v]i)
F.3. repeat until [v] i

2 5 À or ix([v] i) .. j 2 i is increased:
F.3.1. while B([v] i, ix([v] i)) Þ À ,
F.3.1.1. let [w]h [ B([v] i, ix([v] i))
F.3.1.2. Visit([w]h, i) (Algorithm F)
F.3.2. increment ix([v] i) by one
F.4. if [v] i

2 Þ À , move [v] i to B([v] j, ix([v] i) .. j 2 i)
F.5. if [v] i

2 5 À and [v] i is not the root of 7, remove [v] i from B([v] j, z)

Correctness. We will now argue combined correctness of Algorithms D, E,
and F. Parts of the proof just mimic the correctness proof of Algorithm C.
However, the bucketing, introduces an added complexity because the bucketing
done by one call, depends on bucketing of other calls. In order to avoid cyclic
arguments, we will need to be very precise in stating the exact responsibilities of
each call Visit([v] i). We will use the terminology that a call Visit([v] i) maintains
some property P callwise if P is part of our call time assumptions, and P will be
satisfied by the end of the call provided that all call-time assumptions were
satisfied when the call was made. Further, Visit([v] i) maintains P stepwise if P is
guaranteed to be satisfied before and after every step of the algorithm. Here one
step may be a subcall as in F.3.1.2. Clearly, step-wise maintenance implies
call-wise maintenance. The point in the step-wise conditions is that when we
study possible violations of any step, we may assume that all the step-wise
conditions are satisfied just before the start of the step.

We are now ready to specify correct behavior of a call Visit([v] i). If [v] i is not
the root of 7, let [v] j be the parent of [v] i. Otherwise, set j 5 v 1 1.

(i) We assume that [v] i is minimal when the call is made.
(ii) Step-wise, we maintain that every vertex v visited so far during the course

of the algorithm was minimal when visited.
(iii) The vertices visited by the call Visit([v] i) are exactly the vertices w [ [v] i

2

with d(w) .. ( j 2 1) equal to the call time value of min D([v] i
2) ..

( j 2 1).
(iv) Call-wise, correct bucketing of [v] i is maintained
(v) Step-wise, correct bucketing is maintained of all visited components strictly

descending from [v] i.
(vi) Step-wise, correct bucketing is maintained of all—also nondescending—

unvisited children of visited components.
(vii) If i . 0, the following invariants apply from the first call Visit([v] i) when

ix([v] i) is first assigned in step F.2.2, and until [v] i
2 Þ À.

ix~@v#i! .. j 2 i 5 min d~@v#i
2! .. j 2 1 5 min D~@v#i

2! .. j 2 1 (6)

ix~@v# i! # min d~@v# i
2! .. i 2 1 (7)
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The invariant (6) is maintained call-wise and invariant (7) is maintained
stepwise.

(viii) Step-wise, Visit([v] i) maintains (6) and (7) for all visited components
strictly descending from [v] i in 7.

We are going to prove correctness of all calls Visit([v] i) by induction on i.
However, before doing so, note

LEMMA 19. Correct behavior of the top-call Visit([v]v) to Algorithm F in step
B.3 implies correctness of the SSSP algorithm ( Algorithm B).

PROOF. By definition, [v]v is identical to the root of 7. Further, [v]v is
minimal by definition, so (i) is satisfied when Visit([v]v) is called in step B.3.
Also, since we have not visited any components when the call is made, all
properties to be maintained by (ii)–(viii) are trivially satisfied at call time. Hence,
by (ii), all vertices are minimal when visited and by (iii), we visit all vertices w
with d(w) .. v 5 min D([v]v

2) .. v. However, any integer x in a word have
x .. v 5 0, and we have assumed that all distances calculated fit in one word,
so we conclude that all vertices are visited. e

As promised, we now proceed to prove the correctness of the calls Visit([v] i)
by induction on i. For each step independently, we will prove that all step-wise
conditions are satisfied after the step given that they were all satisfied before the
step. It then follows that there can never be a first violation of a step-wise
condition. As an example, we may assume that (ii) is satisfied before any step
considered, hence that all vertices visited so far were minimal when visited. This
means that the lemmatas we have proved in the previous sections apply to the
situation immediately before the step. For example, if [v]0 is minimal before a
step, by Lemma 8, D(v) 5 d(v) before that step.

LEMMA 20. If i 5 0, the call Visit([v]i) behaves correctly.

PROOF. First note that (v), (vii), and (viii) do not apply for i 5 0. We are
going to perform steps F.1.1–F.1.3, where step F.1.1 visits v via Algorithm E.

The call time assumption from (i) that [v] i 5 [v]0 is immediately implies that
(ii) is maintained. Now Algorithm E makes sure that if min D([w]h

2) is decreased
for some unvisited child [w]h of a visited component, then [w]h is rebucketed
accordingly. Hence, (vi) is maintained.

By (i), [v]0 was minimal when the call was made. Hence, by Lemma 8, d(v) 5
D(v) 5 min D([v] i

2) before the visit of v. Since further v was the only vertex in
[v] i

2, we conclude that (iii) is satisfied.
Finally, we need to make sure that (iv) is maintained call-wise. After v has

been visited in step F.1.1, [v] i
2 5 À, so [v] i should be removed from B([v] j, z).

This is exactly what happens in the subsequent step F.1.2, and hence (iv) is
restored before we return from the call in step F.1.3. e

The rest of the proof is devoted to proving the correct behavior of Visit([v] i)
with i . 0. Inductively, we assume correct behavior of all subcalls Visit([w]h)
made in step F.3.1.2.

LEMMA 21. First time we reach the repeat-loop F.3, we have not misbehaved yet,
and (6) is satisfied.
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PROOF. If [v] i has been visited before, the repeat-loop F.3 is the first thing to
be executed, so we cannot have misbehaved yet. Also, we cannot have violated
(6) which was a call-time assumption by (vii).

If [v] i was not visited before, we have to consider the effect of steps
F.2.1–F.2.2. Step F.2.1 calls Algorithm D, which formally visits [v] i by removing
it from 8. This makes all children of [v] i new unvisited children of a visited
component. Thereafter, Algorithm D correctly buckets these unvisited children
of [v] i, so by the end of step F.2.1, we have restored correct bucketing of all
unvisited children of visited components. Hence, (vi) is maintained, and clearly
step F.2.1 cannot cause any other violations.

Now, step F.2.2 can only affect (vii). Since this is the first visit to [v] i, (vii)
does not require that (7) is satisfied until after step F.2.2. Also, for (vii), (6) does
not need to be satisfied till the end of the call. Nevertheless, as stated in the
claim, we will prove that (6) is satisfied when step F.2.2 is completed.

Note that as its first step, Algorithm D assigns min D([v] i
2) .. i 2 1 to

ix0([v] i), and because no visits are performed since, we still have ix0([v] i) 5
min D([v] i

2) .. i 2 1 when we come to step F.2.2. Consequently, the effect of
step F.2.2 is to set ix([v] i) 5 min D([v] i

2) .. i 2 1. Moreover, since no visits
have been made since the start of the call, [v] i is still minimal, and hence, by
Lemma 8, min D([v] i

2) 5 min d([v] i
2). In conclusion, ix([v] i) 5 min d([v] i

2)
.. i 2 1 5 min D([v] i

2) .. i 2 1, implying that (6) and (7) are both satisfied
after step F.2.2. e

LEMMA 22. If min D([v]i
2) .. j 2 1 has not increased when we start a subcall

Visit([w]h) in step F.3.1.2, all call time assumptions of Visit([w]h) are satisfied, and
further ix([v]i) 5 min D([w]h

2) .. i 2 1 5 min D([v]i
2) .. i 2 1.

PROOF. First, to satisfy (i) for Visit([w]h), we need to show that [w]h is
minimal. Now, by (i) applied to Visit([v] i), [v] i was minimal when Visit([v] i)
started, and since min D([v] i

2) .. j 2 1 has not increased, by Lemma 12, [v] i is
still minimal at the time of the subcall Visit([w]h). Thus, we argue minimality of
[w]h by showing that it is a min-child of [v] i.

Now, step F.3.1.2 is only entered if [w]h is found in bucket B([v] i, ix([v] i)),
and by (iv) and (v) for Visit([v] i), we may assume that all children of [v] i are
correctly bucketed when step F.3.1.2 is entered. Hence, min D([w]h

2) .. i 2
1 5 ix([v] i). On the other hand,

min D~@w#h
2! .. i 2 1 $ min D~@v# i

2! .. i 2 1 $ d~@v# i
2! .. i 2 1 $ ix~@v# i! .

The above three inequalities follow from [w]h # [v] i, D’s domination of d, and
(7), respectively. In conclusion,

ix~@v# i! 5 min D~@w#h
2! .. i 2 1 5 min D~@v# i

2! .. i 2 1,

as desired. The last equality is the definition of [w]h being a min-child of [v] i, so
we conclude that [w]h is minimal as required by (i) for the subcall Visit([w]h).

Now, the properties of (ii), (v), (vi), and (viii) are step-wise, so we may assume
that they hold for Visit([v] i) when the subcall Visit([w]h) starts. However, the
properties of (ii) and (vi) are equivalent for Visit([v] i) and Visit([w]h). Also,
since [v] i is parent of [w]h, property (v) for Visit([v] i) implies both (iv) and (v)
for Visit([w]h), and property (viii) for Visit([v] i) implies both (vii) and (viii) for
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Visit([w]h). Since (iii) has no call-time assumption, we now conclude that all
call-time assumptions are satisfied for Visit([w]h). e

LEMMA 23. If min D([v]i) .. j 2 1 has not increased when we start a subcall
Visit([w]h) in step F.3.1.2, step F.3.1.2 behaves correctly.

PROOF. From Lemma 22, we know that all call-time assumptions of
Visit([w]h) where satisfied, and by induction, Visit([w]h) may be assumed to
behave correctly. Still, we need to show that correct behavior of Visit([w]h) does
not make Visit([v] i) misbehave.

First, note that the conditions of (ii) and (vi) have exactly the same interpre-
tation for Visit([v] i) and Visit([w]h), so Visit([w]h) maintains (ii) and (vi) for
Visit([v] i).

Concerning (iii), by induction we know that Visit([w]h) visits exactly the
vertices u [ [w]h

2 with d(u) .. i 2 1 5 min D([w]h
2) .. i 2 1 when the

subcall was made, and by Lemma 22, at that time min D([w]h
2) .. i 2 1 5

min D([v] i
2) .. i 2 1. Since j $ i, we conclude that d(u) .. j 2 1 5

min D([v] i
2) .. j 2 1 when Visit([w]h) was called. However, by assumption,

min D([v] i
2) .. j 2 1 has not increased since Visit([v] i) was first called, so our

visits have not violated (iii).
Concerning (v) and (viii), note that (iv), (v), (vii), and (viii) of Visit([w]h)

imply that (v) and (viii) of Visit([v] i) are maintained for all components equal to
or descending from [w]h. To complete the proof that (v) and (viii) are main-
tained, we consider an arbitrary visited component [ x]g descending from [v] i but
not equal to or descending from [w]h. Note that Visit([w]h) only visits compo-
nents descending from [w]h, so it does not visit [ x]g. Consequently, [ x]g is not
rebucketed during Visit([w]h) and ix([ x]g) is not changed.

Since Visit([w]h) does not visit [ x]g, [ x]g was visited before the subcall
Visit([w]h). Hence, by (viii), (6) and (7) are both satisfied for [ x]g before the
subcall Visit([w]h). Since min d([ x]g

2) can only change if vertices from [ x]g are
visited, we immediately conclude that (7) is preserved.

Before the subcall Visit([w]h), by (6), we had min D([ x]g
2) .. j 2 1 5

min d([ x]g
2) .. j 2 1. Now, D dominates d, min d([ x]g

2) .. j 2 1 cannot
decrease, and min D([ x]g

2) .. j 2 1 can only increase if a vertex [ x]g is visited.
Since Visit([w]h) does not visit vertices in [ x]g, we conclude that min D([ x]g

2)
.. j 2 1 and min d([ x]g

2) .. j 2 1 remain equal and unchanged. The fact that
min D([ x]g

2) .. j 2 1 does not change, implies that our bucketing of [ x]g

remains correct, so (v) follows. Also, since ix([ x]g) is not changed, we conclude
that (6) remain satisfied, completing the proof of (viii).

The final step-wise condition to be preserved is (6) for [v] i. However,
Visit([w]h) does not change ix([v] i), and min d([v] i

2) can only increase, so (6) is
preserved. e

LEMMA 24. If min D([v]i
2) .. i 2 1 5 min d([v]i

2) .. i 2 1, step F.3.2
behaves correctly.

PROOF. Clearly, the only step-wise condition that could be affected by the
increment of ix([v] i) in step F.3.2 is (7) in (vii).

We will now study closer the situation just before entering step F.3.2. Step
F.3.2 is only entered if the test of the while loop F.3.1 has just failed, so there is
no child [w]h of [v] i in B([v] i, ix([v] i)). However, by (v) and (vi), the children of
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[v] i may be assumed correctly bucketed, so we conclude that there is no child
[w]h of [v] i with min D([w]h

2) .. i 2 1 5 ix([v] i). Since min D([v] i
2) .. i 2

1 equals the minimum of min D([w]h
2) .. i 2 1 over all children [w]h of [v] i, it

follows that min D([v] i
2) .. i 2 1 Þ ix([v] i). By assumption, min D([v] i

2) ..
i 2 1 5 min d([v] i

2) .. i 2 1. Thus, min d([v] i
2) .. i 2 1 Þ ix([v] i). On the

other hand, before entering step F.3.2, by (7), ix([v] i) # min d([v] i
2) .. i 2 1,

which combined with the above inequality implies ix([v] i) , min d([v] i
2) ..

i 2 1. Consequently, the increase of ix([v] i) by one in step F.3.2 cannot violate
ix([v] i) # min d([v] i

2) .. i 2 1. We therefore conclude that (7) is preserved.
e

LEMMA 25. As long as min D([v]i
2) .. j 2 1 does not increase, the repeat-loop

F.3 behaves correctly but does not terminate.

PROOF. Lemma 23 states that step F.3.1.2 behaves, and hence that the while
loop F.3.1 behaves. As long as min D([v] i

2) .. i has not increased, Lemma 12,
states that [v]i remains minimal. Therefore, by Lemma 8, we have min D([v]i

2) 5
min d([v] i

2). Hence, Lemma 24 ascertains correct behavior of step F.3.2. It
follows that the repeat loop F.3 behaves correctly as long as min D([v] i

2) .. j 2
1 does not increase.

To prove nontermination, note that leaving the repeat-loop requires either
[v] i

2 5 À or that ix([v] i) has increased. We want to show that min D([v] i
2) must

have increased in either case. Clearly, this is true if [v] i
2 5 À for then

min D([v] i
2) has increased to `.

Consider an increase in ix([v] i). Initially, by Lemma 21, we had (6) satisfied,
that is, initially, ix([v] i) .. j 2 i 5 min d([v] i

2) .. j 2 1 5 min D([v] i
2) ..

j 2 1. On the other hand, (7) is preserved step-wise, so ix([v]i) # min d([v]i
2) ..

i 2 1 # min D([v] i
2) .. i 2 1. Thus, ix([v] i) .. j 2 1 cannot have been

increased without min D([v] i
2) .. j 2 1 being increased. e

LEMMA 26. When min D([v]i
2) .. j 2 1 increases, the algorithm terminates

correctly.

PROOF. Clearly, min D([v] i
2) .. j 2 1 can only increase during some subcall

Visit([w]h) in step F.3.1.2, referred to as the increasing subcall. As the increase
takes place during the increasing subcall, Lemma 23 still provides correctness of
the increasing subcall itself. Immediately after the subcall, by (v) and (vi), all
children of [v] i are correctly bucketed, so B([v] i, ix([v] i)) is empty unless
ix([vi) $ min D([v] i

2).
We will now argue that the repeat loop F.3 does not perform any further

subcalls Visit([w9]h9) in step F.3.1.2. Clearly the increments to ix([v] i) in step
F.3.2 cannot change our correct bucketing, so passing the test of the while loop
F.3.1 requires that ix([v] i) $ min D([v] i

2) .. i 2 1. However, by Lemma 21,
we had ix([v] i) .. j 2 i 5 min D([v] i

2) .. j 2 1 when we first reached the
repeat loop F.3, which was before min D([v] i

2) .. j 2 1 was increased. Thus,
we cannot pass the test of the while loop F.3.1 unless ix([v] i) .. j 2 1 is
increased. However, if step F.3.2 increases ix([v] i) .. j 2 1, we leave the repeat
loop F.3 before returning to the while loop F.3.1.

Since no further subcalls Visit([w9]h9) are made after the increasing subcall, by
Lemma 23, all iterations of step F.3.1.2 behave correctly. In particular, these
steps respect (iii), so all vertices u visited during the execution of Visit([v] i) have
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d(u) .. j 2 1 equal to the call-time value of min D([v] i
2) .. j 2 1. In order

to complete the proof of (iii), we need to show that we visit all vertices u [ [v] i

with d(u) .. j 2 1 equal to the call-time value of min D([v] i
2) .. j 2 1.

Suppose the increasing call empties [v] i. Then, (vii) no longer applies, so the
subsequent increase of ix([v] i) in step F.3.2 is trivially correct. Afterwards,
Visit([v] i) will finalize by removing [v] i from B([v] j, z), hence preserving (v).
Since [v] i is emptied, we have trivially visited all vertices u [ [v] i with d(u) ..
j 2 1 equal to the call-time value of min D([v] i

2) .. j 2 1. Hence, Visit([v] i)
satisfies (iii). Since (vii) no longer applies, we conclude that the call Visit([v] i)
behaves correctly if the increasing subcall empties [v] i.

Now suppose that the increasing subcall does not empty [v] i. Let u [ [w]h be
the vertex whose visit affected the first increase in min D([v] i

2) .. j 2 1. By
Lemma 11, the increase of min D([v] i

2) .. j 2 1 is by one, and by Lemma 13,
min d([v] i

2) .. j 2 1 is increased with min D([v] i
2) .. j 2 1. Consequently,

after the visit of u, we have visited all vertices x [ [v] i with d( x) .. j 2 1 equal
to the call-time value of min D([v] i

2) .. j 2 1, so (iii) is satisfied for the call
Visit([v] i).

We leave the repeat loop F.3 as soon as ix([v] i) .. j 2 1 is increased. Since
the increasing subcall increases min d([v] i

2) .. j 2 1, it follows that the
subsequent increases to ix([v] i) cannot violate (7). Hence, all iterations of step
F.3.2 behave correctly. Also, when we leave the repeat loop, ix([v] i) .. j 2 1
has been increased by one like min d([v] i

2) .. j 2 1 and min D([v] i
2) .. j 2

1, so (6) is restored, meaning (viii) is maintained by Visit([v] i). From (6), we
further conclude that [v] i is correctly rebucketed in step F.4, so (iv) is main-
tained. Since all step-wise conditions have already been proved maintained, we
conclude that Visit([v] i) behaves correctly. e

Lemmatas 20, 21, 25, and 26 immediately imply correct behavior of Algorithm
F, including the subroutines Algorithm E and D. e

PROPOSITION 27. Assume that the component tree 7 has been computed (cf.
Section 7), and assume an oracle that dynamically maintains the changing value of
min D([v]i

2) for each root [v]i in 8 in linear total time (cf. Section 8). Then no more
than O(m) time and space is needed to solve the SSSP problem.

PROOF. Except from the bucketing, the space bound is trivial. Lemma 18 says
that we have only O(m) relevant buckets, so from our linear implementation of
these buckets in the bucket array A, we conclude that only O(m) space is
needed.

Clearly, the total time spent in Visit(v) (Algorithm E) is O(m). The time spent
in Expand([v] i) (Algorithm D) is proportional to the number of relevant buckets
in B([v] i, z), so by Lemma 18, the total time spent in Expand is O(m).

Having accounted for the time spent in Visit(v) (Algorithm E), the time spent
in Visit([v] i) (Algorithm F) is amortized over increases in ix([v] i), or emptying
of [v] i

2. Since B([v] i, ix([v] i)) is always a relevant bucket, by Lemma 18, there
can by at most O(m) increases to ix([v] i). Also, each [v] i

2 is emptied only once,
so the latter event can only happen O(n) times.

By the correctness of Visit([v] i), either [v] i
2 is emptied, or ix([v] i) .. j 2 i 5

min D([v] i
2) .. j 2 1 is increased. The latter implies that ix([v] i) is increased,

so we conclude that the call Visit([v] i) is payed for in either case.
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Each iteration of the repeat-loop, step F.3, is trivially paid for, either by an
increase in ix([v] i), or by emptying [v] i

2. Finally, each iteration of the while-
loop, step F.3.1, is paid for by the call Visit([w]h). e

7. The Component Tree

In this section, we will present a linear time and space construction for the
component tree 7 defined in the previous section. Recall that on level i, we want
all edges of weight , 2 i. Thus, we are only interested in the position of the most
significant bit (msb) of the weights, that is, msb( x) 5 log2 x. Although msb is
not always directly available, it may be obtained by three standard AC0 opera-
tions by first converting the integer x into a double floating point, and then
extract the exponent by two shifts. Alternatively, msb may be coded by a constant
number of multiplications, as described in Fredman and Willard [1993].

Our first step is to construct a minimum spanning tree M. This is done
deterministically in linear time as described by Fredman and Willard [1994]. As
for Gi, set Mi 5 (V, {e [ M u,(e) , 2 i}). Also, let [v] i

M denote the component
of v in Mi. Clearly [v] i

M is a spanning tree of [v] i, so vertex-wise, the components
of Mi coincide with those of Gi. Also, since [v] i

M is a spanning tree of [v] i,

O
e[@v# i

,~e! $ O
e[@v# i

M

,~e! $ diameter~@v# i
M! $ diameter~@v# i! .

Hence (e[[v] i
M,(e) gives us a better upper bound on the diameter of [v] i than

(e[[v] i
,(e). We can therefore redefine D from Section 6 as D([v] i) 5

(e[[v] i
M,(e)/ 2 i21.

Note that since M has only n 2 1 edges, Lemma 18 states that we have only
4(n 2 1) 1 4n , 8n relevant buckets. Consequently, most of the bounds in the
proof of Proposition 27 are reduced from O(m) to O(n). More precisely, we are
still spending O(m) total time in Visit(v) (Algorithm E), but excluding these
calls, the total time spent in Expand([v] i) (Algorithm D) and Visit([v] i)
(Algorithm D) is reduced from O(m) to O(n).

The main motivation for working with M instead of with G is that M is a tree,
and Gabow and Tarjan [1985] have shown that we can preprocess a tree in linear
time and space, so as to support union-find operations at constant cost per
operation. More precisely, we operate on a dynamic subforest S # M, starting
with S consisting of singleton vertices. Each component of S has a canonical
vertex, and find(v) returns the canonical vertex from the component of S that v
belongs to. Hence, find(v) 5 find(w) if and only if v and w are in the same
component of S. For an edge (v, w) [ M, union(v, w) adds (v, w) to S. The
canonical vertex of the new united component is assumed to be find(v) or
find(w) from before union(v, w) was called.

Now let e1, . . . , en21 be the edges of M sorted according to msb(,(ei)). Note
that msb(,(ei)) , log2 w. Thus, if log w 5 O(n), such a sequence is produced
in linear time by simple bucketing. Otherwise, log w 5 O(w/(log n log log n)),
and then we can sort in linear time by packed merging [Albers and Hagerup
1997; Andersson et al. 1995].

Defining msb(,(e0)) 5 21 and msb(,(en)) 5 v, note that

msb~,~ei!! , msb~,~ei11!! N Mmsb~,~ei!!11 5 Mmsb~,~ei11!! 5 ~V , $e1, . . . , ei%! .
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Thus, sequentially, for i 5 1, . . . , n 2 1, we will call union(ei), and if
msb(,(ei)) , msb(,(ei11)), we will collect all the new components of S for 7.
In order to compute the D-values, for a component with canonical element v, we
store s(v) equal to the sum of the weights of the edges spanning it. In order to
identify new components of 7 and the parent pointers to them efficiently, we
maintain the set X of old canonical elements for the components united since last
components were collected. The desired algorithm is now straightforward.

Algorithm G. Constructs 7 and D[ from the minimum spanning tree M . A leaf [v]0 of
7 is identified with v and the internal components are identified with an initial segment of
the natural numbers. If c identifies [v] i [ 7 , `(c) denotes the identifier of the parent
of [v] i in 7, and D(c) 5 (e[[v] i

M/ 2 i21 .

G.1. for all v [ V ,
G.1.1. c(v) 4 v
G.1.2. D(v) 4 0
G.1.3. s(v) 4 0
G.2. c 4 0; X 4 À
G.3. for i 4 1 to n 2 1,
G.3.1. let (v , w) 5 ei where ei is the ith edge from the minimum spanning tree M .
G.3.2. X 4 X ø {find(v), find(w)}
G.3.3. s 4 s(find(v)) 1 s(find(w)) 1 ,(v , w)
G.3.4. union(v , w)
G.3.5. s(find(v)) 4 s
G.3.6. if msb(,(ei)) , msb(,(ei11)),
G.3.6.1. X9 4 {find(v) uv [ X} — X9 5 canonical elements of new components of 7.
G.3.6.2. for all v [ X9 ,
G.3.6.2.1. c 4 c 1 1
G.3.6.2.2. c9(v) 4 c
G.3.6.3. for all v [ X , `(c(v)) 4 c9(find(v))
G.3.6.4. for all v [ X9 ,
G.3.6.4.1. c(v) 4 c9(v)
G.3.6.4.2. D(c(v)) 4 s(v)/ 2msb(,(ei))
G.3.6.5. X 4 À
G.4. `(c) 4 c

In conclusion we have obtained,

PROPOSITION 28. The component tree 7 is computed in O(m) time and space.

8. The Unvisited Data Structure

In this section, we will show that for the changing set of roots [v] i in the unvisited
part 8 of the component tree 7, we can maintain the changing values
min D([v] i

2) in linear total time. This was the last unjustified assumption of
Proposition 27. Hence, the results of this section will allow us to conclude with a
linear time SSSP algorithm.

First, note that since each root [v] i of 8 is unvisited, [v]2 5 [v] i. We identify
each vertex v of G with the leaf [v]0 of 7. The operations we want to support in
amortized constant time are: (1) if D(v) is decreased for some vertex v with
unvisited root [v] i, update min D([v] i), and (2) if an unvisited root [v] i is visited,
each child [w]h of [v] i in 7 becomes a new root in 8, so we need to find
min D([w]h

2). We will reduce this problem to a slightly cleaner data structure
problem.
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Let v1, . . . , vn be an ordering of the vertices of G induced by an arbitrary
ordering of the children of each internal node of 7. Now, for each root [v] i in 8,
the vertices of [v] i are the leaves under [v] i, and they form a connected segment
vj, . . . , vl of v1, . . . , vn. We want to maintain min D([v] i) 5 minj#k#lD(vk).
When we remove a root from 8, we split its segment into the segments of the
subtrees. Thus we are studying a dynamic partitioning of v1, . . . , vn into
connected segments, where for each segment, we want to know the minimal
D-value. When we start, v1, . . . , vn forms one segment and D(vi) 5 ` for all i.
We may now repeatedly (1) decrease the D-value of some vi, or (2) split a
segment. After each operation we need to update the minimum D-values of all
segments. Each split is assumed to be a split in two, for we can always implement
splits into . 2 pieces by several splits in two. Note that for a sequence of length
n, we can have at most n 2 1 splits in two.

Gabow has shown that we can accommodate the n 2 1 splits and m decreases
in O(ma(m, n)) total time [Gabow 1985, Sect. 4]. However, here we present an
O(m 1 n) solution. Our improvement is based on atomic heaps [Fredman and
Willard 1994]. Whereas Gabow’s solution works on a pointer machine and only
compares weights, the atomic heaps use the full power of the RAM. As our first
step, we show

LEMMA 29. For a sequence of length n, we can accommodate # n 2 1 splits
and m decreases in O(m 1 n log n) time.

PROOF. First we make a balanced binary subdivision of v1, . . . , vn into
intervals. That is, the top-interval is v1, . . . , vn and an interval vi, . . . , vj, j . i,
has the two children vi, . . . , v(i1j)/ 2 and v(i1j)/ 211, . . . , vj.

An interval is said to be broken when it is not contained in a segment, and any
segment is the concatenation of at most 2 log2n maximal unbroken intervals.

In the process, each vertex has a pointer to the maximal unbroken interval it
belongs to, and each maximal unbroken interval has a pointer to the segment it
belongs to. For each segment and for each maximal unbroken interval, we
maintain the minimal D-value. Thus, when a D-value is decreased, if it goes
below the current minimal D-value of the maximal unbroken interval containing
it, or of the segment containing it, we decrease this minima accordingly, in
constant time.

When a segment is split, we may break an interval, creating at most 2 log2n
new maximal unbroken intervals. For each of these disjoint intervals, we visit all
its vertices in order to find the minimal D-values, and to restore the pointers
from these vertices to the new smaller maximal unbroken intervals containing
them. Since each vertex is contained in log2n intervals, the total cost of this
process is O(n log n). Next for each of the two new segments, we find the
minimal D-value as the minimum of the minimum D-values of the at most
2 log2n maximal unbroken intervals they are concatenated from. This takes
O(log n) time per split, hence O(n log n) total time. e

In order to get down to linear total cost, we will make a reduction to Fredman
and Willard’s atomic heaps [Fredman and Willard 1994]. Let T(m, n, s) denote
the total cost of accommodating m decreases and n 2 1 splits, starting with a
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sequence of length n that has already been divided into initial segments of length
at most s. From Lemma 29, we get

LEMMA 30. T(m, n, s) 5 O(m 1 n log s).

PROOF. We simply apply Lemma 29 to each initial segment. Let ni denote the
length of initial segment i and let mi denote the number of splits of initial
segment i. Then ( ini 5 n and ( imi 5 m, and further, @i, ni # s. If we now
apply Lemma 29 to each initial segment, the total cost becomes O(( i(mi 1 ni

log ni)) 5 O(m 1 ( i(ni log s)) 5 O(m 1 n log s). e

LEMMA 31. T(m, n, s) # O(m) 1 T(m, n, log s) 1 T(m, n/log s, s/log s).

PROOF. We view our sequence v1, . . . , vn as divided into n/log s intervals of
log s consecutive vertices (here, for simplicity, we ignore rounding problems).
The splits of v1, . . . , vn into segments further break the intervals into interval
segments. Since interval segments are contained in intervals, their initial length is
at most log s, and hence we can maintain the minimal D-values of the interval
segments in T(m, n, log s) total time.

We will maintain a sequence w1, . . . , wn/log s of super vertices, with super
vertex wi representing interval i. We define a super segment to be a maximal
segment of super vertices not representing any broken intervals. Thus, a split in
interval i translates into a super split between wi21 and wi, and a super split
between wi and wi11. A split between interval i and i 1 1 becomes a super split
between wi and wi11. If interval i is unbroken, D(wi) maintains the minimal
D-value of interval i. Note that the minimal D-values of unbroken intervals is
already maintained by our maintenance of the minimal D-value for each interval
segment. If interval i is broken, D(wi) is not going to be used, and it can just
keep its value. Now, an original segment of v1, . . . , vn of length s contains at
most s/log s unbroken intervals, so we can maintain the minimal D-value of the
super segments in T(m, n/log s, s/log s) total time.

Given that we maintain the minimal D-value for each interval segment and for
each super segment, we can compute the minimal D-values for each segment
vk, . . . , vl of v1, . . . , vn as follows. Let i and j be the intervals containing vk and
vl. If i 5 j, vk, . . . , vl is an interval segment in interval i, so the desired D-value
is directly available. If i Þ j, vk, . . . , vl is composed of the last interval segment
of interval i, a maximal sequence of unbroken intervals i 1 1, . . . , l 2 1, with
a corresponding super sequence wi11, . . . , wl21, and the rightmost interval
segment of interval j. Note, however, that if vk is the first vertex in interval i,
interval i is unbroken, and the super sequence contains wi. A symmetric case
occurs if vl is the last vertex in interval j. In either case, the minimal D-value is
found in constant time as the minimum of at most 2 minimal D-values of interval
segments and one minimal D-value of a super segment. e

LEMMA 32. For every integer i $ 0, T(m, n, n) # O(im) 1 T(m, n, log(i)n).
Here log(0)n 5 n and log( j11)n 5 log(log( j)n).

PROOF. Let c be an upper bound on the constants hidden in the O-notation
of Lemma 30 and 31. By induction, we will prove the lemma by showing that

T~m, n, n! # 3cim 1 T~m, n, log(i)n! .
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For i 5 0, the we are just stating that T(m, n, n) # T(m, n, n), which is
vacuously true. If i . 0, by induction, T(m, n, n) # 3c(i 2 1)m 1 T(m, n,
log(i21)n). By Lemma 31, T(m, n, log(i21)n) # cm 1 T(m, n, log(i)n)) 1
T(m, n/log(i)n, log(i21)n/log(i)n). By Lemma 30, T(m, n/log(i)n, log(i21)n/
log(i)n) 5 c(m 1 (n/log(i)n) log(log(i21)n/log(i)n)) , c(m 1 n) # 2cm.
Adding up, we get T(m, n, n) # 3c(i 2 1)m 1 3cm 1 T(m, n, log(i)n) 5
3cim 1 T(m, n, log(i)n), as desired. e

From the construction of atomic heaps in Fredman and Willard [1994], we
have:

LEMMA 33. Given O(n) preprocessing time and space for construction of tables,
we can maintain a family {Si} of word-sized integers multisets, each of size at most
O(=4 log n), so that each of the following operations can be done in constant time:
insert x in Si, delete x from Si, and find the rank of x in Si, returning the number of
elements of Si that are strictly smaller than x. The total space is O(n 1 (iuSiu).

LEMMA 34. Given O(n) preprocessing time and space for construction of tables,
we can maintain a family {Ai} of arrays Ai: {0, . . . , s 2 1}3 {0, . . . , 2b 2 1}, s 5
O(=4 log n), so that each of the following operations can be done in constant time:
assign x to Ai[ j] and given i, k, l, find minl#j#kAi[ j]. Initially, we assume Ai[ j] 5 `
for all i, j. The total space is O(n 1 (iuAiu).

It should be noted that a proof of Lemma 34 is already implicit in Willard
[1992] in a data structure supporting orthogonal range queries in O(n log n/ log
log n) time. Nevertheless, for completeness, we present a simple direct proof.
Like the proof in Willard [1992], our proof is based on Lemma 33.

PROOF. We use Lemma 33 with Si being the multiset of elements in Ai. Thus,
whenever we change Ai[ j], we delete the old value of Ai[ j] and insert the new
value in Si. Further, we maintain a function s i: {0, . . . , s 2 1} 3 {0, . . . , s 2
1}, so that s i( j) is the rank of Ai[ j] in Si. Here ties are broken arbitrarily. Now
s i is stored as a sequence of s (log s)-bit pieces, where the jth piece is the binary
representation of s( j 2 1). Thus, the total bit-length of s i is s log s 5
O(=4 log n log log n) 5 o(log n). Since log n # v, this implies that s i fits in one
register.

By Lemma 33, when we assign x to Ai[ j] by asking for the rank of x in Si[ j],
we get a new rank r for x in Ai[ j]. To update s i, we make a general transition
table S, that as entry takes a s; {0, . . . , s 2 1} 3 {0, . . . , s 2 1} and j, r [
{0, . . . , s 2 1}. In S(s, j, r), we store s9 such that s9( j) 5 r, s9(h) 5
s(h) 1 (s( j) 2 r)/ us( j) 2r u if min {r, s( j)} , s(h) , max{r, s( j)}, and
s9(h) 5 s(h) in all other cases. There are sss2 entries to S and each takes one
word and is computed in time O(s). Since s 5 O(=4 log n), if follows that S is
constructed in o(n) time and space. Using S, we up-date s i by setting it to S[s i,
j, r].

To complete the construction, we construct another table C that given s:
{0, . . . , s 2 1} 3 {0, . . . , s 2 1} and l, k [ {0, . . . , s 2 1} returns the j [
{k, . . . , l} minimizing s( j). Like S, the table C is easily constructed in o(n)
time and space. Now, minl#j#kAi[ j] is found in constant time as C[s i, k, l]. e

LEMMA 35. T(m, n, =4 log n) 5 O(m).
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PROOF. Divide v1, . . . , vn into intervals of length =4 log n. We maintain the
D-values for each interval as described in Lemma 34. Now any segment of
length # =4 log n is contained in at most two consecutive intervals, and hence the
minimum D-value of any such segment, is found in constant time. e

PROPOSITION 36. T(m, n, n) 5 O(m).

PROOF. Applying Lemma 32 with i 5 2, T(m, n, n) # O(m) 1 T(m, n, log
log n). By definition, T is nonincreasing in its third argument, so T(m, n, log log
n) # T(m, n, =4 log n). Now the result follows directly from Lemma 35. e

9. Conclusion

Combining Propositions 27, 28, and 36, we have now proved

THEOREM 37. There is a deterministic linear time and linear space algorithm for
the single source shortest path problem for undirected graphs with positive integer
weights.

An objection to our linear time and space algorithm could be that it uses
Fredman and Willard’s atomic heaps [Fredman and Willard 1994]. As stated in
Fredman and Willard [1994], the atomic heaps are only defined for n . 21220

.
Further atomic heaps use multiplication, which is not an AC0 operation. As
pointed out in Andersson et al. [1999], the use of non-AC0 operations is not
inherent. Multiplication may be replaced by some simple selection and copying
operations in AC0 that are just missing in standard instruction sets. These
tailor-made instructions would also dramatically reduce the constants. Neverthe-
less, on today’s computers, it is relevant to see how well we can do without the
atomic heaps.

The main tool in our new undirected single source shortest path algorithm is
the use of buckets. We will now discuss how well we can do if we restrict
ourselves to “elementary algorithms” that run on a pointer machine except for
the bucketing, and use only standard AC0 operations. In particular, we will avoid
fancy tabulation and bit-fiddling as done in atomic heaps.

Our first problem is in the minimum spanning tree computation in Section 7,
which is taken from Fredman and Willard [1994] and is based on atomic heaps.
For our algorithm, it satisfies with a spanning tree that is minimal in the graph
where each weight x is replaced by msb( x) 5 log2x (recall that msb is found
with three standard AC0 operations: first convert to a double, and then extract
the exponent with two shifts). Using simple bucketing, we can trivially sort the
edges according to their msb-weights in time O(log C 1 m) time, where C is the
maximal edge weight. Having presorted msb-weights, using Kruskal’s algorithm
[Kruskal 1956] with Tarjan’s union-find algorithm [Tarjan 1975], an msb-mini-
mum spanning tree is found in time O(a(m, n)m) time. Aiming at the
O(a(m, n)m) time bound, we can also replace the tabulation based union-find
from Gabow and Tarjan [1985] with Tarjan’s union-find in the construction of 7
and D[. This can even be done on the fly while constructing the spanning tree
with Kruskal’s algorithm.

The use of atomic heaps in Section 8 is avoided if we instead use Gabow’s
O(a(m, n)m) solution [Gabow 1985, Sect. 4] which works directly on a pointer
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machine. Adding up, we conclude that we have an elementary algorithm for the
SSSP problem with running time O(log C 1 a(m, n)m).

The above log C term stems from having to traverse msb(C) buckets in a
bucket sort of the msb-weights. Since C fits in one word, msb(C) is bounded by
the word length v. As pointed out in Section 7, if v $ m, the sorting of the
msb-weights can be completed in O(m) time by packed merging [Albers and
Hagerup 1997; Andersson et al. 1995]. Having v $ n is not really relevant on
today’s computers as v # 64. However, packed merging essentially uses the
RAM as a kind of vector processor with shifts, and it would likely be relevant in
case of future processors with huge word lengths. Further, packed merging only
uses standard AC0 operations, so we conclude

THEOREM 38. On a RAM with standard AC0 instructions, there is a determinis-
tic O(a(m, n)m) time and linear space space algorithm for the single source shortest
path problem for undirected graphs with positive integer weights.

In conclusion, a deterministic linear time and linear space algorithm has been
presented for the undirected single source shortest paths problem with positive
integer weights. This theoretically optimal algorithm is not in itself suitable for
implementations, but there are implementable variants of it that should work
well both in theory and in practice.

Appendix A. Floating Point Weights

In a standard imperative programming language, we have two types of numbers:
integers and floating point numbers. As theoretical computer scientists, we tend
to assume that the numbers we deal with are integers with the standard
representation. However, in many applications, floating point numbers are at
least as likely. It is therefore natural to ask if there is a linear time algorithm for
the SSSP problem with floating point weights.

The integer algorithm presented in this paper does not work immediately for
floating point weights. Interestingly, this contrasts any algorithm based on
improving the priority queue in Dijkstra’s algorithm, for we do not need to tell a
priority queue if the binary strings it works on represent integers or floating
points—the ordering is the same.

In this appendix, we modify our integer SSSP algorithm to work for floating
point weights in linear time, except that we cannot in linear time sort the weights
x according to msb( x) 5 log2x, as needed for our construction of the
component tree 7 in Section 7. The problem is that for a floating point number
x, log2x is the exponent of x, and the exponent is itself an integer, so sorting
the weight exponents is a general integer sorting problem, which we do not know
how to solve in linear time. However, our modified floating point SSSP algorithm
does work in linear time if the weight exponents are presorted.

Our floating point SSSP algorithm is combined with a linear time reduction of
Thorup [1998], reducing any undirected SSSP problem with positive floating
point weights to a series of independent floating point SSSP problems of linear
total size, and with presorted weight exponents. Since this appendix solves the
latter problems in linear time, we will be able to conclude that we have a linear
time algorithm for the undirected SSSP problem with positive floating point
weights.
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A1. The Floating Point SSSP Problem

A unsigned floating point number or just a float, is a pair x 5 (a, b), where a is an
integer represented the usual way, and b is a bit string b1

. . . b`. Then x
represents the real number 2a(1 1 ( i51

` bi/ 2 i). Thus, a 5 log2x. We call a the
exponent, denoted expo( x), and b the mantissa, denoted mant( x). Often we will
identify a float with the real number it represents. Both a and b are assumed to
fit in a constant number of words. The number ` 5 Q(v) is fixed throughout a
given computation and is referred to as the precision. Even though ` is fixed
throughout a given computation, it is not a universal constant, for both ` and v
are V(log n). As mentioned in the introduction, we get the correct ordering of
floats (a, b) by perceiving the concentrated bit string ab as representing a single
integer.

When two floats x and y are added, we round the result to the nearest floating
point number, rounding down if there is a tie. Alternatively, we may always
round down to nearest float, which is theoretically cleaner. The techniques
presented here work in either case. We use Q to denote floating point addition.
It should be noted that floating point addition is not associative, so we define the
length of a path from s to some vertex v as the floating point sum of the weights
added up starting from s. More specifically, if the path is P 5 (v0, v1, . . . , vl),
s 5 v0, vl 5 v, then the length ,(P) of P is

~~~~,~v0, v1! % ,~v1, v2!! % ,~v2, v3!! · · ·! % ,~vl21, vl!! .

Thus, we get the exactly the same distances as those found by Dijkstra’s
algorithm. Since Q is not associative, our decision to add up weights from the
start of P could give less precision than a careful ordering of the additions. Here
by precision we refer to the ideal case of adding all numbers with unlimited
precision, and first round to a float at the very end. However, as discussed in
Thorup [1998], the maximal relative error of adding n numbers is at most
22`1log2n. Hence, in theory, we can circumvent the rounding errors by simulating
an extra log2n 5 O(w) bits of precision, and this does not affect the asymptotic
running time. In practice, according to the IEEE standard format, with long
floats, we have ` 5 52. Hence the relative error is at most 22521log2n, which is
normally OK.

We will assume that ` $ 2 1, implying that a float precisely can represent any
integers represented in a word.

A2. Dealing with Floats

First, we assume that all weight exponents are at least `, implying that all the
weights are integers. If this is not the case, let ` 2 a be the minimal exponent.
We then add a to all weight exponents. This has the effect of multiplying all
weights, and hence all path lengths by 2a. We then run our SSSP algorithm, and
finally, we subtract a from all the computed distances, to get the distances
according to the original weights.

Since all our floating point weights represent integers, our component hierar-
chy is well defined. We will argue that our algorithm behaves correctly on floats
despite the rounding. We will still have x .. i denoting x/ 2 i, but for floats, we
cannot achieve this by a simple shift operation. To compute y 5 x/ 2 i for a float,
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we simply subtract i from the exponent of x, and preserve the mantissa. To find
z 5 y 5 x .. i, we need to drop any fractional part. If expo( y) $ `, z 5 y,
but if expo( y) , `, we need to zero the last d 5 ` 2 expo( y) bits of the
mantissa. This is done by setting mant( z) 5 d ,, (mant( y) .. d). Sine
mant( y) is an integer, mant( z) is computed from mant( y) by two simple integer
shifts. The exponent of z is the same as that of y.

The only other algorithmic change needed is that the D-values may need to be
doubled. Thereafter, our algorithm for integer SSSP works directly for floating
point weights with presorted weight exponents. However, parts of the correctness
proofs need to be changed substantially. Below, we will describe the changes,
section by section. First, however, we present two simple lemmatas, describing
the relevant properties of floating point addition. They hold no matter whether
floating point addition rounds to nearest float, or rounds down to nearest float.

LEMMA A1. Let x and y be floats. If (x Q 2i) .. i 5 x .. i and x .. i 1 1 $
y .. i 1 1, then x $ y.

PROOF. Since x .. i 1 1 . y .. i 1 1 implies x . y directly, we may
assume x .. i 1 1 5 y .. i 1 1. Now, if ( x Q 2 i) .. i 5 x .. i, we must
have expo( x) . i 1 `. But expo( x) . i 1 ` implies that x .. i 1 1 5 x/ 2 i.
On the other hand, since x .. i 1 1 5 y .. i 1 1, expo( y) 5 expo( x) . i 1
`, so y .. i 1 1 5 y/ 2 i. Hence x .. i 1 1 5 y .. i 1 1 implies x 5 y. e

LEMMA A2. Let x and l be floats. Then x Q l # x 1 2expo(l )11.

Using the above two lemmatas, we will now present the changes for floats,
section by section. The nontrivial changes are all for Section 4.

A3. Section 2

Lemma 1 and 2 are still valid, but we need a little extra care in the proofs. The
shortest path P to v needs to be a prefix shortest path meaning a shortest path all
of whose prefixes are shortest paths. When we dealt with integers, all shortest
paths were trivially prefix shortest paths. However, with floats, there may be a
shortest path P9 to v with an interior vertex u9 such that the prefix of P9 to u9 is
not a shortest path. The point is that extra length of a prefix can disappear in
subsequent rounding, and hence not affect the overall shortest path length.

By picking P as a prefix shortest path, we ensure that if u is the first vertex in
P outside S, then D(u) 5 d(u). The remaining parts of the proofs of Lemma 1
and 2 are unchanged. It should be noted that in later proofs, say, the proof of
Lemma A3, we will need to reason about shortest paths that may not be prefix
shortest paths.

It remains to argue that to any vertex v, we can find a prefix shortest path P.
We do this by induction on the distance to v. Consider any shortest path P to v.
If P is not a prefix shortest path, let Q be the longest prefix that is not a shortest
path and let u be the end vertex of Q. Then, d(u) , ,(Q) # ,(P) 5 d(v).
Hence, inductively, we can find a prefix shortest path Q9 to u. Since ,(Q9) 5
d(u) , ,(Q), we get a prefix shortest path to v if we replace Q by Q9 in P.
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A4. Section 3

This section only illustrates some basic ideas for avoiding the shorting bottle-
neck, and it is not needed for a formal correctness proof.

A5. Section 4

The first lemma that causes problems is Lemma 7, which is simply false with
floats. However, it is true if we require that [v] i is or has been minimal. Below,
we first settle the case where [v] i is minimal. This case suffices for the proof of
Lemma 8. Second, we use Lemma 8 in settling the case where [v] i has been
minimal.

LEMMA A3. Suppose v [y S and [v]i is minimal. If there is no shortest path to v
where the first vertex outside S is in [v]i, d(v) .. i . min D([v]i11

2 ) .. i.

PROOF. Among all shortest paths to v, pick one P so that the first vertex u
outside S is in [v]k with k minimized. By assumption of the lemma, k . i. Also,
D(u) is a lower bound on the length of the part of P from s to u. We prove the
result by induction on v 2 i. Thus assume the statement is true for all strictly
larger values of i.

If u [y [v] i11, we have i 1 1 , v and the minimality of [v] i implies
minimality of [v] i11. Hence, by induction, d(v) .. i 1 1 . min D([v] i12

2 ) ..
i 1 1. By minimality of [v] i11, min D([v] i12

2 ) .. i 1 1 5 min D([v] i11
2 ) ..

i 1 1. Thus, d(v) .. i 1 1 . min D([v] i11
2 ) .. i 1 1, implying d(v) .. i .

min D([v] i11
2 ) .. i.

If u [ [v] i11
2 , D(u) .. i $ min D([v] i11

2 ) .. i. Moreover, since u [y [v] i,
we know there is an edge e of length ,(e) $ 2 i on the part of P between u and
v. Hence, d(v) $ D(u) Q 2 i. If (D(u) Q 2 i) .. i . D(u) .. i, we are done
since D(u) $ min D([v] i11

2 ). Hence, suppose that (D(u) Q 2 i) .. i 5
D(u) .. i.

Since [v] i is minimal, there is a vertex w [ [v] i
2 with D(w) .. i 5

min D([v] i11
2 ) .. i # D(u) .. i. Hence, by Lemma A1, D(w) # D(u). By

definition of S, there is a path Q from s to w of length D(w) where w is only
vertex outside S in Q. Let Q9 by a path from s over w to v whose first part to w
is Q, and where the remainder is contained in [v] i.

The length D of Q9 is found by first setting D 5 D(w), and then add the
weights of the remaining edges of Q9 from [v] i, one by one. In each of these
additions, we set D 4 D Q l, where l , 2 i since l is the weight of an edge in
[v] i. We claim that D can never become bigger than D(u). Clearly, this is true
initially when we set D 5 D(w) # D(u). Inductively, we may assume that D #
D(u) before every assignment D 4 D Q l. Since D # D(u) and l # 2 i, (D Q

l ) .. i # (D(u) Q 2 i) .. i # D(u) .. i. Hence, by Lemma A1, D Q l #
D(u), as desired.

Since D # D(u) # d(v), we conclude that Q9 is a shortest path from to v.
However, w [ [v] i is the first vertex outside S on Q9, contradicting that there
was no shortest path to v whose first vertex was outside S was in [v] i. e

Now Lemma 8 is proved exactly as in Section 4, except that we apply Lemma
A3 instead of Lemma 7.
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LEMMA A4. Suppose v [y S, [v]i11 is minimal, and [v]i has been minimal. If
there is no shortest path to v where the first vertex outside S is in [v]i, d(v) .. i .
min D([v]i11

2 ) .. i.

PROOF. The proof is the same as that of Lemma A3 except for two cases.
Thus, let u and P be as defined in that proof.

First, if u [y [v] i11, we get d(v) .. i 1 1 . min D([v] i12
2 ) .. i 1 1 not by

induction, but by direct application of Lemma A3 to [v] i11. The rest of this case
follows the proof of Lemma A3.

Now, if u [ [v] i11
2 , as in the proof of Lemma A3, we conclude that the lemma

follows unless (D(u) Q 2 i) .. i 5 D(u) .. i.
Consider the situation when [v] i was last minimal. By Lemma 8, there was a

vertex w [ [v] i
2 with D(w) .. i 5 min d([v] i11

2 ) .. i. By definition of S, there
is a path Q from s to w of length D(w) where w is only vertex outside S in Q.
Note that D(w) may change, but the length of Q is fixed, and we denote it ,(Q).

Since min d([v] i
2) is nondecreasing, in the current situation, min d([v] i11

2 ) $
,(Q). Moreover, u [ [v] i11

2 , so D(u) $ min D([v] i11
2 ) $ min d([v] i11

2 ).
Hence, D(u) .. i $ ,(Q) .. i, so D(u) $ ,(Q) by Lemma A1.

As in the proof of Lemma A3, let Q9 by a path from s over w to v whose first
part to w is Q, and where the remainder is contained in [v] i. The length D of Q9
is may be found by first setting D 4 ,(Q), and then add the weights of the
remaining edges of Q9 from [v] i, one by one. In each of these additions, we set
D 4 D Q l where l , 2 i. As in the proof of Lemma A3, we conclude that D can
never increase beyond D(u); hence, that Q9 contradicts that there was no
shortest path to v whose first vertex was outside S was in [v] i. e

Using Lemma A4, we can now prove a slightly weaker version of Lemma 9.

LEMMA A5. If v [y S and [v]i is not minimal but [v]i11 is minimal and [v]i has
been minimal then min d([v]i

2) .. i . min D([v]i11
2 ) .. i.

PROOF. Consider any w [ [v] i
2 and let u be the first vertex outside S on a

shortest path from s to w. If u [y [v] i, the result follows directly from Lemma
A4. However, if u [ [v] i, we have d(w) $ D(u) $ min D([v] i

2). Moreover, the
nonminimality of [v] i implies min D([v] i

2) .. i . min D([v] i11
2 ) .. i.

Hence, we conclude that d(w) .. i . min D([v] i11
2 ) .. i for all w [ [v] i

2, as
desired. e

A6. Section 5

We can prove all the results of Section 5, simply replacing all applications of
Lemma 9 with application of Lemma A5. This is valid because [v] i has been
minimal in all applications of Lemma 9 in Section 5. One more change, however,
is the last line

^min D~@v# i
2! .. i&a # ^D~ x! .. i&a # ~d~u! 1 ,~u, x!! .. i

# ^min D~@v# i
2 .. i&b 1 1.

of the proof of Lemma 11. There we used that l , 2 i, implied ( x 1 l ) .. i #
( x .. i) 1 1. However, by Lemma A2, we have ( x Q l ) .. i # ( x 1 2 i) ..
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i # ( x .. i) 1 1, so we can simply replace 1 by Q in the last line, and it still be
valid.

A7. Section 6

Our only problem is that the distance between min d([v] i) and max d([v] i) may
be increased due sums being rounded up. By Lemma A2, however, we can
anticipate rounding up by setting D([v] i) 5 (e[[v] i

2expo(,(e))112i. This, can
only double the size of the bucket structure, and hence not affect our asymptotic
bound. Another minor problem is that when we compute a bucket index, we
should convert it to integer representation. However, any bucket index is O(m),
so the conversion to integer will not cause an overflow.

A8. Section 7

The only change in this section is that the weights x are already presorted
according to their exponents msb( x) 5 log2x.

A9. Section 8

For the data structure in this section, we are only interested in the ordering of
certain distances found. Hence, as for priority queues, we can just view the bit
strings of these floating point distances as representing integers, and hence we do
not need any algorithmic changes.

A10. Conclusion

We have shown that our SSSP algorithm for integers can be adapted for floats,
given that the weight exponents are presorted as described in Thorup [1998].
Thus, we have a linear time and space algorithm for the undirected SSSP
problem with positive floating point weights.
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