CSIE 5046: Topics in Complexity Theory

Tony Tan
Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University

Table of contents

Lesson 0. Preliminaries: Review of some material such as the Big Oh and Omega notations, Turing machines, the notion of algorithms, basic complexity classes and the efficient universal Turing machines (with only logarithmic blow-up in run-time).

Lesson 1. The class NP: Cook-Levin reductions, parsimonious reductions, Ladner's theorem on NP-intermediate languages and Gill-Baker-Solovay's theorem.

Lesson 2. The class NL: Log-space reductions, NL-completeness, Savitch's theorem and Immerman-Szelepcsényi's theorem ($\mathrm{NL}=\mathbf{c o N L}$).

Lesson 3. The class PSPACE: PSPACE-complete languages, the language TQBF and the generalization of Savitch and Immerman-Szelepcsényi's theorem.

Lesson 4. Alternating Turing machines: Complexity classes based on alternating Turing machines and their relations with the deterministic counterpart.

Lesson 5. The polynomial hierarchy and the complexity classes for counting: The polynomial time hierarchy and the complexity classes four counting: FP and $\sharp \mathbf{P}$.

Lesson 6. Computing permanent: Computing the permanent of matrices is $\sharp \mathbf{P}$-complete.
Lesson 7. Boolean circuits, part 1: The class $\mathbf{P}_{\text {/poly }}$, Karp-Lipton's theorem, Meyer's theorem and the classes NC and AC.

Lesson 8. Boolean circuits, part 2: Switching lemma and its application to prove circuit lower bound.

Lesson 9. Probabilistic Turing machines: Probabilistic Turing machines, one-/two-sided error, zero error and classical results such as Adleman and Sipser-Gács-Lautemann's theorem.

Lesson 10. The probabilistic method: The basic counting argument, the expectation argument, sample and modify and Lovász local lemma.

Lesson 11. Probabilistic reductions: Valiant-Vazirani's lemma, the language \oplus SAT, the class $\oplus \mathbf{P}$ and probabilistic reductions from SAT and $\overline{\text { SAT }}$ to \oplus SAT and the generalization to every language in PH (preliminary to Toda's theorem).

Lesson 12. Toda's theorem: Reduction from \oplus SAT to $\sharp S A T$ and the proof of Toda's theorem.

Lesson 0: Preliminaries

Theme: Review of some introductory material.

Let \mathbb{N} denote the set of natural numbers $\{0,1,2, \ldots\}$. Let f and g be functions from \mathbb{N} to \mathbb{N}.

- $f=O(g)$ means that there is c and n_{0} such that for every $n \geqslant n_{0}, f(n) \leqslant c \cdot g(n)$. It is usually phrased as "there is c such that for (all) sufficiently large $n, " f(n) \leqslant c \cdot g(n)$.
- $f=\Omega(g)$ means $g=O(f)$.
- $f=\Theta(g)$ means $g=O(f)$ and $f=O(g)$.
- $f=o(g)$ means for every $c>0, f(n) \leqslant c \cdot g(n)$ for sufficiently large n.

Equivalently, $f=o(g)$ means $f=O(g)$ and $g \neq O(f)$.
Another equivalent definition is $f=o(g)$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

- $f=\omega(g)$ means $g=o(f)$.

To emphasize the input parameter, we will write $f(n)=O(g(n))$. The same for the Ω, o, ω notations. We also write $f(n)=\operatorname{poly}(n)$ to denote that $f(n)=c \cdot n^{k}$ for some c and $k \geqslant 1$.

Throughout the course, for an integer $n \geqslant 0$, we will denote by $\lfloor n\rfloor$ the binary representation of n. Likewise, $\lfloor G\rfloor$ the binary encoding of a graph G. In general, we write $\lfloor X\rfloor$ to denote the encoding/representation of an object X as a binary string, i.e., a $0-1$ string. To avoid clutter, in most cases we simply write X instead of $\lfloor X\rfloor$.

We usually write Σ to denote a finite input alphabet. Often $\Sigma=\{0,1\}$. Recall also that for a word $w \in \Sigma^{*},|w|$ denotes the length of w. For a DTM/NTM \mathcal{M}, we write $L(\mathcal{M})$ to denote the language $\{w: \mathcal{M}$ accepts $w\}$.

We often view a language $L \subseteq \Sigma^{*}$ as a boolean function, i.e., $L: \Sigma^{*} \rightarrow\{$ true, false $\}$, where $L(x)=$ true if and only if $x \in L$, for every $x \in \Sigma^{*}$.

1 Time complexity

Definition 0.1 Let \mathcal{M} be a $\operatorname{DTM} / \mathrm{NTM}, w \in \Sigma^{*}, t \in \mathbb{N}$ and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function.

- \mathcal{M} decides w in time t (or, in t steps), if every run of \mathcal{M} on w has length at most t. That is, for every run of \mathcal{M} on w :

$$
C_{0} \vdash C_{1} \vdash \cdots \vdash C_{m} \quad \text { where } C_{m} \text { is a halting configuration, }
$$

we have $m \leqslant t$.

- \mathcal{M} runs in time $O(f(n))$, if there is $c>0$ such that for sufficiently long word w, \mathcal{M} decides w in time $c \cdot f(|w|)$.
- \mathcal{M} decides /accepts a language L in time $O(f(n))$, if $L(\mathcal{M})=L$ and \mathcal{M} runs in time $O(f(n))$.
- Dtime $[f(n)] \stackrel{\text { def }}{=}\{L:$ there is a DTM \mathcal{M} that decides L in time $O(f(n))\}$.
- Ntime $[f(n)] \stackrel{\text { def }}{=}\{L:$ there is an NTM \mathcal{M} that decides L in time $O(f(n))\}$.

We say that \mathcal{M} runs in polynomial and exponential time, if there is $f(n)=\operatorname{poly}(n)$ such that \mathcal{M} runs in time $O(f(n))$ and $O\left(2^{f(n)}\right)$, respectively. In this case we also say that \mathcal{M} is a polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

$$
\begin{array}{rrr}
\mathbf{P} & \stackrel{\text { def }}{=} \bigcup_{f(n)=\text { poly }(n)} \operatorname{DTIME}[f(n)] & \stackrel{\text { def }}{=} \bigcup_{f(n)=\operatorname{poly}(n)} \operatorname{DTIME}\left[2^{f(n)}\right] \\
\mathbf{N P} & \stackrel{\text { def }}{=} \bigcup_{f(n)=\text { poly }(n)} \operatorname{NTIME}[f(n)] & \operatorname{NEXP} \stackrel{\text { def }}{=} \bigcup_{f(n)=\operatorname{poly}(n)} \operatorname{NTIME}\left[2^{f(n)}\right] \\
\mathbf{c o N P} & \stackrel{\text { def }}{=}\left\{L: \Sigma^{*}-L \in \mathbf{N P}\right\} & \operatorname{coNEXP}
\end{array}
$$

Theorem 0.2 (Padding theorem) If $\mathbf{N P}=\mathbf{P}$, then $\mathbf{N E X P}=\mathbf{E X P}$.
Likewise, if $\mathbf{N P}=\mathbf{c o N P}$, then $\mathbf{N E X P}=\mathbf{c o N E X P}$.

2 Space complexity

Definition 0.3 Let \mathcal{M} be a DTM/NTM, $w \in \Sigma^{*}, s \in \mathbb{N}$ and $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function.

- \mathcal{M} decides w using s space (or, in space s), if \mathcal{M} halts on w and for every run of \mathcal{M} on w :

$$
C_{0} \vdash C_{1} \vdash \cdots \vdash C_{m} \quad \text { where } C_{m} \text { is a halting configuration, }
$$

we have $\left|C_{i}\right| \leqslant s$ for every $1 \leqslant i \leqslant m$.

- \mathcal{M} uses space $O(f(n))$ (or, runs in space $O(f(n))$), if there is $c \geqslant 0$ such that for sufficiently long word w, \mathcal{M} decides w in space $c \cdot f(|w|)$.
- \mathcal{M} decides/accepts a language L in space $O(f(n))$, if $L(\mathcal{M})=L$ and \mathcal{M} uses space $O(f(n))$.
- $\operatorname{Dspace}[f(n)] \stackrel{\text { def }}{=}\{L:$ there is a DTM \mathcal{M} that decides L in space $O(f(n))\}$.
- $\operatorname{NSPACE}[f(n)] \stackrel{\text { def }}{=}\{L$: there is an NTM \mathcal{M} that decides L in space $O(f(n))\}$.

We say that \mathcal{M} uses polynomial space, if there is $f(n)=\operatorname{poly}(n)$ such that \mathcal{M} uses space $O(f(n))$. In this case, we also say that \mathcal{M} is a polynomial space TM.

The following are some of the important classes in the complexity theory.

$$
\begin{aligned}
\text { PSPACE } & \stackrel{\text { def }}{=} \bigcup_{f(n)=\operatorname{poly}(n)} \operatorname{DSPACE}[f(n)] \\
\text { NPSPACE } & \stackrel{\text { def }}{=} \bigcup_{f(n)=\text { poly }(n)} \operatorname{NsPACE}[f(n)] \\
\text { coNPSPACE } & \stackrel{\text { def }}{=}\left\{L: \Sigma^{*}-L \in \operatorname{NPSPACE}\right\}
\end{aligned}
$$

In a few weeks we will show that PSPACE $=$ NPSPACE $=$ coNPSPACE .
Definition 0.4 (logarithmic space) Let \mathcal{M} be a k-tape DTM/NTM, where $k \geqslant 2$.

- DTM/NTM \mathcal{M} uses space $O(\log (n))$, if there is $c>0$ such that for sufficiently long word w, the following holds.
- The first tape always contains only the input word w, i.e., \mathcal{M} never changes the content of the first tape.
- For all the other tapes, the number of cells used by \mathcal{M} is $\leqslant c \cdot \log (|w|)$.
- \mathcal{M} decides/accepts a language L in space $O(\log (n))$, if $L(\mathcal{M})=L$ and \mathcal{M} uses space $O(\log (n))$.

In this case, we say that \mathcal{M} uses logarithmic space, or that \mathcal{M} is a logarithmic space TM .

Similar to above, we can define the following clasess.

$$
\begin{aligned}
\mathbf{L} & \stackrel{\text { def }}{=}\{L: \text { there is a DTM } \mathcal{M} \text { that decides } L \text { in space } O(\log (n))\} \\
\mathbf{N L} & \stackrel{\text { def }}{=}\{L: \text { there is an NTM } \mathcal{M} \text { that decides } L \text { in space } O(\log (n))\} \\
\mathbf{c o N L} & \stackrel{\text { def }}{=}\left\{L: \Sigma^{*}-L \in \mathbf{N L}\right\}
\end{aligned}
$$

In a few weeks we will also show that $\mathbf{N L}=\mathbf{c o N L}$. It is still an open question if $\mathbf{L} \stackrel{?}{=} \mathbf{N L}$.

3 Universal Turing machines

Remark 0.5 For every k-tape $\mathrm{TM} \mathcal{M}$ over input alphabet $\Sigma=\{0,1\}$, there is a k-tape TM \mathcal{M}^{\prime} over the same input alphabet $\Sigma=\{0,1\}$ and tape alphabet $\Gamma=\{0,1, \sqcup\}$ such that $L(\mathcal{M})=$ $L\left(\mathcal{M}^{\prime}\right)$. Moreover, if \mathcal{M} runs in time/space $O(f(n))$, so does \mathcal{M}^{\prime}.

Due to this, we always assume that the input and tape alphabet of Turing machines are $\Sigma=\{0,1\}$ and $\Gamma=\{0,1, \sqcup\}$, respectively.

Recall that $\lfloor\mathcal{M}\rfloor$ denotes the encoding of a TM \mathcal{M}.
Definition 0.6 A Universal Turing machine (UTM) is a k-tape DTM \mathcal{U}, for some $k \geqslant 1$, such that $L(\mathcal{U})=\left\{\lfloor\mathcal{M}\rfloor \$ w \mid \mathcal{M}\right.$ accepts w and $\left.w \in\{0,1\}^{*}\right\}$.

Theorem 0.7 There is a UTM \mathcal{U} such that for every DTM \mathcal{M} and every word w, if \mathcal{M} decides w in time t, then \mathcal{U} decides $\lfloor\mathcal{M}\rfloor \$ w$ in time $(\alpha \cdot t \cdot \log t)$, where α does not depends $|w|$, but on size of the tape alphabet of \mathcal{M} as well as the number of tapes and states of \mathcal{M}.

Appendix

A Turing machines

We reserve a special symbol \sqcup, called the blank symbol.
A 1-tape Turing machine (TM) is a system $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}, \delta\right\rangle$, where each component is as follows.

- Σ is a finite alphabet, called the input alphabet, where $\sqcup \notin \Sigma$.
- Γ is a finite alphabet, called the tape alphabet, where $\Sigma \subseteq \Gamma$ and $\sqcup \in \Gamma$.
- Q is a finite set of states.
- $q_{0} \in Q$ is the initial state.
- $q_{\mathrm{acc}}, q_{\mathrm{rej}} \in Q$ are two special states called the accept and reject states, respectively.
- $\delta: Q-\left\{q_{\text {acc }}, q_{\mathrm{rej}}\right\} \times \Gamma \rightarrow Q \times \Gamma \times\{$ Left, Right $\}$ is the transition function.

Intuitively, the intuitive meaning of $\delta(p, a)=(q, b$, Move $)$ is as follows. When the head reads a symbol a, if \mathcal{M} is in state p, it "writes" symbol b on top of a, enters state q, and the head moves left, if Move $=$ Left , or moves right, if Move $=$ Right .

To describe how a TM computes, we need a few terminologies. A configuration of \mathcal{M} is a string C from $(Q \cup \Gamma)^{*}$ which contains exactly one symbol from Q. We call such symbol the state of C. Intuitively, a configuration $C=\overline{a_{1} \cdots a_{i-1} p a_{i} \cdots a_{m}}$ means the content of the tape is:

```
\cdots\sqcup\sqcupப a }\mp@subsup{a}{1}{}\cdots\mp@subsup{a}{i-1}{}\mp@subsup{a}{i}{}\cdots\mp@subsup{a}{m}{}\mathrm{ பபபल
```

with the head reading a_{i}.
On input word $w \in \Sigma^{*}$, the initial configuration of \mathcal{M} on w is the string $q_{0} w$. A configuration is called accepting, if it contains $q_{\text {acc }}$, and it is called rejecting, if it contains $q_{\text {rej }}$. A halting configuration is either an accepting or a rejecting configuration.

Let $C=a_{1} \cdots a_{i-1} p a_{i} \cdots a_{m}$ be a configuration, where $a_{1}, \ldots, a_{m} \in \Gamma$ and $p \in Q$ such that $p \neq q_{\mathrm{acc}}, q_{\mathrm{rej}}$. The transition δ yields the subsequent configuration C^{\prime}, denoted by $C \vdash C^{\prime}$, as follows.

- If $\delta\left(p, a_{i}\right)=(q, b$, Left $)$ and $i \geqslant 2$, then $C^{\prime}=a_{1} \cdots a_{i-2} q a_{i-1} b a_{i+1} \cdots a_{m}$.
- If $\delta\left(p, a_{i}\right)=(q, b$, Left $)$ and $i=1$, then $C^{\prime}=q \sqcup b a_{2} \cdots a_{m}$.
- If $\delta\left(p, a_{i}\right)=(q, b$, Right $)$ and $i \leqslant m-1$, then $C^{\prime}=a_{1} \cdots a_{i-1} b q a_{i+1} \cdots a_{m}$.
- If $\delta\left(p, a_{i}\right)=(q, b$, Right $)$ and $i=m$, then $C^{\prime}=a_{1} \cdots a_{m-1} b q \sqcup$.

The run of \mathcal{M} on w is the (possibly infinite) sequence:

$$
\begin{equation*}
C_{0} \vdash C_{1} \vdash C_{2} \vdash \cdots, \tag{1}
\end{equation*}
$$

where C_{0} is the initial configuration of \mathcal{M} on w.
\mathcal{M} stops when it reaches a halting configuration, i.e., when it reaches either $q_{\text {acc }}$ or q_{rej}. If \mathcal{M} halts in an accepting configuration, then we say that \mathcal{M} accepts w. If it halts in a rejecting configuration, then we say that \mathcal{M} rejects w. We denote by $L(\mathcal{M}) \stackrel{\text { def }}{=}\{w: \mathcal{M}$ accepts $w\}$.

Remark 0.8 Our definition of Turing machine above is usually called two-way infinite tape, in the sense that the tape is unbounded on both the left and the right side. In most textbooks, Turing machine is defined as only "one-way" in the sense that the left side is bounded, but the right side is unbounded. Both definitions are equivalent. Neither one is computationally stronger than the other.

Multi-tape Turing machines. A multi-tape Turing machine is a Turing machine that has a few tapes. On each tape, the Turing machine has one head. Formally, it is defined as follows. Let $k \geqslant 1$. A k-tape Turing machine is $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}, \delta\right\rangle$, where δ is a function

$$
\delta:\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma^{k} \rightarrow Q \times(\Gamma-\{\sqcup\})^{k} \times\{\text { Left }, \text { Right }\}^{k}
$$

As before, an element of δ is written in the form:

$$
\left(q, a_{1}, \ldots, a_{k}\right) \rightarrow\left(p, b_{1}, \ldots, b_{k}, \text { Move }_{1}, \ldots, \text { Move }_{k}\right) .
$$

Intuitively, it means that if the TM is in state q, and on each $i=1, \ldots, k$, the head on tape i is reading a_{i}, then it enters state p, and for $i=1, \ldots, k$, the head on tape i writes the symbol b_{i} and moves according to Move_{i}.

A configuration of \mathcal{M} is of the form $\left(q, u_{1}, \ldots, u_{k}\right)$, where $q \in Q$ and each u_{i} is a string over $\Gamma \cup\{\bullet\}$ and the symbol \bullet appears exactly once in each u_{i}. The symbol \bullet is to denote the position of the head.

The input is always written in the first tape. All the other tapes are initially blank. Formally, the initial configuration on input w is $\left(q_{0}, \bullet w, \bullet, \ldots, \bullet\right)$.

The notion of "one step computation" $C \vdash C^{\prime}$ is defined similarly as in the standard Turing machine. Likewise, the conditions of acceptance and rejection are defined as when the Turing machines enters the accepting and rejecting states, respectively.

Theorem 0.9 For k-tape $T M \mathcal{M}$, there is a single tape $T M \mathcal{M}^{\prime}$ such that for every word w, the following holds.

- If \mathcal{M} accepts w, then \mathcal{M}^{\prime} accepts w.
- If \mathcal{M} rejects w, then \mathcal{M}^{\prime} rejects w.
- If \mathcal{M} does not halt on w, then \mathcal{M}^{\prime} does not halt on w.

Non-deterministic Turing machines. A non-deterministic Turing machine (NTM) is a system $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\text {acc }}, q_{\text {rej }}, \delta\right\rangle$ defined as the standard Turing machine, with the exception that δ is now a relation:

$$
\delta \subseteq\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \times Q \times \Gamma \times\{\text { Left }, \text { Right }\}
$$

As before, we write an element of δ is in the form:

$$
(q, a) \rightarrow(p, b, \text { Move }) .
$$

The initial configuration of \mathcal{M} on input word w is $q_{0} w$. For two configurations C, C^{\prime}, the notion of "one step computation" $C \vdash C^{\prime}$ is defined similarly as in the standard Turing machine. A run of \mathcal{M} on input w is a sequence:

$$
C_{0} \vdash C_{1} \vdash \cdots,
$$

where C_{0} is the initial configuration on w. A run is accepting/rejecting, if it ends up in an accepting/rejecting configuration, respectively. However, due to non-determinism, for each C there can be a few configurations C^{\prime} such that $C \vdash C^{\prime}$, thus, there can be many runs. Some are accepting, some are rejecting, and some other do not halt.

Encoding of Turing machines. We always assume that the alphabet and the tape alphabet of our TM are $\Sigma=\{0,1\}$ and $\Gamma=\{0,1, \sqcup\}$, respectively. Without loss of generality, we can also assume that $Q=\{0,1, \ldots, n\}$ for some positive integer n with 0 being the initial state.

We note the following.

- Each state $i \in Q$ is written as a string in its binary form.
- Each transition $(i, a) \rightarrow(j, b, \alpha) \in \delta$ can be written as string over the symbols $0,1,($,$) , ,$, ப̃, L, R, where the symbol ப̃ represents \sqcup, and L, R represent Left, Right, respectively.

So, the whole system $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, 0, q_{\text {acc }}, q_{\mathrm{rej}}, \delta\right\rangle$ can be written as a string:

$$
\lfloor\Sigma\rfloor \#\lfloor\Gamma\rfloor \#\lfloor Q\rfloor \#\lfloor 0\rfloor \#\left\lfloor q_{\mathrm{acc}}\right\rfloor \#\left\lfloor q_{\mathrm{rej}}\right\rfloor \#\lfloor\delta\rfloor
$$

where $\lfloor\cdot\rfloor$ denotes the string representing the component \cdot and $\#$ the symbol separating two consecutive components.

This shows that every Turing machine（whose tape alphabet is $\Gamma=\{0,1, \sqcup\}$ ）can be described as a string over a fixed set of the symbols，i．e．， $0,1,(),$, ，$\check{\llcorner }, \mathrm{L}, \mathrm{R}, \#$ ．All these symbols can be further encoded into strings over 0 and 1 to obtain a binary string，which we denote by $\lfloor\mathcal{M}\rfloor$ ． That is，$\lfloor\mathcal{M}\rfloor$ is the binary string representing the Turing machine \mathcal{M} ．Sometimes，we will also say $\lfloor\mathcal{M}\rfloor$ is the string description／encoding of \mathcal{M} ，or the description／encoding of \mathcal{M} ，for short．

B An informal definition of（deterministic）algorithms

Designing a TM is often a very tedious process．So we often resort to describing an＂algorithm＂ which is defined（informally）as consisting of one＂main＂Boolean function of the form：

```
Boolean main (String w)
{ statement;
    statement;
}
```

and some（finite number of）functions of the form：

```
\langlevalue-type\rangle function <function-name\rangle (\langlevariable-name\rangle,...,\langlevariable-name\rangle)
{ statement;
    \vdots
    statement;
}
```

Statements in the algorithm are of the following form：
－〈variable－name〉 $:=\langle$ expression $\rangle ;$
－\langle variable－name $\rangle:=\langle$ function－name $\rangle(\langle$ variable－name \rangle, \ldots,\langle variable－name $\rangle) ;$

- return 〈variable－name〉／／some－value〉；
- if \langle condition〉
\｛ statement；
statement；
\} else
\｛ statement；
\vdots
statement；
\}

```
- while <condition\rangle do
{ statement;
    statement;
}
```

Note that we define our algorithm to mimic closely the $\mathrm{C} / \mathrm{C}++/$ Java language. We may assume that the variables used in each function have different names. Moreover, each variable can only contain "string" value. Values of other types such as Integer and Real are represented in binary forms as strings.

In measuring the space complexity of an algorithm, we count the maximum total length of the strings stored in all variables at any time during its execution process.

C Non-deterministic algorithms

One can define a "non-deterministic" algorithm as a deterministic algorithm extended with an additional special variable z and an instruction of the following form:

$$
\begin{equation*}
z:=0| | 1 ; \tag{2}
\end{equation*}
$$

This instruction means "randomly assign variable z with either 0 or $1 . "$
A non-deterministic algorithm A "accepts" an input word w, if on every instruction of the form (2), variable z can be assigned with 0 or 1 such that A will "return true." Note that the instruction (2) can be encountered more than once during the execution of algorithm A. For example, it may appear inside a while-loop.

Lesson 1: The class NP

Theme: Some classical results on the class NP.

1 Definitions

We recall the following definition of NP.

Definition 1.1 A language L is in NP if there is $f(n)=\operatorname{poly}(n)$ and an NTM \mathcal{M} such that $L(\mathcal{M})=L$ and \mathcal{M} runs in time $O(f(n))$.

There is an alternative definition of $\mathbf{N P}$.
Definition 1.2 A language $L \subseteq \Sigma^{*}$ is in NP if there is a language $K \subseteq \Sigma^{*} \times \Sigma^{*}$ such that the following holds.

- For every $w \in \Sigma^{*}, w \in L$ if and only if there is $v \in \Sigma^{*}$ such that $(w, v) \in K$.
- There is $f(n)=\operatorname{poly}(n)$ such that for every $(w, v) \in K,|v| \leqslant f(|w|)$.
- The language K is accepted by a polynomial time DTM.

For $(w, v) \in K$, the string v is called the certificate/witness for w. We call the language K the certificate/witness language for L.

Indeed Def. 1.1 and 1.2 are equivalent. That is, for every language L, L is in NP in the sense of Def. 1.1 if and only if L is in NP in the sense of Def. 1.2.

2 NP-complete languages

Recall that a DTM \mathcal{M} computes a function $F: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $O(g(n))$, if there is a constant $c>0$ such that on every word w, \mathcal{M} computes $F(w)$ in time $\leqslant c g(|w|)$. If $g(n)=\operatorname{poly}(n)$, such fucntion F is called polynomial time computable function. Moreover, if \mathcal{M} uses only logarithmic space, it is called logarithmic space computable function.

Definition 1.3 A language L_{1} is polynomial time reducible to another language L_{2}, denoted by $L_{1} \leqslant{ }_{p} L_{2}$, if there is a polynomial time computable function F such that for every $w \in \Sigma^{*}$:

$$
w \in L_{1} \quad \text { if and only if } \quad F(w) \in L_{2}
$$

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L_{1} is \log-space reducible to L_{2}, denoted by $L_{1} \leqslant \log L_{2}$.

If L_{1} and L_{2} are in NP with certificate languages K_{1} and K_{2}, respectively, we say that F is parsimonious, if for every $w \in \Sigma^{*}, w$ has the same number of certificates in K_{1} as $F(w)$ in K_{2}.

Definition 1.4 Let L be a language.

- L is NP-hard, if for every $L^{\prime} \in \mathbf{N P}, L^{\prime} \leqslant p L$.
- L is NP-complete, if $L \in \mathbf{N P}$ and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x_{1}, \ldots, x_{n} is in Conjunctive Normal Form (CNF), if it is of the form: $\bigwedge_{i} \bigvee_{j} \ell_{i, j}$ where each $\ell_{i, j}$ is a literal, i.e., a variable x_{k} or its negation $\neg x_{k}$. It is in 3 - CNF , if it is of the form $\bigwedge_{i}\left(\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}\right)$. A formula φ is satisfiable, if there is an assignment of Boolean values true or false to each variable in φ that evaluates to true.

SAT	
Input: A propositional formula φ in CNF. Task: Output true, if φ is satisfiable. Otherwise, output false. 3-SAT Input: A propositional formula φ in 3-CNF. Task: Output true, if φ is satisfiable. Otherwise, output false. 3	

Obviously, SAT can be viewed as a language, i.e., SAT $\stackrel{\text { def }}{=}\{\varphi: \varphi$ is satisfiable CNF formula $\}$. Likewise, for 3-SAT.

Theorem 1.5 (Cook 1971, Levin 1973) SAT and 3-SAT are NP-complete.

3 Ladner's theorem: NP-intermediate language

Theorem 1.6 (Ladner 1975) If $\mathbf{P} \neq \mathbf{N P}$, then there is $L \in \mathbf{N P}$ such that $L \notin \mathbf{P}$ and L is not NP-complete.

For a function $H: \mathbb{N} \rightarrow \mathbb{N}$, define SAT_{H} as follows.

$$
\mathrm{SAT}_{H} \stackrel{\text { def }}{=}\{\varphi 0 \underbrace{1 \cdots 1}_{n^{H(n)}}: \varphi \in \mathrm{SAT} \text { and }|\varphi|=n\}
$$

We define $H: \mathbb{N} \rightarrow \mathbb{N}$ such that SAT_{H} is the language L required in Theorem 1.6. For every $n \geqslant 1$, the value $H(n)$ is defined by Algorithm 1 below. Here \mathcal{M}_{i} is the DTM whose encoding is the binary representation of i.

```
Algorithm 1
Input: \(1^{n}\), where \(n \geqslant 1\).
Task: Compute \(1^{H(n)}\).
    for \(i=1, \ldots, \log \log (n)-1\) do
        Let \(\mathcal{M}_{i}\) be the \(i^{\text {th }}\) (1-tape) DTM.
        for all \(x \in\{0,1\}^{*}\) where \(|x| \leqslant \log n\) do
            Compute \(\mathrm{SAT}_{H}(x)\).
            Simulate \(\mathcal{M}_{i}\) on \(x\) in \(i|x|^{i}\) steps (using the UTM in Theorem 0.7).
        if the results in lines 4 and 5 agree on all \(x \in\{0,1\}^{*}\) where \(|x| \leqslant \log n\) then
            return \(i\).
    return \(\log \log n\).
```


Lemma 1.7

- Algorithm 1 runs in polynomial time and $\mathrm{SAT}_{H} \in \mathrm{NP}$.
- $\mathrm{SAT}_{H} \in \mathbf{P}$ if and only if $H(n)=O(1)$.
- $\mathrm{SAT}_{H} \notin \mathbf{P}$ and SAT_{H} is not $\mathbf{N P}$-complete.

4 TM with oracles

A TM \mathcal{M} with oracle access to a language K, denoted by \mathcal{M}^{K}, is a TM with a special tape called oracle tape and three special states $q_{\text {query }}, q_{\text {yes }}, q_{\text {no }}$. Each time it is in $q_{\text {query }}$, it moves to $q_{\text {yes }}$, if $w \in K$ and to q_{no}, if $w \notin K$, where w is the string found in the oracle tape. In other words, when it is in $q_{\text {query }}$, the machine can "query" the membership of the language K. Regardless of the choice of K, such query counts only as one step. We denote by $L\left(\mathcal{M}^{K}\right)$ the language accepted by \mathcal{M}^{K}.

For a language K, we define the classes \mathbf{P} and $\mathbf{N P}$ relativized to K as follows.

$$
\begin{aligned}
\mathbf{P}^{K} & \stackrel{\text { def }}{=}\left\{L: \text { there is a polynomial time DTM } \mathcal{M}^{K} \text { such that } L\left(\mathcal{M}^{K}\right)=L\right\} \\
\mathbf{N P}^{K} & \stackrel{\text { def }}{=}\left\{L: \text { there is a polynomial time NTM } \mathcal{M}^{K} \text { such that } L\left(\mathcal{M}^{K}\right)=L\right\}
\end{aligned}
$$

Theorem 1.8 (Baker, Gill, Solovay 1975) There is language A and B such that $\mathbf{P}^{A}=\mathbf{N P}^{A}$ and $\mathbf{P}^{B} \neq \mathbf{N P}^{B}$.

Proof. For a PSPACE-complete language A, we can show that $\mathbf{P}^{A}=\mathbf{N P}^{A}$.
To show the existence of B, we need the following notation. For a language $C \in\{0,1\}^{*}$, define unary $(C) \stackrel{\text { def }}{=}\left\{1^{n}\right.$: there is $w \in C$ with length $\left.n\right\}$. Obviously, for every $C \in\{0,1\}^{*}$, unary $(C) \in \mathbf{N P}^{C}$.

The language B will be defined as $B \stackrel{\text { def }}{=} \bigcup_{i \in \mathbb{N}} B_{i}$ where each B_{i} is a finite set defined inductively as follows. Each B_{i} is associated with an integer k_{i} such that $B_{i}=B \cap\{0,1\} \leqslant k_{i}$. Here $\{0,1\} \leqslant k_{1} \stackrel{\text { def }}{=}$ $\left\{w \in\{0,1\}^{*}:|w| \leqslant k_{i}\right\}$.

The base case is $B_{0}=\emptyset$ and $k_{0}=0$. For the induction step, B_{i+1} is defined as follows, where we assume an enumeration of all oracle DTM $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots$.

- Let $n=k_{i}+1$.
- Simulate oracle TM \mathcal{M}_{i+1} on 1^{n} within $2^{n} / 10$ steps.

During the simulation \mathcal{M}_{i+1} may query the oracle. If the query strings are of length $\leqslant k_{i}$, then answer according to B_{i}. For all the other query strings, answer "no."

- Let k_{i+1} be as follows.

$$
k_{i+1} \stackrel{\text { def }}{=} \begin{cases}n, & \text { if all the query strings has length } \leqslant k_{i} \\ m, & m \text { is the maximal length of the query strings with length } \geqslant k_{i}+1\end{cases}
$$

- If \mathcal{M}_{i+1} accepts 1^{n} within $2^{n} / 10$ steps, we set $B_{i+1} \stackrel{\text { def }}{=} B_{i}$.
- If \mathcal{M}_{i+1} does not accept 1^{n} within $2^{n} / 10$ steps, we set $B_{i+1} \stackrel{\text { def }}{=} B_{i} \cup\{w\}$, where $w \in\{0,1\}^{n}$ and w is not one of the query strings.

From the definition of B, we can show that unary $(B) \notin \mathbf{P}^{B}$.

Appendix

A coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.
Definition 1.9 Let K be a language.

- K is coNP-hard, if for every $L \in \operatorname{coNP}, L \leqslant_{p} K$.
- K is coNP-complete, if $K \in \mathbf{c o N P}$ and K is coNP-hard.

Note that for every language K, K is NP-complete if and only if its complement \bar{K} is coNPcomplete, where $\bar{K} \xlongequal{\text { def }} \Sigma^{*}-K$. Thus, $\overline{\text { SAT }} \stackrel{\text { def }}{=}\{\varphi: \varphi$ is not satisfiable $\}$ is coNP-complete.

Lesson 2: The class NL

Theme: Some classical results on the class NL.

We recall the notion of log-space reduction. Let $F: \Sigma^{*} \rightarrow \Sigma^{*}$ be a function. We say that F is computable in logarithmic space, if there is a 3-tape DTM \mathcal{M} such that on input word w, it works as follows.

- Tape 1 contains the input word w and its content never changes.
- There is a constant c such that \mathcal{M} uses only $c \log |w|$ space in tape 2 .
- The head in tape 3 can only "write" and move right, i.e., once it writes a symbol to a cell, the content of that cell will not change.

Tape 1 is called the input tape, tape 2 the work tape and tape 3 the output tape.
Definition 2.1 A language L is log-space reducible to another language K, denoted by $L \leqslant \log K$, if there is a function $F: \Sigma^{*} \rightarrow \Sigma^{*}$ computable in logarithmic space such that for every $w \in \Sigma^{*}$, $w \in L$ if and only if $F(w) \in K$.

Remark 2.2 The relation $\leqslant_{\log }$ is transitive in the sense that if $L_{1} \leqslant_{\log } L_{2}$ and $L_{2} \leqslant_{\log } L_{3}$, then $L_{1} \leqslant \log L_{3}$.

Definition 2.3 Let K be a language.

- K is $\mathbf{N L}$-hard, if for every language $L \in \mathbf{N L}, L \leqslant \log K$.
- K is $\mathbf{N L}$-complete, if $K \in \mathbf{N L}$ and K is $\mathbf{N L}$-hard.

Define the following language PATH.
PATH $\stackrel{\text { def }}{=}\{(G, s, t): G$ is directed graph and there is a path in G from vertex s to vertex $t\}$
Theorem 2.4 PATH is NL-complete.
Theorem 2.5 (Savitch 1970) NL \subseteq DSPACE $\left[\log ^{2} n\right]$.
To prove Theorem 2.5, it suffices to show that PATH $\in \operatorname{DSPACE}\left[\log ^{2} n\right]$. See Appendix A.
Theorem 2.6 (Immerman 1988 and Szelepcsényi 1987) NL = coNL.
To prove Theorem 2.6, we consider the complement language of PATH:
$\overline{\mathrm{PATH}} \stackrel{\text { def }}{=}\{(G, s, t): G$ is directed graph and there is no path in G from vertex s to vertex $t\}$
Note that $\overline{\text { PATH }}$ is coNL-complete. To prove Theorem 2.6 , it suffices to show that $\overline{\text { PATH }} \in \mathbf{N L}$. See Appendix B.

Appendix

A Proof of Theorem 2.5

Algorithm 1 below decides the language PATH.

```
Algorithm 1
Input: (G,s,t), where G is a directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is a path in G from s to t.
    Let n be the number of vertices in G
    ACCEPT iff CHECK}\mp@subsup{M}{G}{}(s,t,\lceil\operatorname{log}n\rceil)=\mathrm{ true.
```

It uses Procedure CHECK_{G} defined below.

${\text { Procedure } \text { CHECK }_{G}}$

Input: (u, v, k) where u and v are two vertices in G, and k is an integer $\geqslant 0$.
Task: Return true, if there is a path in G of length $\leqslant 2^{k}$ from u to v. Otherwise, return false.

```
    if \(k=0\) then
        return true iff \((u=v\) or \((u, v)\) is an edge in \(G)\).
    for all vertex \(x\) in \(G\) do
        \(b:=\operatorname{Check}_{G}(u, x, k-1)\).
        if \(b=\) true then
            \(b:=\operatorname{ChECK}_{G}(x, v, k-1)\).
            if \(b=\) true then
            return true.
    return false.
```

Note that when computing $\operatorname{CHECK}_{G}(u, x, k-1)$ and $\operatorname{CHECK}_{G}(x, v, k-1)$, Procedure CHECK_{G} can use the same space. Thus, it uses only $O(k \log n)$ space. Since k is initialized with $\lceil\log n\rceil$, Algorithm 1 uses $O\left(\log ^{2} n\right)$ space in total.

B Proof of Theorem 2.6

Consider the following algorithm.

```
Algorithm NO-PATH
Input: \((G, s, t)\) where \(G\) is directed graph and \(s\) and \(t\) are two vertices in \(G\).
Task: ACCEPT iff there is no path in \(G\) from \(s\) to \(t\).
    \(m:=\) the number of vertices in \(G\) reachable from \(s\).
    \{Note: This value \(m\) is computed with Procedure Count-Vertex \({ }_{G}\) below.\}
    for all vertex \(x\) in \(G\) do
        Guess if \(x\) is reachable from \(s\).
        if the guess is "yes" then
            \(m:=m-1\).
            Guess a path from \(s\) to \(x\).
            if it is not possible to guess such a path then REJECT.
            if there is such a path and \(x=t\) then REJECT.
    ACCEPT iff \(m=0\).
```

The number of vertices reachable from s can be computed with Procedure Count-VERTEX ${ }_{G}$ defined below.
$\overline{\text { Procedure }}$ Count-VERTEX $_{G}$
Input: u where u is a vertex in G.

Task: Return the number of vertices in G reachable from vertex u, where the number is written in binary form.
Let n be the number of vertices in G.
$m:=1+$ the outdegree of u.
\{Note: m is initialized with the number of vertices reachable from u in $\leqslant 1$ steps.\}
for $i=2, \ldots, n$ do
$m^{\prime}:=0$.
for all vertex x in G do
Guess if there is a path from u to x with length $\leqslant i$.
if the guess is "yes" then
Verify it by guessing such a path (of length $\leqslant i$).
$m^{\prime}:=m^{\prime}+1$.
if the guess is "no" then
Verify that indeed there is no such a path (of length $\leqslant i$).
$m:=m^{\prime}$.
\{Note: On each iteration, m is the number of vertices reachable from u in $\leqslant i$ steps.\}
return m

The verification in Line 12 above is done with the following procedure.

Procedure VERIFY $_{G}$

Input: (u, x, m, i) where u and x are vertices in $G, i \geqslant 2$ is an integer and m is the number of vertices in G reachable from u in $\leqslant i-1$ steps.
Task: Verify that x is not reachable from u in $\leqslant i$ steps.
$\ell:=m$.
for all vertex y in G do
Guess if there is a path from u to y with length $\leqslant i-1$.
if the guess is "yes" then
$\ell:=\ell-1$.
Guess a path (of length $\leqslant i-1$) from u to y.
Verify that the edge (y, x) does not exist in G.
Verification is complete iff $\ell=0$.
Note that if any of the verification in Lines 9 and 12 in Procedure Count-Vertex ${ }_{G}$ and Line 7 in Procedure Verify_{G} fails, the whole algorithm rejects immediately.

The correctness of Procedure Count-Vertex ${ }_{G}$ can be established by induction on i. The correctness of Algorithm No-path follows immediately from Count-Vertex ${ }_{G}$.

Lesson 3: The class PSPACE

Theme: Some classical results on the class PSPACE.

Definition 3.1 Let K be a language.

- K is PSPACE-hard, if for every language $L \in \operatorname{PSPACE}, L \leqslant_{p} K$.
- K is PSPACE-complete, if $K \in$ PSPACE and K is PSPACE-hard.

Quantified Boolean formulas (QBF) are formulas of the form:

$$
Q_{1} x_{1} Q_{2} x_{2} \cdots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)
$$

where each $Q_{i} \in\{\forall, \exists\}$ and $\varphi\left(x_{1}, \ldots, x_{n}\right)$ is a Boolean formula with variables x_{1}, \ldots, x_{n}.
The intuitive meaning of each Q_{i} is as follows.

- $\forall x \psi$ means that for all $x \in\{$ true, false $\}, \psi$ is true.
- $\exists x \psi$ means that there is $x \in\{$ true, false $\}$ such that ψ is true.

We define the problem TQBF:

TQBF	
Input:	A QBF φ.
Task:	Return true, if φ is true. Otherwise, return false.

As usual, it can be viewed as a language $\operatorname{TQBF} \stackrel{\text { def }}{=}\{\psi: \psi$ is a true QBF$\}$. Note also that the usual Boolean formula can be viewed as a QBF, where each Q_{i} is \exists. Thus, TQBF is a more general problem than SAT.

Theorem 3.2 (Stockmeyer and Meyer 1973) TQBF is PSPACE-complete.

Theorems 3.3 and 3.4 below are the polynomial space analog of Theorem 2.5 and 2.6 respectively. In fact, they can be easily generalized to the so called time and space constructible functions. See Appendix A.

Theorem 3.3 (Savitch 1970) NSPACE $\left[n^{k}\right] \subseteq \operatorname{DSPACE}\left[n^{2 k}\right]$.
Theorem 3.4 (Immerman 1988 and Szelepcsényi 1987) NSPACE $\left[n^{k}\right]=\operatorname{coNSPACE}\left[n^{k}\right]$.
Note that Theorem 3.3 implies PSPACE $=$ NPSPACE $=$ coNPSPACE .

Appendix

A Time and space constructible functions

Definition 3.5 Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be a function.

- We say that T is time constructible, if for every $n, T(n) \geqslant n$ and there is a DTM that on input 1^{n} computes $1^{T(n)}$ in time $O(T(n))$.
- We say that T is space constructible, if there is a DTM that on input 1^{n} computes $1^{T(n)}$ in space $O(T(n))$.

Intuitively, when we say that \mathcal{M} runs in time/space $O(T(n))$, where T is time/space constructible function, we can assume that on input word w, \mathcal{M} first "computes" the amount of time/space needed to decide w, before going on to process w.

Theorems 3.3 and 3.4 can be easily generalized to space constructible functions as follows.
Theorem 3.6 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be space constructible function such that $f(n) \geqslant \log n$, for every n.

- (Savitch 1970) $\operatorname{NsPACE}[f(n)] \subseteq \operatorname{DSPACE}\left[f(n)^{2}\right]$.
- (Immerman 1988 and Szelepcsényi 1987) $\operatorname{Nspace}[f(n)]=\operatorname{coNspace}[f(n)]$.

B Hardness via log space reduction

In our definition of hardness for NP, coNP and PSPACE, we require that the reduction is polynomial time reduction. It is also common to define hardness by insisting the reduction is \log-space reduction. That is, we can define K as NP-hard by insisting $L \leqslant \log K$, for every $L \in$ NP, rather than $L \leqslant_{p} K$. Similarly, for coNP and PSPACE.

Most NP-, coNP- and PSPACE-complete problems are known to remain complete even under log-space reduction, including SAT, 3-SAT and TQBF.

- SAT and 3-SAT are NP-complete under log-space reduction.
- TQBF is PSPACE-complete under log-space reduction.

Lesson 4: Alternating Turing machines

Theme: The notion of alternating Turing machine and its relation with DTM.

1 Definition

A 1-tape alternating Turing machine (ATM) is a system $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, U, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}, \delta\right\rangle$, where each component is as follows.

- $\Sigma=\{0,1\}$ and $\Gamma=\{0,1, \sqcup\}$ are the input and tape alphabets, respectively.
- Q is a finite set of states.
- $U \subseteq Q$ is a finite subset of Q.
- $q_{0}, q_{\text {acc }}, q_{\text {rej }}$ are the initial state, accepting state and rejecting state, respectively.
- $\delta \subseteq\left(Q-\left\{q_{\text {acc }}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \times Q \times \Gamma \times\{$ Left, Right $\}$.

Note that ATM is very much like NTM, except that it has one extra component U. The states in U are called universal states, and the states in $Q-U$ are called existential states. As in DTM/NTM, for convenience, we assume that the tape is 2 -way infinite.

The notions of initial/halting/accepting/rejecting configuration are defined similarly as in NTM/DTM. A configuration C is called existential/universal configuration, if the the state in C is an existential/universal state. The notion of "one step computation" $C \vdash C^{\prime}$ for ATM is also similar to the one for DTM/NTM. When $C \vdash C^{\prime}$, we say that C^{\prime} is one of the next configuration of C (w.r.t. \mathcal{M}).

On input word w, the run of \mathcal{M} on w is a tree T where each node in the tree is labelled with a configuration of \mathcal{M} according to the following rules.

- The root node of T is labelled with the initial configuration of \mathcal{M} on w.
- Every other node x in T is labelled as follows.

If x is labelled with a configuration C and C_{1}, \ldots, C_{n} are all the next configurations of C, then x has n children y_{1}, \ldots, y_{n} labelled with C_{1}, \ldots, C_{n}, respectively.

Note that if x is labelled with C that does not have next configuration, then it is a leaf node, i.e., it does not have any children.

Let T be the run of \mathcal{M} on w and let x be a node in T. We say that x leads to acceptance, if the following holds.

- x is a leaf node labelled with an accepting configuration.
- If x is labelled with an existential configuration, then one of its children leads to acceptance.
- If x is labelled with a universal configuration, then all of its children lead to acceptance.

We say that T is accepting run, if its root node leads to acceptance. The ATM \mathcal{M} accepts w, if the run of \mathcal{M} on w is accepting run. As before, $L(\mathcal{M}) \stackrel{\text { def }}{=}\{w: \mathcal{M}$ accepts $w\}$.

Note that NTM is simply ATM where all the states are existential, and DTM is simply NTM where every configuration (except the accepting/rejecting configuration) has exactly one next configuration. The generalization of ATM to multiple tapes is straightforward.

2 Time and space complexity for ATM

Let \mathcal{M} be a ATM, $w \in \Sigma^{*}, t \in \mathbb{N}$ and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function.

- \mathcal{M} decides w in time t (or, in t steps), if the run of \mathcal{M} on w has depth at most t.
- \mathcal{M} decides w in space t (or, uses t cells/space), if in the run of \mathcal{M} on w, every node is labelled with configuration of length t.
- \mathcal{M} runs in time/space $O(f(n))$, if there is $c>0$ such that for sufficiently long word w, \mathcal{M} decides w in time/space $c \cdot f(|w|)$.
- \mathcal{M} decides a language L in time $/$ space $O(f(n))$, if \mathcal{M} runs in time/space $O(f(n))$ and $L(\mathcal{M})=L$.
- $\operatorname{Atime}[f(n)] \stackrel{\text { def }}{=}\{L$: there is ATM \mathcal{M} that decides L in time $O(f(n))\}$.
- Aspace $[f(n)] \stackrel{\text { def }}{=}\{L$: there is ATM \mathcal{M} that decides L in space $O(f(n))\}$.

Analoguous to the DTM/NTM, we can define the classes of languages accepted by ATM run in algorithmic/polynomial/exponential time/space.

$$
\begin{aligned}
& \text { AL } \stackrel{\text { def }}{=}\{L: \text { there is ATM } \mathcal{M} \text { that decides } L \text { in space } O(\log n)\} \\
& \text { AP } \stackrel{\text { def }}{=} \\
& \text { APSPACE } \stackrel{\text { def }}{=} \bigcup_{f(n)=\operatorname{poly}(n)} \operatorname{ATIME}[f(n)] \\
& \text { AEXP } \stackrel{\text { def }}{=} \\
& \bigcup_{f(n)=\operatorname{poly}(n)} \operatorname{ASPACE}[f(n)] \\
& f(n)=\operatorname{poly}(n)
\end{aligned} \operatorname{ATIME[2^{f(n)}]}
$$

The following lemma links time/space complexity classes for ATM with those for DTM.
Lemma 4.1 Let $T: \mathbb{N} \rightarrow \mathbb{N}$ and $S: \mathbb{N} \rightarrow \mathbb{N}$ such that $T(n) \geqslant n$ and $S(n) \geqslant \log n$, for every n.
(a) $\operatorname{Atime}[T(n)] \subseteq \operatorname{Dspace}[T(n)]$.
(b) $\operatorname{Dspace}[S(n)] \subseteq \operatorname{Atime}\left[S(n)^{2}\right]$.
(c) $\operatorname{Aspace}[S(n)] \subseteq \operatorname{Dtime}\left[2^{O(S(n))}\right]$.
(d) $\operatorname{Dtime}[T(n)] \subseteq \operatorname{Aspace}[\log T(n)]$.

Proof. (a) and (c) is by straightforward simulation of ATM with DTM. (b) is similar to the proof of Savitch's theorem. (d) is similar to the proof of Theorem 4.3 below, i.e., by viewing the computation of DTM as a boolean circuit.

Theorem 4.2 (Chandra, Kozen, Stockmeyer 1981)

- $\mathrm{AL}=\mathrm{P}$.
- $\mathrm{AP}=\mathrm{PSPACE}$.
- APSPACE = EXP.
- AEXP = EXPSPACE
-

Appendix

A P-complete languages

Boolean circuits. Let $n \in \mathbb{N}$, where $n \geqslant 1$. An n-input Boolean circuit C is a directed acyclic graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no outgoing edge).

The source vertices are labelled with x_{1}, \ldots, x_{n}. The non-source vertices, called gates, are labelled with one of \wedge, \vee, \neg. The vertices labelled with \wedge and \vee have two incoming edges, whereas the vertices labelled with \neg have one incoming edge. The size of C, denoted by $|C|$ is the number of vertices in C.

On input $w=x_{1} \cdots x_{n}$, where each $x_{i} \in\{0,1\}$, we write $C(w)$ is the output of C on w, defined as interpretating \wedge, \vee, \neg in the natural way and 0 and 1 as false and true, respectively.
(Boolean) straight line programs. It is sometimes more convenient to view a boolean circuit a straight line program. The following is an example of straight line program, where the input is $w=x_{1} \cdots x_{n}$.

$$
\begin{array}{ll}
1: & p_{1}:=x_{1} \wedge x_{3} . \\
2: & p_{2}:=\neg x_{4} . \\
3: & p_{3}:=p_{1} \vee p_{2} . \\
\vdots & \\
\ell: & p_{\ell}:=p_{i} \wedge p_{j} .
\end{array}
$$

$$
\vdots
$$

Intuitively, straight line programs are programs without if branch and while loop, hence, the name "straight line" programs. It is assumed that such program always outputs the value in the variable in the last line. In our example above, it outputs the value of variable p_{ℓ}.

Define the following problem.

CIRCUIT-EVAL

Input: An n input boolean circuit C and $w \in\{0,1\}^{n}$.
Task: Output $C(w)$.
It can also be defined as the language CIRCUIT-EVAL $\stackrel{\text { def }}{=}\{(C, w): C(w)=1\}$.
For our proof of Theorem 4.3 below, it is also convenient to assume that vertices labelled with \wedge and \vee can have more than 2 incoming edges.

Theorem 4.3 CIRCUIT-EVAL is \mathbf{P}-complete via log-space reductions.
Proof. Follows the reduction for the NP-completeness of SAT.

Lesson 5: The polynomial hierarchy and the complexity classes for counting

Theme: The polynomial time hierarchy and the complexity classes for counting problems.

1 The polynomial hierarchy

For every integer $i \geqslant 1$, the class $\boldsymbol{\Sigma}_{i}^{p}$ is defined as follows. A language $L \subseteq\{0,1\}^{*}$ is in $\boldsymbol{\Sigma}_{i}^{p}$, if there is a polynomial $q(n)$ and a polynomial time DTM \mathcal{M} such that for every $w \in\{0,1\}^{*}$, $w \in L$ if and only if the following holds.

$$
\begin{equation*}
\exists y_{1} \in\{0,1\}^{q(|w|)} \forall y_{2} \in\{0,1\}^{q(|w|)} \cdots Q y_{i} \in\{0,1\}^{q(|w|)} \mathcal{M} \text { accepts }\left(w, y_{1}, \ldots, y_{i}\right) \tag{1}
\end{equation*}
$$

Here $Q=\exists$, if i is odd and $Q=\forall$, if i is even.
The class Π_{i}^{p} is defined as above, but the sequence of quantifiers in (1) starts with \forall. Alternatively, it can also be defined as $\boldsymbol{\Pi}_{i}^{p} \stackrel{\text { def }}{=}\left\{\bar{L}: L \in \boldsymbol{\Sigma}_{i}^{p}\right\}$. Note that $\mathbf{N P}=\boldsymbol{\Sigma}_{1}^{p}$ and $\mathbf{c o N P}=\boldsymbol{\Pi}_{1}^{p}$.

Remark 5.1 The class $\boldsymbol{\Sigma}_{i}^{p}$ can also be defined as follows. A language L is in $\boldsymbol{\Sigma}_{i}^{p}$, if there is a polynomial time ATM \mathcal{M} that decides L such that for every input word $w \in\{0,1\}^{*}$, the run of \mathcal{M} on w can be divided into i layers. Each layer consists of nodes of the same depth in the run. (Recall that the run of an ATM is a tree.) In the first layer all nodes are labeled with existential configurations, in the second layer with universal configurations, and so on. It is not difficult to show that this definition is equivalent to the one above.

The polynomial time hierarchy (or, in short, polynomial hierarchy) is defined as the following class.

$$
\mathbf{P H} \stackrel{\text { def }}{=} \bigcup_{i=1}^{\infty} \boldsymbol{\Sigma}_{i}^{p}
$$

Note that $\mathbf{P H} \subseteq \mathbf{P S P A C E}$.
It is conjectured that $\boldsymbol{\Sigma}_{1}^{p} \subsetneq \boldsymbol{\Sigma}_{2}^{p} \subsetneq \boldsymbol{\Sigma}_{3}^{p} \subsetneq \cdots$. In this case, we say that the polynomial hierarchy does not collapse. We say that the polynomial hierarchy collapses, if there is i such that $\mathbf{P H}=\boldsymbol{\Sigma}_{i}^{p}$, in which case we also say that the polynomial hierarchy collapses to level i.

We define the notion of hardness and completeness for each $\boldsymbol{\Sigma}_{i}^{p}$ as follows. For $i \geqslant 1$, a language K is $\boldsymbol{\Sigma}_{i}^{p}$-hard, if for every $L \in \boldsymbol{\Sigma}_{i}^{p}, L \leqslant_{p} K$. It is $\boldsymbol{\Sigma}_{i}^{p}$-complete, if it is in $\boldsymbol{\Sigma}_{i}^{p}$ and it is $\boldsymbol{\Sigma}_{i}^{p}$-hard. The same notion can be defined analoguously for $\mathbf{P H}$ and each $\boldsymbol{\Pi}_{i}^{p}$.

Define the language Σ_{i}-SAT as consisting of true QBF of the form:

$$
\exists \bar{x}_{1} \forall \bar{x}_{2} \cdots Q \bar{x}_{i} \varphi\left(\bar{x}_{1}, \ldots, \bar{x}_{i}\right)
$$

where $\varphi\left(\bar{x}_{1}, \ldots, \bar{x}_{i}\right)$ is quantifier-free Boolean formula and $Q=\exists$, if i is odd, and $Q=\forall$, if i is even. Here $\bar{x}_{1}, \ldots, \bar{x}_{i}$ are all vectors of boolean variables. In other words, Σ_{i}-SAT is a subset of TQBF where the number of quantifier alternation is limited to $(i-1)$. The language Π_{i}-SAT is defined analoguously with the starting quantifiers being \forall.

Theorem 5.2

- For every $i \geqslant 1, \Sigma_{i}$-SAT is $\boldsymbol{\Sigma}_{i}^{p}$-complete and Π_{i}-SAT is $\boldsymbol{\Pi}_{i}^{p}$-complete.
- If $\boldsymbol{\Sigma}_{i}^{p}=\boldsymbol{\Pi}_{i}^{p}$ for some $i \geqslant 1$, then the polynomial hierarchy collapses.
- If there is language that is $\mathbf{P H}$-complete, then the polynomial hierarchy collapses.

2 Complexity classes for counting problems

2.1 The class FP

We denote by FP the class of functions $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ computable by polynomial time DTM. Here the convention is that a natural number is always represented in binary form. So, when we say that a DTM \mathcal{M} computes a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$, on input word w, the output of \mathcal{M} on w is $f(w)$ in the binary representation.

Let $\sharp C Y C L E$ be the following problem.

$\sharp C Y C L E$	
Input:	A directed graph G.
Task:	Output the number of cycles in G.

As before, $\sharp C Y C L E$ can also be viewed as a function. Note also that the number of cycles in a graph with n vertices is at most exponential in n, thus, its binary representation only requires polynomially many bits.

Theorem 5.3 If $\sharp C Y C L E$ is in $\mathbf{F P}$, then $\mathbf{P}=\mathbf{N P}$.
Proof. Let G be a (directed) graph with n vertices. We construct a graph G^{\prime} obtained by replacing every edge (u, v) in G with the following gadget:

Note that every simple cycle in G of length ℓ becomes $\left(2^{m}\right)^{\ell}$ cycles in G^{\prime}. Now, let $m \stackrel{\text { def }}{=} n \log n$.
It is not difficult to show that G has a hamiltonian cycle (i.e., a simple cycle of length n) if and only if G^{\prime} has more than $n^{\left(n^{2}\right)}$ cycles. So, if $\sharp C Y C L E \in \mathbf{F P}$, then checking hamiltonian cycle can be done is in \mathbf{P}.

Note that checking whether a graph has a cycle itself can be done in polynomial time. However, as Theorem 5.3 above states, it is unlikely that counting the number of cycles can be done in polynomial time.

2.2 The class $\sharp \mathrm{P}$

Definition 5.4 A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in $\sharp \mathbf{P}$, if there is a polynomial $q(n)$ and a polynomial time DTM \mathcal{M} such that for every word $w \in\{0,1\}^{*}$, the following holds.

$$
f(w)=\mid\left\{y: \mathcal{M} \text { accepts }(w, y) \text { and } y \in\{0,1\}^{q(|w|)}\right\} \mid
$$

Alternatively, we can say that f is in $\sharp \mathbf{P}$, if there is a polynomial time NTM \mathcal{M} such that for every word $w \in\{0,1\}^{*}, f(w)=$ the number of accepting runs of \mathcal{M} on w.

For a function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$, the language associated with the function f, denoted by O_{f}, is defined as $O_{f} \stackrel{\text { def }}{=}\left\{(w, i)\right.$: the $i^{\text {th }}$ bit of $f(w)$ is 1$\}$. When we say that a TM \mathcal{M} has oracle access to a function f, we mean that it has oracle access to the language O_{f}.

We define $\mathbf{F} \mathbf{P}^{f}$ as the class of functions $g:\{0,1\}^{*} \rightarrow \mathbb{N}$ computable by a polynomial time DTM with oracle access to f.

Definition 5.5 Let $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ be a function.

- f is $\sharp \mathbf{P}$-hard, if $\sharp \mathbf{P} \subseteq \mathbf{F} \mathbf{P}^{f}$, i.e., every function in $\sharp \mathbf{P}$ is computable by a polynomial time DTM with oracle access to f.
- f is $\sharp \mathbf{P}$-complete, if $f \in \sharp \mathbf{P}$ and f is $\sharp \mathbf{P}$-hard.

Let \sharp SAT be the following problem.

\sharp SAT	
Input:	A boolean formula φ.
Task:	Output the number of satisfying assignments for φ.

As before, the output numbers are to be written in binary form. We can also view \sharp SAT as a function \sharp SAT : $\{0,1\}^{*} \rightarrow \mathbb{N}$, where $\sharp \operatorname{SAT}(\varphi)=$ the number of satisfying assignment for φ.

Theorem $5.6 \sharp \mathrm{SAT}$ is $\sharp \mathbf{P}$-complete.
Proof. Cook-Levin reduction (to prove the NP-hardness of SAT) is parsimonious.
There are usually two ways to prove a certain function is $\sharp \mathbf{P}$-hard, as stated in Remark 5.7 and 5.8 below.

Remark 5.7 Let f_{1} and f_{2} be functions from $\{0,1\}^{*}$ to \mathbb{N}. Suppose L_{1} and L_{2} be languages in NP such that f_{1} and f_{2} are the functions for the number of certificates for L_{1} and L_{2}, respectively. That is, for every word $w \in\{0,1\}^{*}$,

$$
f_{i}(w)=\text { the number of certificates of } w \text { in } L_{i}, \quad \text { for } i=1,2
$$

If f_{1} is $\sharp \mathbf{P}$-hard and there is a parsimonious (polynomial time) reduction from L_{1} to L_{2}, then f_{2} is $\sharp \mathbf{P}$-hard.

Remark 5.8 Let f and g be two functions from $\{0,1\}^{*}$ to \mathbb{N}. If f is $\sharp \mathbf{P}$-hard and $f \in \mathbf{F P}^{g}$, then g is $\sharp \mathbf{P}$-hard.

Since there is a parsimonious reduction from SAT to 3-SAT, by Theorem 5.6 and Remark 5.7, we have the following corollary.

Corollary $5.9 \sharp 3$-SAT is $\sharp \mathbf{P}$-complete.
Corollary 5.9 can also be proved by showing \sharp SAT $\in \mathbf{F P}^{\sharp 3-S A T}$.

Lesson 6: Computing permanent

Theme: The complexity of computing the permanent of a matrix.

1 Definitions

For an integer $n \geqslant 1$, let $[n]=\{1, \ldots, n\}$. The permanent of an $n \times n$ matrix A over integers is defined as:

$$
\operatorname{per}(A) \stackrel{\text { def }}{=} \sum_{\sigma} \prod_{i=1}^{n} A_{i, \sigma(i)}
$$

where σ ranges over all permutation on $[n]$. Here $A_{i, j}$ denotes the entry in row i and column j in matrix A.

Consider the following problem.

PERM	
Input:	A square matrix A over integers.
Task:	Output the permanent of A.

We denote it by 0|1-PERM, when the entries in the input matrix A are restricted to 0 or 1 .
Theorem 6.1 (Valiant 1979) 0|1-PERM is $\sharp \mathbf{P}$-complete.
To show that $0 \mid 1$-PERM is in $\sharp \mathbf{P}$, consider the following algorithm.

```
Input: A 0-1 matrix A.
    : Guess a permutation \sigma on [n], i.e., for each }i\in[n],\mathrm{ guess a value }\mp@subsup{v}{i}{}\in[n]\mathrm{ .
    If the guessed }\sigma\mathrm{ is not a permutation, REJECT.
    Compute the value \}\mp@subsup{\prod}{i=1}{n}\mp@subsup{A}{i,\sigma(i)}{}\mathrm{ .
    ACCEPT if and only if the value is 1.
```

It is obvious that on input A, the number of accepting runs is the same as $\operatorname{per}(A)$.

2 Combinatorial view of permanent

Let $G=(V, E, w)$ be a complete directed graph, i.e., $E=V \times V$, and each edge (u, v) has a weight $w(u, v) \in \mathbb{Z}$. We write a (simple) cycle as a sequence $p=\left(u_{1}, \ldots, u_{\ell}\right)$, and its weight is defined as:

$$
w(p) \stackrel{\text { def }}{=} w\left(u_{1}, u_{2}\right) \cdot w\left(u_{2}, u_{3}\right) \cdot \ldots \cdot w\left(u_{\ell-1}, u_{\ell}\right) \cdot w\left(u_{\ell}, u_{1}\right)
$$

A loop (u, u) is considered a cycle.
A cycle cover of G is a set $R=\left\{p_{1}, \ldots, p_{k}\right\}$ of pairwise disjoint cycles such that for every vertex $u \in V$, there is a cycle $p_{j} \in R$ such that u appears in p_{j}. The weight R is defined as:

$$
w(R) \stackrel{\text { def }}{=} \prod_{p_{j} \in R} w\left(C_{j}\right)
$$

Note that a cycle or a cycle cover can also be viewed as a set of edges.
Assuming that the vertices in G are $\{1, \ldots, n\}$, let A be the adjacency matrix of G, i.e., A is an $(n \times n)$ matrix over \mathbb{Z} such that $A_{i, j}=w(i, j)$.

A permutation $\sigma=\left(d_{1,1}, \ldots, d_{1, k_{1}}\right), \ldots,\left(d_{l, 1}, \cdots, d_{l, k_{l}}\right)$ on $[n]$ can be viewed as a cycle cover whose weight is exactly the value $\prod_{i \in[n]} A_{i, \sigma(i)}$. Thus, we have the equation:

$$
\operatorname{per}(A)=\sum_{R \text { is a cycle cover of } G} w(R)
$$

3 Reduction from 3-SAT to cycle cover

In this section we will show how to encode 3-SAT as the cycle cover problem.

3.1 Overview of the main idea

Let Ψ be a formula in 3-CNF. Let x_{1}, \ldots, x_{n} be the variables and C_{1}, \ldots, C_{m} be the clauses. We will construct a complete directed graph $G=(V, E, w)$, where the weight of each edge can be arbitrary integer and every boolean assignment $\phi:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$ is associated with a set F_{ϕ} of cycle covers of G such that the following holds.

- For two different assignments ϕ_{1}, ϕ_{2}, the sets $F_{\phi_{1}}$ and $F_{\phi_{2}}$ are disjoint.
- If ϕ is a satisfying assignment for Ψ, the total weight of cycle covers in F_{ϕ} is $4^{3 m}$, i.e.,

$$
\sum_{R \in F_{\phi}} w(R)=4^{3 m}
$$

- If ϕ is not a satisfying assignment for Ψ, the total weight of cycle covers in F_{ϕ} is 0 , i.e.,

$$
\sum_{R \in F_{\phi}} w(R)=0
$$

- The total weight of cycle covers not in any F_{ϕ} is 0 , i.e.,

$$
\sum_{R \notin F_{\phi} \text { for any } \phi} w(R)=0
$$

If A is the adjacency matrix of G, it is clear that:

$$
\operatorname{per}(A)=4^{3 m} \times(\text { the number of satisfying assignment for } \Psi)
$$

3.2 The construction of the graph G

In the following we will draw an edge with a label indicating its weight. If the label is missing, it means the weight is 1 . When an edge is not drawn, it means the weight is 0 .

Variable gadget. For each variable x_{i}, we have the following "variable gadget":

The upper edges, i.e., $\left(a_{i, 1}, a_{i, 2}\right), \ldots,\left(a_{i, m}, a_{i, m+1}\right)$, are called the external "true" edges of x_{i}, and the lower edges, i.e., $\left(b_{i, 1}, b_{i, 2}\right), \ldots,\left(b_{i, m}, b_{i, m+1}\right)$, the external "false" edges of x_{i}.

Clause gadget. For each clause C_{j}, we have the following "clause gadget":

The "outer" edges $\left(d_{j}, e_{j}\right),\left(e_{j}, f_{j}\right),\left(f_{j}, d_{j}\right)$ are intended to represent the literals in C_{j}. If $\ell_{1}, \ell_{2}, \ell_{3}$ are the literals in C_{j}, then their associated edges are $\left(d_{j}, e_{j}\right),\left(e_{j}, f_{j}\right),\left(f_{j}, d_{j}\right)$, respectively. To avoid clutter, we will call those edges ℓ_{1}-edge, ℓ_{2}-edge and ℓ_{3}-edge, respectively.

The XOR operator. We also have the "XOR operator" between two edges $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$:

Definition 6.2 Let H be a graph, and let $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ are two non-adjacent edges in H.

- For a cycle cover R of H, we say that R respects the property $\left(u_{1}, u_{2}\right) \oplus\left(v_{1}, v_{2}\right)$, if R contains exactly one of $\left(u_{1}, u_{2}\right)$ or $\left(v_{1}, v_{2}\right)$.
- Let H^{\prime} denotes the graph obtained from H by replacing the edges $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ with the edges in the XOR operator above.
A cycle cover R^{\prime} of H^{\prime} is an associated cycle cover of R, if it satisfies the following condiiton.
- If R contains (u_{1}, u_{2}), then R^{\prime} contains a path from u_{1} to u_{2}.
- If R contains (v_{1}, v_{2}), then R^{\prime} contains a path from v_{1} to v_{2}.
$-R \backslash\left\{\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)\right\} \subseteq R^{\prime}$.

Lemma 6.3 Let H, H^{\prime}, R and $\left(u_{1}, u_{2}\right),\left(v_{1}, v_{2}\right)$ be as in Definition 6.2. Then, the following holds.

$$
\sum_{R^{\prime} \text { is associated with } R} w\left(R^{\prime}\right)= \begin{cases}4 w(R), & \text { if } R \text { respects }\left(u_{1}, u_{2}\right) \oplus\left(v_{1}, v_{2}\right) \\ 0, & \text { otherwise }\end{cases}
$$

Constructing the graph G. The graph G is defined as the disjoint union of all the variable and clause gadgets and the following additional edges to connect them: For every clause C_{j}, for every literal ℓ in C_{j}, if $\ell=x_{i}$, we "connect" the ℓ-edge in the clause gadget of C_{j} with the edge $\left(a_{i, j}, a_{i, j+1}\right)$ via the XOR operator; and if $\ell=\neg x_{i}$, we "connect" it with the edge ($b_{i, j}, b_{i, j+1}$).

For an assignment $\phi:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$, we say that a cycle cover R is associated with ϕ, if the following holds for every variable x_{i}.

- If $\phi\left(x_{i}\right)=1$, the cycle $\left(s_{i}, a_{i, 1}, \ldots, a_{i, m+1}, t_{i}\right)$ is in R.
- If $\phi\left(x_{i}\right)=0$, the cycle $\left(s_{i}, b_{i, 1}, \ldots, b_{i, m+1}, t_{i}\right)$ is in R.

Lemma 6.4 For every assignment $\phi:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1\}$, the following holds.

$$
\sum_{R \text { is associated with } \phi} w(R)= \begin{cases}4^{3 m}, & \text { if } \phi \text { is satisfying assignment for } \Psi \\ 0, & \text { if } \phi \text { is not }\end{cases}
$$

Combining Lemmas 6.3 and 6.4 it is immediate that the following holds.

$$
\operatorname{per}(A)=4^{3 m} \times(\text { the number of satisfying assignments for } \Psi)
$$

Here A is the adjacency matrix of G.

4 Reduction from matrices over \mathbb{Z} to matrices over $\{0,1\}$

Reduction to matrices over integers of the form $-2^{k}, 0$ or 2^{k}. For each edge (u, v) with weight $2^{k}+2^{l}$, we can replace it with 2 "parallel" edges with weights 2^{k} and 2^{l}, respectively.

Reduction to matrices over integers of the form $-1,0$ or 1 . For each edge (u, v) with weight 2^{k}, we can replace it with k "series" edges, each with weights 2 .

Each weight 2 edge can be further reduced to weight 1 edge as above.

Reduction to matrices over $\{0,1\}$, but on modular arithmetic. The permanent of an $n \times n$ matrix A over $\{-1,0,1\}$ can only in between $-n!$ and $n!$. Let $m=n^{2}$. Since $2^{m}+1>2 n!$, it is sufficient to compute $\operatorname{per}(A)$ in $\mathbb{Z}_{2^{m}+1}$. Since $-1 \equiv 2^{m}\left(\bmod 2^{m}+1\right)$, we can replace each -1 with 2^{m}, which can then be reduced to 1 as above.

5 Putting all the pieces together

Putting together all the pieces, we design a polynomial time algorithm to compute $\sharp 3$-SAT (with oracle access to language $O_{\text {per }}$, i.e., the language associated with permanent) . On input 3-CNF formula Ψ, do the following.

- Let n and m be the number of variables and clauses in Ψ.
- Construct a matrix A over $\{-1,0,1\}$ such that $\operatorname{per}(A)$ is $4^{3 m}$ times the number of satisfying assignments for Ψ.
- Let m be an integer for which we can compute $\operatorname{per}(A)$ modulo $2^{m}+1$.
- Let A^{\prime} be the matrix obtained by replacing every -1 in A with 2^{m}.
- Compute $\operatorname{per}\left(A^{\prime}\right)$ by querying the oracle on each bit.
- Let Z be the remainder of $\operatorname{per}\left(A^{\prime}\right)$ divided by $2^{m}+1$.
- Divide Z by $4^{3 m}$, and output it.

Lesson 7: Boolean circuits part. 1

Theme: Some classical results on boolean circuits.

Let $n \in \mathbb{N}$, where $n \geqslant 1$. An n-input Boolean circuit C is a directed acyclic graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no outgoing edge).

The source vertices are labelled with x_{1}, \ldots, x_{n}. The non-source vertices, called gates, are labelled with one of \wedge, \vee, \neg. The vertices labelled with \wedge and \vee have two incoming edges, whereas the vertices labelled with \neg have one incoming edge. The size of C, denoted by $|C|$, is the number of vertices in C.

On input $w=x_{1} \cdots x_{n}$, where each $x_{i} \in\{0,1\}$, we write $C(w)$ to denote the output of C on w, where \wedge, \vee, \neg are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as fan-in and fan-out, respectively. In our definition above, we require fan-in 2 .

- A circuit family is a sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ such that every C_{n} has input n inputs and a single output.
To avoid clutter, we write $\left\{C_{n}\right\}$ to denote a circuit family.
- We say that $\left\{C_{n}\right\}$ decides a language L, if for every $n \in \mathbb{N}$, for every $w \in\{0,1\}^{n}, w \in L$ if and only if $C_{n}(w)=1$.
- We say that $\left\{C_{n}\right\}$ is of size $T(n)$, where $T: \mathbb{N} \rightarrow \mathbb{N}$ is a function, if $\left|C_{n}\right| \leqslant T(n)$, for every $n \in \mathbb{N}$.

We define the following class.

$$
\mathbf{P}_{/ \text {poly }} \stackrel{\text { def }}{=}\left\{L: L \text { is decided by }\left\{C_{n}\right\} \text { of size } q(n) \text { for some polynomial } q(n)\right\}
$$

That is, the class of languages decided by a circuit family of polynomial size.
Remark 7.1 It is not difficult to show that every unary language L is in $\mathbf{P}_{\text {/poly }}$. Thus, $\mathbf{P}_{\text {/poly }}$ contains some undecidable language.

Definition 7.2 A circuit family $\left\{C_{n}\right\}$ is \mathbf{P}-uniform, if there is a polynomial time DTM that on input 1^{n}, output the description of the circuit C_{n}.

Theorem 7.3 A language L is in \mathbf{P} if and only if it is decided by a \mathbf{P}-uniform circuit family.
Theorem 7.4 (Karp and Lipton 1980) If $\mathbf{N P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{P H}=\mathbf{\Sigma}_{2}^{p}$.
Theorem 7.5 (Meyer 1980) If $\mathbf{E X P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{E X P}=\mathbf{\Sigma}_{2}^{p}$.
Theorem 7.6 (Shannon 1949) For every $n>1$, there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit of size $2^{n} /(10 n)$.

The classes NC and AC. For a circuit C, the depth of C is the length of the longest directed path from an input vertex to the output vertex. For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that a circuit family $\left\{C_{n}\right\}$ has depth $T(n)$, if for every n, the depth of C_{n} is $\leqslant T(n)$.

For every i, the classes $\mathbf{N C}^{i}$ and $\mathbf{A C}^{i}$ are defined as follows.

- A language L is in NC^{i}, if there is $f(n)=$ poly (n) such that L is decided by a circuit family of size $f(n)$ and depth $O\left(\log ^{i} n\right)$.
- The class $\mathbf{A C}^{i}$ is defined analogously, except that gates in the circuits are allowed to have unbounded fan-in.

The classes NC and AC are defined as follows.

$$
\mathbf{N C} \stackrel{\text { def }}{=} \bigcup_{i \geqslant 0} \mathbf{N C}^{i} \quad \text { and } \quad \mathbf{A C} \stackrel{\text { def }}{=} \bigcup_{i \geqslant 0} \mathbf{A C}^{i}
$$

Note that $\mathbf{N C}^{i} \subseteq \mathbf{A C}^{i} \subseteq \mathbf{N C}^{i+1}$.

[^0]
Lesson 8: Boolean circuits part. $2^{\text {(}}$

Theme: Switching lemma and that parity function is not in $\mathbf{A C}^{0}$.

1 Definitions

In the following we will consider circuits with unbounded fan-in. We will often use the terms "boolean formula" and "boolean function" interchangeably. Recall that a literal is either a (boolean) variable or its negation.

A term is a conjunction of some literals. The length of a term is the number of literals in it. A k-term is a term of length k. A formula is a DNF formula if it is a disjunction of terms. It is k-DNF, if all its terms have length at most k.

Decision tree. Let F be a boolean function with variables x_{1}, \ldots, x_{n}. A decision tree of F is a tree constructed inductively as follows.

- If F already evaluates to a constant 0 or 1 , the decision tree has only one node labelled with 0 or 1 , respectively.
- If F is not a constant, its decision tree has a root with two children, where the left and right children are decision trees for $F\left[x_{1} \mapsto 0\right]$ and $F\left[x_{1} \mapsto 1\right]$, respectively.
Here $F\left[x_{1} \mapsto b\right]$ denotes the resulting formula obtained by assigning x_{1} with b.
Note that a decision tree depends on the ordering of the variables x_{1}, \ldots, x_{n}.

Canonical decision tree for DNF formulas. Let $F=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$ be a DNF formula, i.e., each C_{i} is a term. The canonical decision tree of F, denoted by $\mathcal{T}(F)$, is the decision tree obtained with the variables being ordered as follows: All the variables in C_{1} appear first, followed by all the variables in C_{2} (which haven't appeared yet), and so on. Let depth $(\mathcal{T}(F))$ denote the depth of the canonical decision tree of F.

Restriction. Let F be a formula with variables x_{1}, \ldots, x_{n}. A restriction (on x_{1}, \ldots, x_{n}) is a function $\rho:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1, *\}$. Intuitively, $\rho\left(x_{i}\right)=*$ means variable x_{i} is not assigned. We denote by $\left.F\right|_{\rho}$ the resulting formula where we assign the variables in F according to ρ. Note that if the formula F is DNF, the formula $\left.F\right|_{\rho}$ is also DNF. For $\ell \leqslant n, \mathcal{R}_{n}^{\ell}$ denotes the set of restrictions (on n variables) where exactly ℓ variables are unassigned.

For two restrictions ρ_{1} and ρ_{2} whose sets of assigned variables are disjoint, we denote by $\rho_{1} \rho_{2}$ the restriction obtained by combining both restrictions. That is, for every variable x, if x is assigned according to ρ_{1} (or ρ_{2}), then $\rho_{1} \rho_{2}$ assigns x according to ρ_{1} (or ρ_{2}).

2 Switching lemma: Decision tree version

Lemma 8.1 (Switching lemma - Håstad 1986) Let F be a k-DNF formula with n variables. For every $s \geqslant 0$ and every $p \leqslant 1 / 7$, the following holds.

$$
\begin{equation*}
\frac{\left|\left\{\rho \in \mathcal{R}_{n}^{p n}: \operatorname{depth}(\mathcal{T}(F \mid \rho)) \geqslant s\right\}\right|}{\left|\mathcal{R}_{n}^{p m}\right|}<(7 p k)^{s} \tag{1}
\end{equation*}
$$

[^1]One can also write Eq. (11) as $\mathbf{P r}_{\rho \in \mathcal{R}_{n}^{p n}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s\right]<(7 p k)^{s}$. Here $\mathbf{P r}_{\rho \in \mathcal{R}_{n}^{p n}}[\mathcal{E}]$ denotes the probability of event \mathcal{E} where ρ is randomly chosen from $\mathcal{R}_{n}^{p n}$.

Let $\operatorname{stars}(k, s)$ be the set that contains a sequence $\bar{Z} \stackrel{\text { def }}{=}\left(Z_{1}, \ldots, Z_{t}\right)$ where $\sum_{i=1}^{t}\left|Z_{i}\right|=s$ and each Z_{i} is a non-empty subset of $\{1, \ldots, k\}$. When $s=0$, we define $\operatorname{stars}(k, s)$ to be $\{\varepsilon\}$, where ε denotes the "empty sequence". That is, $|\operatorname{stars}(k, 0)|=1$.

Lemma 8.2 For every $k, s \geqslant 1$, $|\operatorname{stars}(k, s)| \leqslant \gamma^{s}$, where γ is such that $\left(1+\frac{1}{\gamma}\right)^{k}=2$. Hence, $|\operatorname{stars}(k, s)|<(k / \ln 2)^{s}$.

Proof. The proof is by induction on s. Base case $s=0$ is trivial.
For the induction hypothesis, we assume that the lemma holds for every $s^{\prime}<s$. The induction step is as follows. Observe that if Z_{0} is a non-empty subset of $\{1, \ldots, k\}$ and $\bar{Z} \in \operatorname{stars}\left(k, s-\left|Z_{0}\right|\right)$, then $\left(Z_{0}, \bar{Z}\right) \in \operatorname{stars}(k, s)$. From here, we have:

$$
\begin{aligned}
|\operatorname{stars}(k, s)|=\sum_{i=1}^{\min (k, s)}\binom{k}{i}|\operatorname{stars}(k, s-i)| & \leqslant \sum_{i=1}^{k}\binom{k}{i}|\operatorname{stars}(k, s-i)| \\
& \leqslant \sum_{i=1}^{k}\binom{k}{i} \gamma^{s-i} \\
& =\gamma^{s} \sum_{i=1}^{k}\binom{k}{i}(1 / \gamma)^{i} \\
& =\gamma^{s}\left((1+1 / \gamma)^{k}-1\right) \\
& =\gamma^{s}
\end{aligned}
$$

Proof of Switching lemma: Let F be a k-DNF formula with n variables. Let $s \geqslant 0$ and $p \leqslant 1 / 7$. Let $\ell=p n$. Let X be the set of restrictions ρ such that $\operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s$. We will show that there is an injective function ξ :

$$
\xi: X \rightarrow \mathcal{R}^{\ell-s} \times \operatorname{stars}(k, s) \times\{0,1\}^{s}
$$

The existence of ξ implies $|X| \leqslant\left|\mathcal{R}^{\ell-s}\right| \cdot|\operatorname{stars}(k, s)| \cdot 2^{s}$ and Switching lemma follows immediately from Lemma 8.2 and the fact that $\left|\mathcal{R}_{n}^{\ell}\right|=\binom{n}{\ell} 2^{n-\ell}$.

Let $F \stackrel{\text { def }}{=} C_{1} \vee C_{2} \vee \cdots$, where each C_{i} is a term of length at most k. Let $\rho \in X$, i.e., $\operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s$. Consider the lexicographically first branch in $\mathcal{T}\left(\left.F\right|_{\rho}\right)$ with length $\geqslant s$ and let b be the first s steps in this branch. To define $\xi(\rho)$, we do the following.

- Let $C_{i_{1}}$ be the first term that is not set to 0 in $\left.F\right|_{\rho}$.

Let V_{1} be the set of variables in $\left.C_{i_{1}}\right|_{\rho}$. (Note that by the definition of the canonical decision tree, this means the variables in V_{1} are assigned at the beginning of $\mathcal{T}\left(\left.F\right|_{\rho}\right)$.)
Let a_{1} be the (unique) assignment that makes $\left.C_{i_{1}}\right|_{\rho}$ true.
Let b_{1} be the "initial" assignment of b that assigns variables in V_{1}.
(If b ends before all the variables in V_{1} is used, let $b_{1}=b$ and "shorten" a_{1} so that both a_{1} and b_{1} assign the same set of variables.)
Let $S_{1} \subseteq\{1, \ldots, k\}$ be the set of index j where the $j^{\text {th }}$ variable in $C_{i_{1}}$ is assigned by a_{1}. (Note that from the term $C_{i_{1}}$ and the set S_{1}, we can reconstruct a_{1}.)

- Repeat the above process but with $b \backslash b_{1}$, and we obtain a_{2}, b_{2} and the set S_{2},

Performing the process above, we obtain $a_{1} \cdots a_{t}, b_{1} \cdots b_{t}$ and $\left(S_{1}, \ldots, S_{t}\right)$. Note that $b=b_{1} \cdots b_{t}$. Let a denote $a_{1} \cdots a_{t}$. Note also that the number of variables assigned by both a and b is exactly s. Thus, the sum $\left|S_{1}\right|+\cdots+\left|S_{t}\right|=s$, and hence, $\left(S_{1}, \ldots, S_{t}\right) \in \operatorname{stars}(k, s)$.

Let $\delta:\{1, \ldots, s\} \rightarrow\{0,1\}$ be a function defined as follows.

$$
\delta(j) \stackrel{\text { def }}{=} \begin{cases}1, & \text { if } a \text { and } b \text { assign the same value to the variable in the } j^{\text {th }} \text { step } \\ 0, & \text { otherwise }\end{cases}
$$

Note that δ can be viewed as a $0-1$ string of length s.
Now we define the mapping ξ as follows.

$$
\xi(\rho) \stackrel{\text { def }}{=}\left(\rho a,\left(S_{1}, \ldots, S_{t}\right), \delta\right)
$$

where $a,\left(S_{1}, \ldots, S_{t}\right)$ and δ are defined as above.
We need to show that ξ is injective. We will show that if ($\left.\rho^{\prime},\left(S_{1}, \ldots, S_{t}\right), \delta\right)$ is in the range of ξ, we can construct a unique ρ such that $\xi(\rho)=\rho^{\prime}$. Note that if $\left(\rho^{\prime},\left(S_{1}, \ldots, S_{t}\right), \delta\right)$ is in the range of ξ, there is $a_{1} \cdots a_{t}$ such that $\rho^{\prime}=\rho a$ and $\left(S_{1}, \ldots, S_{t}\right)$ and δ satisfy the property imposed by the definition of ξ above. Thus, to reconstruct ρ, it suffices to reconstruct $a_{1} \cdots a_{t}$.

We denote ρ^{\prime} by $\rho a_{1} \cdots a_{t}$ for some $a_{1} \cdots a_{t}$ (which at this point is not known yet). We will construct a_{1}, \ldots, a_{t} by doing the following.

- Find out the term $C_{i_{1}}$ which is the first term in F that evaluates to 1 under ρ^{\prime}.

From $C_{i_{1}}$ and S_{1}, we reconstruct a_{1}.
From a_{1} and δ, we reconstruct b_{1}.

- Repeat the same process but replacing ρ^{\prime} with $\left(\rho^{\prime} \backslash a_{1}\right) b_{1}$. (Here note that $\left(\rho^{\prime} \backslash a_{1}\right) b_{1}$ is the same as $\rho b_{1} a_{2} \cdots a_{t}$)
From this step, we figure out a_{2} and b_{2}.
We repeat the same process until we figure out all a_{1}, \cdots, a_{t} and hence the restriction ρ. This completes the proof of Lemma 8.1.

3 Application

By the equivalence $p_{1} \wedge \cdots \wedge p_{m} \equiv \neg\left(\neg p_{1} \vee \cdots \vee \neg p_{m}\right)$, we can transform a circuit C into another circuit C^{\prime} that uses only \neg and \vee gates. Moreover, depth $\left(C^{\prime}\right) \leqslant 3 \cdot \operatorname{depth}(C)$. In this section we always assume that circuits only use \neg and \vee gates.

Note that every gate g in a circuit defines a boolean formula. Abusing the notation, we will often treat every gate as a formula too. For every vertex u in a circuit C, we define the height of u, denoted by height (u), as follows.

- The height of a source vertex (i.e., the input vertex) is 0 .
- The height of a gate vertex u is the maximum of height $(v)+1$, where v ranges over all edges (u, v) in C.

So, a circuit of depth d has vertices of height from 0 to d.
In the following, log has base 2 .

Lemma 8.3 Let C be a circuit with n variables, size m and depth d. For every $1 \leqslant j \leqslant d$, let $n_{j} \xlongequal{\text { def }} \frac{n}{14(14 \log m)^{j-1}}$. Assume that $\log m>1$. Then, the following holds.

For every $1 \leqslant j \leqslant d$, there is a restriction $\rho_{j} \in \mathcal{R}_{n}^{n_{j}}$ such that for every gate f of height j in C, the formula $\left.f\right|_{\rho_{j}}$ has a decision tree with height $<\log m$.

Proof. The proof is by induction on j. The base case is $j=1$, where $n_{1} \xlongequal{\text { def }} n / 14$. We randomly choose (with equal probability) a restriction ρ from $\mathcal{R}_{n}^{n_{1}}$. For a gate f of height 1 , let \mathcal{E}_{f} denote the event that "depth $\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right) \geqslant \log m$." Let \mathcal{E} denote the event that "there is a gate f of height 1 such that $\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right) \geqslant \log m$."

We will first show that $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]<1 / m$, for every gate f of height 1 . Let f be a gate of height 1. If f is a \neg-gate, then the depth of its decision tree is 1 . Since $\log m>1$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}\left[\mathcal{E}_{f}\right]}=0<1 / m
$$

If f is an \vee-gate, we can view f as 1 -DNF, i.e., every term has length 1 . By Lemma 8.1 where $p=1 / 14, k=1$ and $s=\log m$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]<(7 \cdot(1 / 14) \cdot 1)^{\log m}=(1 / 2)^{\log m}=1 / m
$$

Then,

This means $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}[\overline{\mathcal{E}}]>0$, which means there is a restriction $\rho \in \mathcal{R}_{n}^{n_{1}}$ such that for all gate f of height 1 , $\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right)<\log m$, i.e., $\left.f\right|_{\rho}$ has a decision tree with depth $<\log m$.

For the induction hypothesis, we assume Lemma 8.3 holds for $j-1$. Let $\rho_{0} \in \mathcal{R}_{n}^{n_{j-1}}$ be a restriction such that every gate g of height $j-1$ has decision tree with depth $<\log m$. Applying ρ_{0} on all gates of height $j-1$, we can view each gate of height $j-1$ as DNF where each term has length $<\log m$.

Similar to above, we randomly choose a restriction ρ from $\mathcal{R}_{n_{j-1}}^{n_{j}}$. For a gate f of height j, let \mathcal{E}_{f}^{\prime} denote the event that "every decision tree of $\left.f\right|_{\rho_{0} \rho}$ has depth $\geqslant \log m$." Let \mathcal{E}^{\prime} denote the event that "there is a gate f of height j such that every decision tree of $\left.f\right|_{\rho_{0} \rho}$ has depth $\geqslant \log m$."

We will show that $\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]<1 / m$, for every gate f of height j. Let f be a gate of height j. If f is a \neg-gate, let $f=\neg g$, where g is of height $j-1$. Since $\left.g\right|_{\rho_{0}}$ has decision tree with depth $<\log m$, so does $\left.f\right|_{\rho_{0}}$. Thus,

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]=0<1 / m
$$

If f is an \vee-gate, we can view f as k-DNF, where $k=\log m$. By Lemma 8.1 with $p=1 /(14 \log m)$, $k=\log m$ and $s=\log m$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho_{0} \rho}\right)\right) \geqslant \log m\right]<\left(7 \cdot \frac{1}{14 \log m} \cdot \log m\right)^{\log m}=(1 / 2)^{\log m}=1 / m
$$

Now, note that:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right] \leqslant \operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho_{0} \rho}\right)\right) \geqslant \log m\right]
$$

Thus,

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]<1 / m
$$

Applying similar argument as above, we obtain:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}^{\prime}\right]<1
$$

Hence, there is a restriction $\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}$ such that for every gate f of height $j,\left.f\right|_{\rho_{\rho} \rho}$ has a decision tree with depth $<\log m$. Now, $\rho_{0} \rho \in \mathcal{R}_{n}^{n_{j}}$. This completes the proof of Lemma 8.3.

Consider the following language PARITY $\subseteq\{0,1\}^{*}$.
PARITY def $\{w$: the number of 1 's in w is odd $\}$
Obviously, it can be viewed as a family of boolean functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$, where each f_{n} has n variables x_{1}, \ldots, x_{n} and $f_{n}\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \sum_{i=1}^{n} x_{i}(\bmod 2)$.

Applying Lemma 8.3, we immediately obtain that PARITY is not in $\mathbf{A C}^{0}$.
Theorem 8.4 (Furst, Saxe and Sipser 1981, Ajtai 1983, Yao 1985) PARITY $\notin \mathrm{AC}^{0}$.

Lesson 9: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.

Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system $\mathcal{M}=$ $\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\mathrm{acc}}, q_{\mathrm{rej}}, \delta\right\rangle$ defined like the NTM, with the difference that $\delta \subseteq\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \times$ $Q \times \Gamma \times\{$ Left, Right $\}$ is now a relation such that for every $(p, \sigma) \in\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma$, there are exactly two transitions that can be applied:

$$
(p, \sigma) \rightarrow\left(q_{1}, \sigma_{1}, \text { Move }_{1}\right) \quad \text { and } \quad(p, \sigma) \rightarrow\left(q_{2}, \sigma_{2}, \text { Move }_{2}\right)
$$

and the probability that each transition is applied is $1 / 2$. Intuitively, when it is in state p reading symbol σ, \mathcal{M} tosses an unbiased coin to decide whether to apply (q_{1}, σ_{1}, Move $_{1}$) or $\left(q_{2}, \sigma_{2}\right.$, Move $\left._{2}\right)$. On an input word w, the probability that \mathcal{M} accepts/rejects w is defined over all possible coin tossing.

Similar to DTM/NTM, we say that \mathcal{M} runs in time $f(n)$, if for every word w, every run of \mathcal{M} on w has length $\leqslant f(|w|)$. We say that \mathcal{M} runs in polynomial time, if there is a polynomial $p(n)=\operatorname{poly}(n)$ such that \mathcal{M} runs in time $p(n)$. In this case we also say that \mathcal{M} is a polynomial time PTM.

The class BPP is defined as follows. A language L is in the class BPP, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

$$
\operatorname{Pr}[\mathcal{M}(x)=L(x)] \geqslant 2 / 3
$$

Here we treat a language L as a function $L:\{0,1\}^{*} \rightarrow\{0,1\}$, where $L(x)=1$, if $x \in L$, and $L(x)=0$, if $x \notin L$. Similarly, we treat $\operatorname{TM} \mathcal{M}$ as a function $\mathcal{M}:\{0,1\}^{*} \rightarrow\{0,1\}$, where $\mathcal{M}(x)=1$, if \mathcal{M} accepts x, and $\mathcal{M}(x)=0$, if \mathcal{M} rejects x.

Note that BPP is closed under complement, union and intersection.
Remark 9.1 Alternatively, we can define the class BPP as follows. A language L is in the class BPP, if there is a polynomial $q(n)$ and a polynomial time DTM \mathcal{M} such that for every $x \in\{0,1\}^{*}$, the following holds.

$$
\mathbf{P r}_{r \in\{0,1\}^{q(|x|)}}[\mathcal{M}(x, r)=L(x)] \geqslant 2 / 3
$$

Note that the DTM \mathcal{M} takes as input (x, r). Intuitively, it can be viewed as a PTM that on input x, first randomly choose a string r of length $q(|x|)$, then run DTM \mathcal{M} on (x, r).

Note the similarity with the alternative definition of NP (Def. 1.2), where an NTM first guesses a certificate string r, and then runs a DTM for verification.

Theorem 9.2 (Error reduction) Let $L \in \mathbf{B P P}$. Then, for every $d \geqslant 1$, there is a polynomial time PTM \mathcal{M} such that for every input word x :

$$
\operatorname{Pr}[\mathcal{M}(x)=L(x)] \geqslant 1-2^{-\alpha|x|^{d}} \quad \quad(\text { for some fixed } \alpha>0)
$$

Theorem 9.3 (Adleman 1978) $\mathrm{BPP} \subseteq \mathrm{P}_{/ \text {poly }}$.
Theorem 9.3 and Theorem 7.4 imply that if SAT $\in \mathbf{B P P}$, then $\mathbf{P H}$ collapses to $\boldsymbol{\Sigma}_{2}^{p}$.
Theorem 9.4 (Sipser, Gács, Lautemann 1983) BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.

One-sided error PTM. The class RP is defined as follows. A language L is in the class $\mathbf{R P}$, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

- If $x \in L$, then $\operatorname{Pr}[\mathcal{M}(x)=1] \geqslant 2 / 3$.
- If $x \notin L$, then $\operatorname{Pr}[\mathcal{M}(x)=0]=1$.

Note that \mathcal{M} is never wrong when the input $x \notin L$, hence, the name one-sided. The class coRP is defined as coRP $\stackrel{\text { def }}{=}\left\{L:\{0,1\}^{*} \backslash L \in \mathbf{R P}\right\}$.

Zero error PTM. A PTM \mathcal{M} for a language L is a zero error PTM, if it never errs, i.e., for every input word $x, \operatorname{Pr}[\mathcal{M}(x)=L(x)]=1$. Now for a PTM \mathcal{M} and input word x, we can define a random variable $T_{\mathcal{M}, x}$ to denote the run time of \mathcal{M} on x, where the probability distribution is $\operatorname{Pr}\left[T_{\mathcal{M}, x}=t\right]=p$, if with probability p over the random strings of \mathcal{M} on input x, it halts in t steps.

The class ZPP is defined as follows. A language L is in ZPP, if there is a polynomial $q(n)=$ poly (n) and a zero error PTM \mathcal{M} for L such that for every input word $x, \operatorname{Exp}\left[T_{\mathcal{M}, x}\right] \leqslant q(|x|)$.

The algorithms for languages in BPP/RP/coRP are also called Monte Carlo algorithms, and those for languages in ZPP are called Las Vegas algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$ be some m events. Then, the following holds.

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{m} \mathcal{E}_{i}\right]=\sum_{i=1}^{m} \operatorname{Pr}\left[\mathcal{E}_{i}\right]-\sum_{1 \leqslant i_{1}<i_{2} \leqslant m} \operatorname{Pr}\left[\mathcal{E}_{i_{1}} \cap \mathcal{E}_{i_{2}}\right]+\sum_{1 \leqslant i_{1}<i_{2}<i_{3} \leqslant m} \operatorname{Pr}\left[\mathcal{E}_{i_{1}} \cap \mathcal{E}_{i_{2}} \cap \mathcal{E}_{i_{3}}\right]-\cdots
$$

From here, we also obtain the so called union bound:

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{m} \mathcal{E}_{i}\right] \leqslant \sum_{i=1}^{m} \operatorname{Pr}\left[\mathcal{E}_{i}\right]
$$

Markov inequality: Let X be a non-negative random variable with expectation μ. Then, for every real $c>0$, the following holds.

$$
\operatorname{Pr}[X \geqslant c \mu] \leqslant 1 / c
$$

Markov inequality is often also called averaging argument.
Chebyshev inequality: Let X be a random variable with expectation μ and variance σ^{2}. Then, for every real $c>0$, the following holds.

$$
\operatorname{Pr}[|X-\mu| \geqslant c \sigma] \leqslant 1 / c^{2}
$$

Chernoff inequality: Let X_{1}, \ldots, X_{m} be (independent) 0,1 random variables. Suppose for every $1 \leqslant i \leqslant m, \operatorname{Pr}\left[X_{i}=1\right]=p$, for some $p>1 / 2$. Let $X \stackrel{\text { def }}{=} \sum_{i=1}^{m} X_{i}$. Then, the following holds.

$$
\operatorname{Pr}[X>\lfloor m / 2\rfloor] \geqslant 1-2^{-\alpha m} \quad \text { where } \alpha=\frac{\log _{2} e}{2 p}\left(p-\frac{1}{2}\right)^{2}
$$

Lesson 10: The probabilistic method

Theme: Some examples of the probabilistic method.

1 The basic counting argument

Let K_{n} be a complete (undirected) graph with n vertices without self-loop.
Proposition 10.1 For every n and $k \leqslant n$, the following holds. If $\binom{n}{k} 2^{-\binom{k}{2}+1}<1$, then it is possible to colour the edges of K_{n} (with either red or blue) so that it has no monochromatic K_{k} subgraph.

Proof. Given a complete graph K_{n}, we randomly colour each edge independently with either red or blue (with equal probability). Note that there are exactly $\binom{n}{k}$ different k-cliques. Let $m=\binom{n}{k}$. We fix an ordering of all of these k-cliques: C_{1}, \ldots, C_{m} and let \mathcal{E}_{i} denote the event that clique C_{i} is monochromatic. Then, $\operatorname{Pr}\left[\mathcal{E}_{i}\right]=2^{-\binom{k}{2}+1}$.

The probability that there is a monochromatic k-clique is:

$$
\operatorname{Pr}\left[\mathcal{E}_{1} \cup \cdots \cup \mathcal{E}_{m}\right] \leqslant \sum_{i=1}^{m} \operatorname{Pr}\left[\mathcal{E}_{i}\right] \leqslant m \cdot 2^{-\binom{k}{2}+1}<1
$$

Hence, the probability that none of the cliques C_{1}, \ldots, C_{m} are monochromatic is not zero, i.e., there is a colouring of the edges of K_{n} so that there is no monochromatic k-clique.

The proof above can be converted into the following Las Vegas type of algorithm.

```
Algorithm 1
Input: A complete graph \(K_{n}\) and an integer \(k\) where \(\binom{n}{k} 2^{-\binom{k}{2}+1}<1\).
Task: Output a colouring of the edges of \(K_{n}\) in which there is no monochromatic \(k\)-clique.
    Let \(\xi\) be a random colouring of the edges in \(K_{n}\).
    while there is a monochromatic \(k\)-clique with colouring \(\xi\) do
        Choose another random colouring \(\xi\).
    Output \(\xi\).
```

In principle, Algorithm 1 may not terminate, but the expected number of steps is finite. Let $p=\operatorname{Pr}\left[\mathcal{E}_{1} \cup \cdots \cup \mathcal{E}_{m}\right]$ and let N be the random variable for the number of iterations (of the while loop). Then, the expectation of N is $1 /(1-p)$. Note that if k is fixed, $1 /(1-p)=\operatorname{poly}(n)$.

2 The expectation argument

In the following example we will use the fact that if X is a random variable, and μ is its expectation, then $\operatorname{Pr}[X \geqslant \mu]>0$ and $\operatorname{Pr}[X \leqslant \mu]>0$.

Let $G=(V, E)$ be an undirected graph. A cut of G is a pair $C=(A, B)$ where $A \cup B$ is partition of V. Its value is the number of edges of E that cross from A to B.

Proposition 10.2 Let G be an undirected graph with m edges. Then, it has a cut with value at least $m / 2$.

Proof. Let $G=(V, E)$ be an undirected graph with m edges. We construct a cut $C=A \cup B$ by randomly assigning each vertex $u \in V$ to either A or B (with equal probability).

Let e_{1}, \ldots, e_{m} be the edges in G. For each $i=1, \ldots, m$, let X_{i} denote the random variable:

$$
X_{i} \stackrel{\text { def }}{=} \begin{cases}1, & \text { if the two endpoints of } e_{i} \text { are in different sets } \\ 0, & \text { otherwise }\end{cases}
$$

Let $X=\sum_{i=1}^{m} X_{i}$, i.e., X is the random variable for the value of the cut $C=(A, B)$. Note that $\operatorname{Pr}\left[X_{i}=1\right]=1 / 2$. Hence, $\operatorname{Exp}[X]=m / 2$. Therefore, G has a cut with value at least $m / 2$.

Similar to Algorithm 1 above, we can design a Las Vegas algorithm for finding a cut with value $m / 2$, where m is the number of edges in the input graph. To bound its expected run time, let $p=\operatorname{Pr}[C$ has value $m / 2]$. Now, since $\operatorname{Exp}[X]=\operatorname{Exp}[$ value of $C]=m / 2$, we can calculate that $p \geqslant 1 /\left(\frac{m}{2}+1\right)$. Thus, the expected run time of our Las Vegas algorithm is $\leqslant 1 / p=\frac{m}{2}+1$. Below we will show how it can be derandomized.

We need a few notations. Let $G=(V, E)$ be an undirected graph and P, Q be two disjoint subsets of V. Similar to above, to get a cut $C=(A, B)$, we assign each vertex $u \in V$ to either A or B as follows.

- Every vertex $u \in P$ is assigned to A.
- Every vertex $u \in Q$ is assigned to B.
- Every vertex $u \notin P \cup Q$ is randomly assigned to either A or B (with equal probability).

Let $N(P, Q)$ denote the random variable for the value of the cut $C=(A, B)$ where $P \subseteq A$ and $Q \subseteq B$. Note that $\operatorname{Exp}[N(P, Q)]$ is exactly the value of (P, Q) plus half the number of edges in $E \backslash(P \cup Q) \times(P \cup Q)$, i.e., the number of edges whose both endpoints are not in $P \cup Q$. Consider the following deterministic algorithm.

```
Algorithm 2
Input: A graph \(G=(V, E)\).
Task: Output a cut \(C=(A, B)\) with value at least \(m / 2\), where \(m\) is the number of edges.
    Let \(v_{1}, \ldots, v_{n}\) be the vertices in \(G\).
    \(P:=\emptyset\) and \(Q:=\emptyset\).
    for \(i=1, \ldots, n\) do
        if \(\operatorname{Exp}\left[N\left(P \cup\left\{v_{i}\right\}, Q\right)\right]>\operatorname{Exp}\left[N\left(P, Q \cup\left\{v_{i}\right\}\right)\right]\) then
                \(P:=P \cup\left\{v_{i}\right\}\) and \(Q:=Q\).
        else
            \(P:=P\) and \(Q:=Q \cup\left\{v_{i}\right\}\).
    Output the cut \(C=(P, Q)\).
```

That Algorithm 2 output a cut $C=(P, Q)$ with value at least $m / 2$ follows from the following observations.

- $\operatorname{Exp}[N(\emptyset, \emptyset)] \geqslant m / 2$ (by Proposition 10.2).
- Let $\left(P_{0}, Q_{0}\right), \ldots,\left(P_{n}, Q_{n}\right)$ denote the sets (P, Q) after the i th iteration. Then, for every $i=0, \ldots, n-1$:

$$
\operatorname{Exp}\left[N\left(P_{i}, Q_{i}\right)\right] \leqslant \operatorname{Exp}\left[N\left(P_{i+1}, Q_{i+1}\right)\right]
$$

- $\operatorname{Exp}\left[N\left(P_{n}, Q_{n}\right)\right]$ is the value of the cut $C=(P, Q)$.

Checking whether $\operatorname{Exp}\left[N\left(P \cup\left\{x_{i}\right\}, Q\right)\right]>\operatorname{Exp}\left[N\left(P, Q \cup\left\{x_{i}\right\}\right)\right]$ can be done by comparing the number of neighbours of x_{i} that are in P and Q.

3 Sample and modify

Proposition 10.3 Let G be a graph with n vertices and m edges where $m=d n / 2$, for some d. Then, G has an independent set with at least $n /(2 d)$ vertices.

Proof. Let G be a graph as stated. Consider the following algorithm.

- Delete every vertex (together with its incident edges) independently with probability $1-1 / d$.
- For each remaining edge, remove it and one of its incident vertices.

Obviously, the remaining set of vertices is independent set. Let X denote the number of vertices that survive the first step and Y denote the number of edges that survive the first step. Note that each vertex survives with probability $1 / d$ and an edge survives with probability $1 / d^{2}$. Thus,

$$
\operatorname{Exp}[X]=\frac{n}{d} \quad \text { and } \quad \operatorname{Exp}[Y]=\frac{d n}{2} \cdot \frac{1}{d^{2}}=\frac{n}{2 d}
$$

The number of vertices removed in the second step is at most Y. So the number of remaining vertices after the second step is at least $X-Y$. Since $\operatorname{Exp}[X-Y]=n /(2 d)$, the expected number of vertices output the algorithm is at least $n /(2 d)$. Hence, there is an independent set with at least $n /(2 d)$ vertices.

Proposition 10.4 For every integer $k \geqslant 3$, there is an undirected graph with n vertices, at least $\frac{1}{4} n^{1+(1 / k)}$ edges and girth at least $k .^{*}$

Proof. Let $G_{n, p}$ be the random (undirected) graph with n vertices where between every pair of vertices the probability that there is an edge between them is p. Consider the following algorithm.

- Sample $G \in G_{n, p}$ with $p=n^{(1 / k)-1}$.
- For every cycle of length $\leqslant k-1$, delete one of its edges.

Let X be the number of the edges in G after the first step and let Y be the number of the cycles with length $\leqslant k-1$. There are at most $\binom{n}{i} \frac{(i-1)!}{2}$ cycles of length i. We have:

$$
\begin{aligned}
& \operatorname{Exp}[X]=p\binom{n}{2}=\frac{1}{2}\left(1-\frac{1}{n}\right) n^{1+(1 / k)} \\
& \boldsymbol{\operatorname { E x p }}[Y]=\sum_{i=3}^{k-1}\binom{n}{i} \frac{(i-1)!}{2} p^{i} \leqslant \sum_{i=3}^{k-1} n^{i} p^{i}=\sum_{i=3}^{k-1} n^{i / k}<k n^{(k-1) / k}
\end{aligned}
$$

Thus, $\operatorname{Exp}[X-Y] \geqslant \frac{1}{4} n^{1+(1 / k)}$.
Note that the number of edges after the second step is at least $X-Y$. Thus, there is a graph with n vertices, at least $\frac{1}{4} n^{1+(1 / k)}$ edges and girth at least k.

[^2]
4 The local lemma

We say that an event \mathcal{E} is mutually independent of events $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$, if for every subset $S \subseteq$ $\{1, \ldots, n\}, \operatorname{Pr}\left[\mathcal{E} \mid \bigcap_{i \in S} \mathcal{E}_{i}\right]=\operatorname{Pr}[\mathcal{E}]$. The dependency graph of events $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ is a graph $G=(V, E)$ where $V=\{1, \ldots, n\}$ and for every $i=1, \ldots, n$, event \mathcal{E}_{i} is mutually independent of the events in $\left\{\mathcal{E}_{j}:(i, j) \notin E\right\}$.

Lemma 10.5 is the symmetric version of the so called Lovász local lemma.
Lemma 10.5 (Symmetric local lemma) Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be n events. Let d be the degree of its dependency graph and p be such that $4 d p \leqslant 1$ and $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leqslant p$, for every $i=1, \ldots, n$. Then,

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right]>0, \quad \quad \text { where } \overline{\mathcal{E}_{i}} \text { is the complement of } \mathcal{E}_{i}
$$

Proof. For a subset $S \subsetneq\{1, \ldots, n\}$, we denote by F_{S} the event $\bigcap_{i \in S} \overline{\mathcal{E}_{i}}$. When $S=\emptyset$, we set F_{0} to be the whole sample space. We claim that for every $S \subsetneq\{1, \ldots, n\}$, the following holds.

$$
\operatorname{Pr}\left[F_{S}\right]>0 \quad \text { and } \quad \operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right] \leqslant 2 p, \quad \text { for every } k \notin S
$$

This claim immediately implies Lemma 10.5. To avoid clutter, for $\ell=0,1, \ldots, n$, let F_{ℓ} denote the event $\bigcap_{i=1}^{\ell} \overline{\mathcal{E}_{i}}$. Similar to above, we define $F_{0} \stackrel{\text { def }}{=} \Omega$, i.e., the whole sample space. In other words, $F_{\ell}=F_{S}$, where $S=\{1, \ldots, \ell\}$. Now, we have the following.
$\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right]=\operatorname{Pr}\left[F_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\overline{\mathcal{E}_{i}} \mid F_{i-1}\right]=\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left[\mathcal{E}_{i} \mid F_{i-1}\right]\right) \geqslant \prod_{i=1}^{n}(1-2 p)>0$
The second last inequality is by the claim.
Now we will show that the claim holds by induction on $|S|$. The base case $S=\emptyset$ is trivial. For the induction hypothesis, we assume Claim 1 holds for every S where $|S| \leqslant \ell-1$. We will show that it holds for S where $|S|=\ell$.

Without loss of generality, we assume that $S=\{1, \ldots, \ell\}$. Thus, $F_{S}=F_{\ell}$. The proof for $\operatorname{Pr}\left[F_{\ell}\right]>0$ is similar to the one above:

$$
\operatorname{Pr}\left[F_{\ell}\right]=\prod_{i=1}^{\ell} \operatorname{Pr}\left[\overline{\mathcal{E}_{i}} \mid F_{i-1}\right]=\prod_{i=1}^{\ell}\left(1-\operatorname{Pr}\left[\mathcal{E}_{i} \mid F_{i-1}\right]\right) \geqslant \prod_{i=1}^{\ell}(1-2 p)>0
$$

We now show that $\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{\ell}\right] \leqslant 2 p$, for every $k \notin S$. Let $k \notin S$ and let S_{1} and S_{2} be as follows.

$$
S_{1} \stackrel{\text { def }}{=}\{j \in S:(k, j) \text { is an edge in } G\} \quad \text { and } \quad S_{2} \stackrel{\text { def }}{=} S \backslash S_{1}
$$

Note that \mathcal{E}_{k} is mutually independent of the events in S_{2}. We consider two cases: $S_{2}=S$ or $S_{2} \neq S$.

The case when $S_{2}=S$ is trivial since $\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right]=\operatorname{Pr}\left[\mathcal{E}_{k}\right] \leqslant p \leqslant 2 p$. When $S_{2} \neq S$, the proof is as follows.

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right]=\frac{\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S}\right]}{\operatorname{Pr}\left[F_{S}\right]}=\frac{\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \cap F_{S_{2}}\right]}{\operatorname{Pr}\left[F_{S_{1}} \cap F_{S_{2}}\right]} & =\frac{\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right] \cdot \operatorname{Pr}\left[F_{S_{2}}\right]}{\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right] \cdot \operatorname{Pr}\left[F_{S_{2}}\right]} \\
& =\frac{\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right]}{\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]}
\end{aligned}
$$

Note that $\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right] \leqslant \operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S_{2}}\right]=\operatorname{Pr}\left[\mathcal{E}_{k}\right] \leqslant p$ with the equality comes from the fact that \mathcal{E}_{k} is mutually independent of the events in S_{2}.

We can bound $\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]$ as follows.

$$
\begin{aligned}
\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]=\operatorname{Pr}\left[\bigcap_{j \in S_{1}} \overline{\mathcal{E}_{j}} \mid F_{S_{2}}\right]=\operatorname{Pr}\left[\overline{\bigcup_{j \in S_{1}} \mathcal{E}_{j}} \mid F_{S_{2}}\right]= & \geqslant 1-\sum_{j \in S_{1}} \operatorname{Pr}\left[\mathcal{E}_{j} \mid F_{S_{2}}\right] \\
& \geqslant 1-2 p d \\
& \geqslant 1 / 2
\end{aligned}
$$

The second last inequality comes from the induction hypothesis and $\left|S_{1}\right| \leqslant d$. The last equality comes from $4 p d \leqslant 1$. Note that with the bound on $\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right]$ and $\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]$, we have $\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right] \leqslant 2 p$.

Proposition 10.6 For every k-CNF formula φ, if every variable appears in at most $2^{k} /(4 k)$ clauses, then φ is satisfiable.

Proof. Suppose φ has m clauses. We randomly assign each variable with 0 or 1 (with equal probability). Let \mathcal{E}_{i} be the event that the i th clause is not satisfied by the random assignment. Then, $\operatorname{Pr}\left[\mathcal{E}_{i}\right]=2^{-k}$.

Event \mathcal{E}_{i} is mutually independent of all the events \mathcal{E}_{j}, if the j th clause does not share the same variable as the i th clause. Thus, the degree of the dependency graph is $\leqslant k \cdot 2^{k} /(4 k)=2^{k-2}$ and hence, $4 d p \leqslant 1$. By Lemma 10.5, there is an assignment satisfying every clause.

Lemma 10.7 (General local lemma, Erdös and Lovász 1975) Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be n events and $G=(V, E)$ be its dependency graph. Suppose there are real numbers x_{1}, \ldots, x_{n} such that $0 \leqslant x_{i}<1$ and $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leqslant x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)$, for every $i=1, \ldots, n$. Then,

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right] \geqslant \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

In particular, with positive probability no event \mathcal{E}_{i} holds.
Proof. We use the same notation as in Lemma 10.5, where $F_{S}=\bigcap_{i \in S} \overline{\mathcal{E}_{i}}$ and $F_{\ell}=F_{\{1, \ldots, \ell\}}$. We claim that for every $S \subsetneq\{1, \ldots, n\}$ and every $k \notin S$, the following holds.

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right] \leqslant x_{k} \tag{1}
\end{equation*}
$$

Similar to Lemma 10.5, this claim immediately implies Lemma 10.7.

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right]=\operatorname{Pr}\left[F_{n}\right]=\prod_{i=1}^{n} \operatorname{Pr}\left[\overline{\mathcal{E}_{i}} \mid F_{i-1}\right]=\prod_{i=1}^{n}\left(1-\operatorname{Pr}\left[\mathcal{E}_{i} \mid F_{i-1}\right]\right) \geqslant \prod_{i=1}^{n}\left(1-x_{i}\right)
$$

The proof of $(\mathbb{1})$ is by induction on $|S|$. The base case $S=\emptyset$ is trivial. For the induction step, the strategy is the same as in Lemma 10.5. Let S_{1} and S_{2} be the following sets.

$$
S_{1} \stackrel{\text { def }}{=}\{j \in S:(k, j) \in E\} \quad \text { and } \quad S_{2} \stackrel{\text { def }}{=} S \backslash S_{1}
$$

When $S_{2} \neq S$, we have the following.

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S}\right]=\frac{\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right]}{\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]} \tag{2}
\end{equation*}
$$

The numerator is bounded as follows.

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{E}_{k} \cap F_{S_{1}} \mid F_{S_{2}}\right] \leqslant \operatorname{Pr}\left[\mathcal{E}_{k} \mid F_{S_{2}}\right]=\operatorname{Pr}\left[\mathcal{E}_{k}\right] \leqslant x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right) \tag{3}
\end{equation*}
$$

The denominator is bounded as follows. Let $S_{1}=\left\{j_{1}, \ldots, j_{r}\right\}$.

$$
\begin{equation*}
\operatorname{Pr}\left[F_{S_{1}} \mid F_{S_{2}}\right]=\prod_{i=1}^{r} \operatorname{Pr}\left[\overline{\mathcal{E}_{j_{i}}} \mid F_{S_{2} \cup\left\{j_{1}, \ldots, j_{i-1}\right\}}\right] \geqslant \prod_{i=1}^{r}\left(1-x_{j_{i}}\right)=\prod_{(k, j) \in E}\left(1-x_{j}\right) \tag{4}
\end{equation*}
$$

Combining Inequalities (2), (3) and (4), we obtain Inequality (11).
Lemma 10.7 implies the symmetric case with better bound.
Corollary 10.8 (Stronger symmetric local lemma) Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}$ be n events. Let d be the degree of its dependency graph and p be such that ep $(d+1) \leqslant 1$ and $\operatorname{Pr}\left[\mathcal{E}_{i}\right] \leqslant p$, for every $i=1, \ldots, n$. Then,

$$
\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right]>0
$$

Proof. The case when $d=0$ is trivial. So, we assume that $d \geqslant 1$. Let $G=(V, E)$ be the dependency graph. For every $i=1, \ldots, n$, let $x_{i}=1 /(d+1)$. Note that since $d \geqslant 1$, $1 /(d+1)<1$ and $0<1-1 /(d+1)<1$.

For each $i=1, \ldots, n$, we have ${ }^{\dagger}$

$$
\begin{aligned}
x_{i} \prod_{(i, j) \in E}\left(1-x_{j}\right)=\frac{1}{d+1} \prod_{(i, j) \in E}\left(1-\frac{1}{d+1}\right) & \geqslant \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^{d} \\
& \geqslant \frac{1}{d+1}\left(1-\frac{1}{d+1}\right)^{d+1} \\
& \geqslant \frac{1}{(d+1) e} \\
& \geqslant p \\
& \geqslant \operatorname{Pr}\left[\mathcal{E}_{i}\right]
\end{aligned}
$$

Thus, we can apply Lemma 10.7 and conclude that $\operatorname{Pr}\left[\bigcap_{i=1}^{n} \overline{\mathcal{E}_{i}}\right]>0$.

[^3]
Lesson 11: Probabilistic reductions

Theme: Probabilistic reductions and preliminary to Toda's theorem.

1 Probabilistic reduction from SAT to USAT

Let USAT be the following language.

$$
\text { USAT } \stackrel{\text { def }}{=}\{\varphi: \varphi \text { is a boolean formula with unique satisfying assignment }\}
$$

Theorem 11.1 (Valiant and Vazirani, 1986) There is a probabilistic polynomial time algorithm \mathcal{M} such that on input (Boolean) formula φ, the output of \mathcal{M}, denoted by $\mathcal{M}(\varphi)$, satisfies the following.

- If $\varphi \in$ SAT, then $\operatorname{Pr}[\mathcal{M}(\varphi) \in$ USAT $] \geqslant 3 /(16 n)$, where n is the number of variables in φ.
- If $\varphi \notin$ SAT, then $\operatorname{Pr}[\mathcal{M}(\varphi) \in$ SAT $]=0$.

Proof. The algorithm \mathcal{M} works as follows. On input formula φ, do the following.

- Let x_{1}, \ldots, x_{n} be the variables in φ.
- Let $x \stackrel{\text { def }}{=}\left(x_{1}, \ldots, x_{n}\right)$.
- Randomly choose $k \in\{2, \ldots, n+1\}$.
- Randomly choose a hash function $h \in \mathcal{H}_{n, k}$, where $\mathcal{H}_{n, k}$ is pair-wise independent.
- Output the formula $\varphi(x) \wedge(h(x)=0)$, where 0 is a column vector of zeroes of size k.

Note that the part $h(x)=0$ can be stated as a boolean formula. If we use the collection $\mathcal{H}_{n, k}$ as in Theorem 11.9, $h(x)=0$ is of the form: $A x+b=0$, which is equivalent to $A x=b$. This can be written into the following form:

$$
\bigwedge_{i=1}^{k}\left(\left(A_{i, 1} x_{1} \oplus \cdots \oplus A_{i, n} x_{n}\right) \leftrightarrow b_{i}\right)
$$

Here \oplus denotes the XOR operation. Note that each $A_{i, 1} x_{1} \oplus \cdots \oplus A_{i, n} x_{n}$ can be rewritten into formulas using only \wedge, \vee, \neg in quadratic time as follows. Divide it into two halves, rewrite each half (recursively) and combine them with the standard definition of XOR.

Now, we prove the correctness of our algorithm. Obviously, if the input formula φ is not satisfiable, so is the output formula. Suppose φ is satisfiable. Let S be the set of satisfying assignments of φ. With probability $1 / n$, the algorithm chooses a value k such that $2^{k-2} \leqslant|S| \leqslant$ 2^{k-1}. By Lemma 11.11, the probability that there is a unique $x \in S$ such that $h(x)=0$ is $\geqslant 3 / 16$. Thus, the probability that $\mathcal{M}(\varphi) \in$ USAT is at least $3 /(16 n)$.

2 The language \oplus SAT and the class $\oplus \mathrm{P}$

The language \oplus SAT is defined as follows.
\oplus SAT $\stackrel{\text { def }}{=}\{\varphi: \varphi$ is a Boolean formula with odd number of satisfying assignments $\}$
The class $\oplus \mathbf{P}$ is defined as follows. A language $L \in \oplus \mathbf{P}$, if there is a polynomial time NTM \mathcal{M} such that for every input word $w, w \in L$ if and only if the number of accepting runs of \mathcal{M} on w is odd number.

We define a few terminology and notations. Let $\sharp \varphi$ denote the number of satisfying assignments of a (Boolean) formula φ. We will define operations \sim, \sqcap and \sqcup on formulas such that the following holds.

$$
\sharp(\sim \varphi)=\sharp \varphi+1 \quad \sharp(\varphi \sqcap \phi)=\sharp \varphi \cdot \sharp \phi \quad \sharp(\varphi \sqcup \phi)=(\sharp \varphi+1) \cdot(\sharp \phi+1)+1
$$

Obviously the following holds.

$$
\begin{aligned}
& \sim \varphi \in \oplus \text { SAT if and only if } \varphi \notin \oplus \text { SAT } \\
& \varphi \sqcap \phi \in \oplus \text { SAT if and only if both } \varphi, \phi \in \oplus \text { SAT } \\
& \varphi \sqcup \phi \in \oplus \text { SAT if and only if at least one of } \varphi, \phi \in \oplus \text { SAT }
\end{aligned}
$$

These operations are defined as follows.

- For φ with variables x_{1}, \ldots, x_{n}, we pick a "new" variable z and define $\sim \varphi$ as follows.

$$
\sim \varphi \stackrel{\text { def }}{=}(\neg z \wedge \varphi) \vee\left(z \wedge \bigwedge_{i=1}^{n} x_{i}\right)
$$

- For two formulas φ and ψ, we rename the variables so that the variables in φ and ϕ are disjoint, and define $\varphi \sqcap \psi$ as follows.

$$
\varphi \sqcap \phi \stackrel{\text { def }}{=} \varphi \wedge \phi
$$

- For two formulas φ and ψ, we rename the variables so that the variables in φ and ϕ are disjoint, and define $\varphi \sqcup \psi$ as follows.

$$
\varphi \sqcup \phi \stackrel{\text { def }}{=} \sim(\sim \varphi \sqcap \sim \phi)
$$

3 Probabilistic reductions from SAT and $\overline{\text { SAT }}$ to \oplus SAT

Theorem 11.1 can be easily extended to obtain reductions from SAT and $\overline{\text { SAT }}$ to \oplus SAT.
Lemma 11.2 (Reduction from SAT to $\oplus \mathbf{S A T}$) There is a polynomial time PTM \mathcal{M} that on input formula φ and a positive integer m (in unary), outputs a formula, denoted by $\mathcal{M}(\varphi, m)$, such that the following holds.

- If $\varphi \in$ SAT, then $\operatorname{Pr}[\mathcal{M}(\varphi, m) \in \oplus$ SAT $] \geqslant 1-2^{-m}$.
- If $\varphi \notin$ SAT, then $\operatorname{Pr}[\mathcal{M}(\varphi, m) \in \oplus$ SAT $]=0$.

Moreover, the output $\mathcal{M}(\varphi, m)$ uses $O\left(m n^{2}\right)$ variables, where n is the number of variables in $\varphi{ }^{*}$

[^4]Proof. On input φ with n variables, the algorithm \mathcal{M} first runs the reduction in Theorem 11.1 on φ for $8 m n$ times to obtain formulas $\psi_{1}, \ldots, \psi_{8 m n}$. Then, it outputs $\sim\left(\sim \psi_{1} \sqcap \cdots \sqcap \sim \psi_{8 m n}\right)!^{\dagger}$ Obviously, \mathcal{M} runs in polynomial time. Note also that the output formula uses $8 m n(n+1)+1=$ $O\left(m n^{2}\right)$ variables.

Recall that on input φ with n variables, the reduction in Theorem 11.1 outputs a formula ψ such that the following holds.

- If $\varphi \in$ SAT, then $\operatorname{Pr}[\psi \in$ USAT $] \geqslant 1 /(8 n)$.
- If $\varphi \notin$ SAT, then $\operatorname{Pr}[\psi \in$ SAT $]=0$.

Note the following.

- If $\psi \notin \oplus$ SAT, then $\psi \notin$ USAT. Thus, $\operatorname{Pr}[\psi \notin \oplus$ SAT $] \leqslant \operatorname{Pr}[\psi \notin$ USAT $]$.
- $\bigsqcup_{i=1}^{8 m n} \psi_{i} \in \oplus$ SAT if and only if one of $\psi_{i} \in \oplus$ SAT.

Thus, on input φ, the output $\bigsqcup_{i=1}^{8 m n} \psi_{i}$ satisfies the following.

- If $\varphi \notin$ SAT, then none of the ψ_{i} is satisfiable. Thus, $\bigsqcup_{i=1}^{8 m n} \psi_{i} \notin \oplus$ SAT. Therefore,

$$
\operatorname{Pr}\left[\bigsqcup_{i=1}^{8 m n} \psi_{i} \in \oplus \mathrm{SAT}\right]=0
$$

- If $\varphi \in$ SAT, the following holds.
$\operatorname{Pr}\left[\bigsqcup_{i=1}^{8 m n} \psi_{i} \notin \oplus \mathrm{SAT}\right]=\prod_{i=1}^{8 m n} \operatorname{Pr}\left[\psi_{i} \notin \oplus \mathrm{SAT}\right] \leqslant\left(1-\frac{1}{8 n}\right)^{8 m n} \leqslant(1 / e)^{m} \leqslant(1 / 2)^{m}$
Therefore, $\operatorname{Pr}\left[\bigsqcup_{i=1}^{8 m n} \psi_{i} \in \oplus\right.$ SAT $] \geqslant 1-(1 / 2)^{m}$.
This completes the proof of Lemma 11.2 .

Lemma 11.3 (Reduction from $\overline{\text { SAT }}$ to \oplus SAT) There is a polynomial time PTM \mathcal{M} that on input formula φ and a positive integer m (in unary), outputs a formula, denoted by $\mathcal{M}(\varphi, m)$, such that the following holds.

- If $\varphi \in \overline{\mathrm{SAT}}$, then $\operatorname{Pr}[\mathcal{M}(\varphi, m) \in \oplus \mathrm{SAT}]=1$.
- If $\varphi \notin \overline{\mathrm{SAT}}$, then $\operatorname{Pr}[\mathcal{M}(\varphi, m) \in \oplus$ SAT $] \leqslant(1 / 2)^{m}$.

Proof. The PTM \mathcal{M} works as follows. On input φ and m, it runs the reduction in Lemma 11.2 to obtain a formula ψ, and then outputs $\sim \psi$.

If $\varphi \in \overline{\mathrm{SAT}}$, then $\operatorname{Pr}[\psi \notin \oplus \mathrm{SAT}]=1$, and hence, $\operatorname{Pr}[\sim \psi \in \oplus \mathrm{SAT}]=1$.
If $\varphi \notin \overline{\mathrm{SAT}}$, then $\operatorname{Pr}[\sim \psi \in \oplus \mathrm{SAT}]=\operatorname{Pr}[\psi \notin \oplus \mathrm{SAT}] \leqslant(1 / 2)^{m}$.
Combining Lemmas 11.2 and 11.3 and Cook-Levin reduction, we have the following.
Theorem 11.4 (Reductions from languages in $\mathbf{N P} \cup$ coNP to \oplus SAT) For every language $L \in \mathbf{N P} \cup \mathbf{c o N P}$, there is a polynomial time PTM \mathcal{M} that on input word w and a number m (in unary), outputs a formula $\mathcal{M}(w, m)$ such that the following holds.

- If $w \in L$, then $\operatorname{Pr}[\mathcal{M}(w, m) \in \oplus$ SAT $] \geqslant 1-(1 / 2)^{m}$.
- If $w \notin L$, then $\operatorname{Pr}[\mathcal{M}(w, m) \in \oplus$ SAT $] \leqslant(1 / 2)^{m}$.

[^5]
4 Probabilistic reductions from languages in PH to \oplus SAT

In this section we will show how to extend Theorem 11.4 to all languages in PH. We need some terminology and notations. We write \bar{x}, \bar{y} or \bar{z} to denote a sequence of variables, and the length is denoted by $|\bar{x}|,|\bar{y}|$ or $|\bar{z}|$, respectively.

Recall that a QBF is formula of the form: $Q_{1} \bar{z}_{1} \cdots Q_{k} \bar{z}_{k} \quad \phi$ where each $Q_{i} \in\{\forall, \exists\}$ and $Q_{i} \neq Q_{i+1}$, each \bar{z}_{i} is a vector of variables and ϕ is a formula that uses variables $\bar{z}_{1}, \ldots, \bar{z}_{k}$. Note that all variables used in ψ are "quantified."

QBF with free variables. A QBF with free variables is a QBF formula that has variables that are not quantified, i.e., of the form:

$$
\varphi \stackrel{\text { def }}{=} Q_{1} \bar{z}_{1} \cdots Q_{k} \bar{z}_{k} \quad \phi
$$

where ϕ uses some variables \bar{y} that are "free," i.e., not quantified by any quantifiers, in addition to the variables $\bar{z}_{1}, \ldots, \bar{z}_{k}$. In this case, we write $\varphi(\bar{y})$ to indicate that \bar{y} are free. For example, in the formula $\forall x \exists z(x \vee y \vee z)$, variables x, z are quantified, but variable y is free.

We usually denote an assignment that assigns variables in \bar{y} as a string $\bar{a} \in\{0,1\}^{n}$ with the same length as \bar{y}. For a $\operatorname{QBF} \varphi(\bar{y})$ with free variable \bar{y} and \bar{a} be an assignment on \bar{y}, we write $\varphi(\bar{a})$ to denote the QBF (without free variables) obtained by substituting every variable in \bar{y} according to \bar{a}.

In the following the term "QBF" means a QBF which may or may not contain free variables. A $k-Q B F$ is a QBF in which there are k alternating quantifiers, i.e., $Q_{1} \bar{z}_{1} \cdots Q_{k} \bar{z}_{k} \psi$, where each $Q_{i} \neq Q_{i+1}$.

The operations \sim, \sqcap and \sqcup with formulas with "free" variables. In the following we will deal with boolean formulas φ with "free" variables. Intuitively, free variables in a boolean formula are variables that cannot be renamed. We write $\varphi(\bar{y})$ to indicate that \bar{y} are the free variables in φ.

- $\sim \varphi(\bar{y})$ is defined as before and the resulting formula $\sim(\varphi(\bar{y}))$ also have free variables \bar{y}.
- For $\varphi(\bar{y})$ and $\phi(\bar{y})$, we rename the variables so that \bar{y} are the only common variables in φ and ϕ and define $\varphi(\bar{y}) \sqcap \phi(\bar{y}) \stackrel{\text { def }}{=} \varphi(\bar{y}) \wedge \phi(\bar{y})$ with free variables \bar{y}.
- For $\varphi(\bar{y})$ and $\phi(\bar{y})$, we define $\varphi(\bar{y}) \sqcup \phi(\bar{y}) \stackrel{\text { def }}{=} \sim(\sim \varphi(\bar{y}) \sqcap \sim \phi(\bar{y}))$ with free variables \bar{y}.

Lemma 11.5 (Reductions from Σ_{k}-SAT and Π_{k}-SAT to \oplus SAT) For every $k \geqslant 1$, there is a probabilistic polynomial time algorithm \mathcal{M} that on input a $k-Q B F \varphi(\bar{y})$ and a positive integer m (in unary), outputs a formula $\psi(\bar{y})$ such that

$$
\operatorname{Pr}[\psi(\bar{y}) \text { is "correct" }] \geqslant 1-(1 / 2)^{m}
$$

Here we define a formula $\psi(\bar{y})$ to be "correct" when $\varphi(\bar{a})$ is a true $Q B F$ if and only if $\psi(\bar{a}) \in \oplus$ SAT, for every assignment \bar{a} on \bar{y}.

Proof. The proof is by induction on k. The base case $k=1$ is similar to Lemmas 11.2 and 11.3 . On input 1-QBF $\varphi(\bar{y})$ and integer m, the algorithm \mathcal{M} works as follows.

- If $\varphi(\bar{y})$ is of the form $\exists \bar{x} \psi(\bar{x}, \bar{y})$, where \bar{x} contains n variables, do the following.

For each $i=1, \ldots, 8 m n$, construct formula $\alpha_{i}(\bar{y})$ as follows.

- Randomly choose $k \in\{2, \ldots, n+1\}$.
- Randomly choose a hash function $h \in \mathcal{H}_{n, k}$, where $\mathcal{H}_{n, k}$ is pair-wise independent.
- Let $\alpha_{i}(\bar{y})$ denote the formula $\psi(\bar{x}, \bar{y}) \wedge(h(\bar{x})=0)$.

Then, output the formula $\psi(\bar{y})$ where $\psi(\bar{y})$ is the formula $\bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y})$.

- If $\varphi(\bar{y})$ is of the form $\forall \bar{x} \psi(\bar{x}, \bar{y})$, where \bar{x} contains n variables, do the following

For each $i=1, \ldots, 8 m n$, construct formula $\alpha_{i}(\bar{y})$ as follows.

- Randomly choose $k \in\{2, \ldots, n+1\}$.
- Randomly choose a hash function $h \in \mathcal{H}_{n, k}$, where $\mathcal{H}_{n, k}$ is pair-wise independent.
- Let $\alpha_{i}(\bar{y})$ denote the formula $\neg \psi(\bar{x}, \bar{y}) \wedge(h(\bar{x})=0)$.

Then, output the formula $\psi(\bar{y})$, where $\psi(\bar{y})$ is the formula $\sim \bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y})$.
The proof that $\operatorname{Pr}[\psi(\bar{y})$ is correct $] \geqslant 1-(1 / 2)^{m}$ is similar to Lemmas 11.2 and 11.3 .
For the induction hypothesis, we assume Lemma 11.5 holds for k, i.e., there is a probabilistic algorithm \mathcal{M}_{0} that on input a k - $\mathrm{QBF} \varphi(\bar{y})$ and a positive integer m (in unary), outputs a formula $\psi(\bar{y})$ such that $\operatorname{Pr}[\psi(\bar{y})$ is correct $] \geqslant 1-(1 / 2)^{m}$.

For the induction step, on input $(k+1)-\mathrm{QBF} \varphi(\bar{y})$ and m, the algorithm \mathcal{M} works as follows.

- $\varphi(\bar{y})$ is of the form $\exists \bar{x} \phi(\bar{x}, \bar{y})$, where \bar{x} contains n variables.

For each $i=1, \ldots, 8 m n$, construct a formula $\alpha_{i}(\bar{y})$ as follows.

- Let $\beta_{i}(\bar{x}, \bar{y})$ be the output of \mathcal{M}_{0} on input $\phi(\bar{x}, \bar{y})$ and $(m+1)$.
- Randomly choose $k \in\{2, \ldots, n+1\}$.
- Randomly choose a hash function $h \in \mathcal{H}_{n, k}$, where $\mathcal{H}_{n, k}$ is pair-wise independent.
- Let $\alpha_{i}(\bar{y})$ denote the formula $\beta_{i}(\bar{x}, \bar{y}) \wedge(h(\bar{x})=0)$.

Then, output the formula $\psi(\bar{y})$ where $\psi(\bar{y}) \stackrel{\text { def }}{=} \bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y})$.

- $\varphi(\bar{y})$ is of the form $\forall \bar{x} \psi(\bar{x}, \bar{y})$, where \bar{x} contains n variables.

For each $i=1, \ldots, 8 m n$, construct a formula α_{i}, as follows.

- Let $\beta_{i}(\bar{x}, \bar{y})$ be the output of \mathcal{M}_{0} on input $\neg \psi(\bar{x}, \bar{y})$ and $(m+1)$.
- Randomly choose $k \in\{2, \ldots, n+1\}$.
- Randomly choose a hash function $h \in \mathcal{H}_{n, k}$, where $\mathcal{H}_{n, k}$ is pair-wise independent.
- Let $\alpha_{i}(\bar{y})$ be the formula $\beta_{i}(\bar{x}, \bar{y}) \wedge(h(\bar{x})=0)$.

Then, output the formula $\psi(\bar{y})$ where $\psi(\bar{y}) \stackrel{\text { def }}{\sim} \bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y})$.
We now calculate the probability of the event that $\psi(\bar{y})$ is correct.
We first consider the case that $\varphi(\bar{y})$ is of the form $\exists \bar{x} \phi(\bar{x}, \bar{y})$. By the induction hypothesis, $\operatorname{Pr}\left[\beta_{i}(\bar{x}, \bar{y})\right.$ is correct $] \geqslant 1-(1 / 2)^{m+1}$, for each $i=1, \ldots, 8 m n$. Note that $\beta_{i}(\bar{x}, \bar{y})$ is correct, if for every assignment \bar{a} and \bar{b} on \bar{x} and \bar{y}, respectively, $\beta_{i}(\bar{a}, \bar{b}) \in \oplus \mathrm{SAT}$ if and only if $\phi(\bar{a}, \bar{b})$ is a true QBF.

Assume that $\beta_{i}(\bar{x}, \bar{y})$ is correct. Let $\bar{b}: \bar{y} \rightarrow\{0,1\}$ be such that $\varphi(\bar{b})$ is true QBF. Thus, for every assignment $\bar{a}: \bar{x} \rightarrow\{0,1\}$, if $\varphi(\bar{a}, \bar{b})$ is true $\mathrm{QBF}, \beta_{i}(\bar{a}, \bar{b}) \in \oplus$ SAT. Otherwise, $\beta_{i}(\bar{a}, \bar{b}) \notin$ \oplus SAT. So, we only need to consider all those assignments \bar{a} such that $\phi_{i}(\bar{a}, \bar{b})$ is true, which by
the induction hypothesis, is equivalent to saying that $\beta_{i}(\bar{a}, \bar{b}) \in \oplus$ SAT. By applying the same technique as in Lemma 11.11 on the set of \bar{a} such that $\beta_{i}(\bar{a}, \bar{b}) \in \oplus \operatorname{SAT}$, we randomly "choose" the hash function h such that there is unique assignment \bar{a} such that $h(\bar{a})=0$, and the probability that we choose such h is $\geqslant 3 /(16 n)$. Thus, we have:

$$
\operatorname{Pr}\left[\beta_{i}(\bar{x}, \bar{y}) \wedge h(\bar{x})=0 \text { is correct } \mid \beta_{i}(\bar{x}, \bar{y}) \text { is correct }\right] \geqslant \frac{3}{16 n}
$$

Thus,

$$
\begin{aligned}
\operatorname{Pr}\left[\psi_{i}(\bar{x}, \bar{y}) \text { is correct }\right]=\operatorname{Pr}\left[\beta_{i}(\bar{x}, \bar{y}) \wedge h(\bar{x})=0 \text { is correct }\right] & \geqslant \frac{3}{16 n}\left(1-(1 / 2)^{m+1}\right) \\
& \geqslant \frac{1}{8 n}
\end{aligned}
$$

where in the last inequality we assume that $m \geqslant 1$.
Note also that if $\bar{b}: \bar{y} \rightarrow\{0,1\}$ is an assignment such that $\varphi(\bar{b})$ is false QBF , then $\beta_{i}(\bar{a}, \bar{b}) \notin$ $\oplus \mathrm{SAT}$, for every assignment \bar{a} (since $\beta_{i}(\bar{x}, \bar{y})$ is a correct formula). Thus, for any choice of h, $\beta_{i}(\bar{x}, \bar{b}) \wedge h(\bar{x})=0 \notin \oplus \mathrm{SAT}$.

Finally, note that $\bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y})$ is correct if and only if one of $\alpha_{i}(\bar{y})$ is correct. Therefore,

$$
\begin{aligned}
\operatorname{Pr}\left[\bigsqcup_{i=1}^{8 m n} \alpha_{i}(\bar{y}) \text { is not correct }\right] & =\operatorname{Pr}\left[\alpha_{i}(\bar{y}) \text { is not correct, for each } i=1, \ldots, 8 m n\right] \\
& \leqslant(1-1 /(8 n))^{8 m n} \leqslant(1 / 2)^{m}
\end{aligned}
$$

The proof for the case where $\varphi(\bar{y})$ is of the form $\forall \bar{x} \phi(\bar{x}, \bar{y})$ is similar.
Combining Lemma 11.5 and the fact that Σ_{k}-SAT and Π_{k}-SAT are $\boldsymbol{\Sigma}_{k}^{p}$ - and $\boldsymbol{\Pi}_{k}^{p}$-complete, for each $k \geqslant 1$, we have the following theorem.

Theorem 11.6 (Reductions from languages in $\mathbf{P H}$ to $\oplus \mathbf{S A T}$) For every language $L \in \mathbf{P H}$, there is a probabilistic polynomial time algorithm \mathcal{M} that on input w, outputs a formula ψ such that the following holds, where $n=|w|$.

- If $w \in L$, then $\operatorname{Pr}[\psi \in \oplus S A T] \geqslant 1-(1 / 2)^{n}$.
- If $w \notin L$, then $\mathbf{P r}[\psi \in \oplus$ SAT $] \leqslant(1 / 2)^{n}$.

Appendix

A Pair-wise independent collection of hash functions

Definition 11.7 For $n, k \geqslant 1$, let $\mathcal{H}_{n, k}$ be a collection of functions from $\{0,1\}^{n}$ to $\{0,1\}^{k}$. We say that $\mathcal{H}_{n, k}$ is pair-wise independent, if for every $x, x^{\prime} \in\{0,1\}^{n}$ where $x \neq x^{\prime}$ and for every $y, y^{\prime} \in\{0,1\}^{k}$, the following holds.

$$
\operatorname{Pr}_{h \in \mathcal{H}_{n, k}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right]=2^{-2 k}
$$

In the following we show that $\mathcal{H}_{n, k}$ exists. First, we show that $\mathcal{H}_{n, n}$ exists. For every $n \geqslant 1$, for every $a, b \in \operatorname{GF}\left(2^{n}\right)$, define a function $h_{a, b}$ from $\{0,1\}^{n}$ to $\{0,1\}^{n}$ as follows ${ }^{\dagger}$

$$
h_{a, b}(x) \stackrel{\text { def }}{=} x a+b
$$

[^6]Theorem 11.8 The collection $\mathcal{H}_{n, n} \stackrel{\text { def }}{=}\left\{h_{a, b}: a, b \in G F\left(2^{n}\right)\right\}$ is pair-wise independent.
We have another candidate for pair-wise independent collection. For every $n \geqslant 1$, for every $A \in\{0,1\}^{n \times n}$ and $b \in\{0,1\}^{n \times 1}$, define a function $h_{A, b}$ from $\{0,1\}^{n \times 1}$ to $\{0,1\}^{n \times 1}$ as follows $\}^{\beta}$

$$
h_{A, b}(x) \stackrel{\text { def }}{=} A x+b
$$

Theorem 11.9 The collection $\mathcal{H}_{n, n} \stackrel{\text { def }}{=}\left\{h_{A, b}: A \in\{0,1\}^{n \times n}\right.$ and $\left.b \in\{0,1\}^{n \times 1}\right\}$ is pair-wise independent.

Remark 11.10 Note that the existence of $\mathcal{H}_{n, n}$ implies the existence of $\mathcal{H}_{n, k}$. If $n<k$, then we can use $\mathcal{H}_{k, k}$ and extend n bit inputs to k by padding with zeros. If $n>k$, then we can use $\mathcal{H}_{n, n}$ and reduce n bit outputs to k by truncating the last $(n-k)$ bits.

Lemma 11.11 (Valiant and Vazirani, 1986) Let $\mathcal{H}_{n, k}$ be a pair-wise independent hash function collection. Let $S \subseteq\{0,1\}^{n}$ such that $2^{k-2} \leqslant|S| \leqslant 2^{k-1}$. Then, the following holds.

$$
\operatorname{Pr}_{h \in \mathcal{H}_{n, k}}\left[\text { there is a unique } x \in S \text { such that } h(x)=0^{k}\right] \geqslant \frac{3}{16}
$$

Proof. Let N denote the number of x 's such that $h(x)=0$, where h is randomly chosen from $\mathcal{H}_{n, k}$ (with uniform distribution). We will calculate $\operatorname{Pr}[N=1]$. Note that:

$$
\begin{aligned}
\operatorname{Pr}[N=1] & =\operatorname{Pr}[N \geqslant 1]-\operatorname{Pr}[N \geqslant 2] \\
& =\operatorname{Pr}\left[\bigcup_{x \in S} \mathcal{E}_{x}\right]-\operatorname{Pr}\left[\bigcup_{x, x^{\prime} \in S \text { and } x \neq x^{\prime}} \mathcal{E}_{x} \cap \mathcal{E}_{x^{\prime}}\right]
\end{aligned}
$$

where \mathcal{E}_{x} denotes the event that $h(x)=0$. In the following, we let $p=2^{-k}$.
Since $\mathcal{H}_{n, k}$ is pairwise independent, $\operatorname{Pr}\left[\mathcal{E}_{x}\right]=p$ and $\operatorname{Pr}\left[\mathcal{E}_{x} \cap \mathcal{E}_{x^{\prime}}\right]=p^{2}$, whenever $x \neq x^{\prime}$.
By the inclusion-exclusion principle, we have:

$$
\operatorname{Pr}\left[\bigcup_{x \in S} \mathcal{E}_{x}\right] \geqslant \sum_{x \in S} \operatorname{Pr}\left[\mathcal{E}_{x}\right]-\sum_{x, x^{\prime} \in S \text { and } x \neq x^{\prime}} \operatorname{Pr}\left[\mathcal{E}_{x} \cap \mathcal{E}_{x^{\prime}}\right]=|S| p-\binom{|S|}{2} \cdot p^{2}
$$

By union bound, we have:

$$
\operatorname{Pr}\left[\bigcup_{x, x^{\prime} \in S \text { and } x \neq x^{\prime}} \mathcal{E}_{x} \cap \mathcal{E}_{x^{\prime}}\right] \leqslant \sum_{x, x^{\prime} \in S \text { and } x \neq x^{\prime}} \operatorname{Pr}\left[\mathcal{E}_{x} \cap \mathcal{E}_{x^{\prime}}\right] \leqslant\binom{|S|}{2} \cdot p^{2}
$$

Combining both, we have:

$$
\operatorname{Pr}[N=1]=\operatorname{Pr}[N \geqslant 1]-\operatorname{Pr}[N \geqslant 2] \geqslant|S| p-|S|^{2} p^{2}
$$

Since $1 / 4 \leqslant|S| p \leqslant 1 / 2$, a straightforward calculation shows that $|S| p-|S|^{2} p^{2} \geqslant 3 / 16$.

[^7]
Lesson 12: Toda's theorem

Theme: Toda's theorem which states that every language in the polynomial hierarchy can be decided by a polynomial time DTM with oracle access to \sharp SAT, i.e., $\mathbf{P H} \subseteq \mathbf{P}^{\sharp S A T}$.

Theorem 12.1 (Toda, 1991) $\mathbf{P H} \subseteq \mathbf{P}^{\sharp P}$.

1 Reduction from \oplus SAT to \sharp SAT

In the following we will use the notations from Note 11. Recall that $\sharp \varphi$ denote the number of satisfying assignments of a (Boolean) formula φ. Fwo formulas φ and ψ, the formula $\varphi \sqcap \psi$ is a formula such that $\sharp(\varphi \sqcap \psi)=\sharp \varphi \cdot \sharp \psi$.

We define an operation + as follows. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} be the variables in φ and ψ, respectively. Let z be a new variable.

$$
\varphi+\psi \quad \stackrel{\text { def }}{=} \quad\left(\varphi \wedge z \wedge \bigwedge_{i=1}^{m} y_{i}\right) \quad \vee \quad\left(\psi \wedge \neg z \wedge \bigwedge_{i=1}^{n} x_{i}\right)
$$

Note that $\sharp(\varphi+\psi)=\sharp \varphi+\sharp \psi$.
Lemma 12.2 There is a deterministic polynomial time algorithm \mathcal{T}, that on input formula φ and positive integer m (in unary), outputs a formula ψ such that the following holds.

- If $\varphi \in \oplus$ SAT, then $\sharp \psi \equiv-1\left(\bmod 2^{m+1}\right)$.
- If $\varphi \notin \oplus$ SAT, then $\sharp \psi \equiv 0\left(\bmod 2^{m+1}\right)$.

Proof. We will use the following identity for each $i \geqslant 0$ and n.
(a) If $n \equiv-1\left(\bmod 2^{2^{i}}\right)$, then $4 n^{3}+3 n^{4} \equiv-1\left(\bmod 2^{2^{i+1}}\right)$.
(b) If $n \equiv 0\left(\bmod 2^{2^{i}}\right)$, then $4 n^{3}+3 n^{4} \equiv 0\left(\bmod 2^{2^{i+1}}\right)$.

On input φ and m, the algorithm \mathcal{T} does the following.

- For each $i=0,1, \ldots,\lceil\log (m+1)\rceil$, define a formula ψ_{i} as follows.

$$
\psi_{i} \stackrel{\text { def }}{=} \begin{cases}\varphi & \text { if } i=0 \\ 4 \psi_{i-1}^{3}+3 \psi_{i-1}^{4} & \text { if } i \geqslant 1\end{cases}
$$

Here $4 \psi_{i-1}^{3}+3 \psi_{i-1}^{4}$ denotes the formula that has $4 \sharp\left(\psi_{i-1}\right)^{4}+3 \sharp\left(\psi_{i-1}\right)^{3}$ satisfying assignments. Note that such formula can be constructed easily using and using the operations + and \sqcap.

- Output the formula $\psi_{\lceil\log (m+1)\rceil}$.

It is not difficult to show that the algorithm \mathcal{T} runs in polynomial time. Its correctness follows directly from the identities (a) and (b).

2 Proof of Theorem 12.1

Let $L \in \mathbf{P H}$. We want to show that $L \in \mathbf{P}^{\sharp S A T}$. By Theorem 11.6 , there is a probabilistic polynomial time algorithm \mathcal{M}_{1} that on input w, outputs a formula ψ such that the following holds.

- If $w \in L$, then $\mathbf{P r}[\psi \in \oplus S A T] \geqslant 3 / 4$.
- If $w \notin L$, then $\operatorname{Pr}[\psi \in \oplus$ SAT $] \leqslant 1 / 4$.

Using the alternative definition of PTM, we view \mathcal{M}_{1} as a DTM with two input (w, r), where r is a random string. Let ℓ be the length of the random string.

Let \mathcal{M}_{2} be the algorithm, that on input w and random string r, outputs the formula $\mathcal{T}\left(\mathcal{M}_{1}(w, r), \ell+2\right)$, where \mathcal{T} is the algorithm in Lemma 12.2. That is, it first runs $\mathcal{M}_{1}(w, r)$ and then runs \mathcal{T} on input $\left(\mathcal{M}_{1}(w, r), \ell+2\right)$

Combining Theorem 11.6 and Lemma 12.2 , on input w and random string r, the algorithm \mathcal{M}_{2} outputs a formula $\psi_{w, r}$ such that the following holds.

- If $w \in L$, then $\mathbf{P r}_{r \in\{0,1\}^{\ell}}\left[\sharp \psi_{w, r} \equiv-1\left(\bmod 2^{\ell+3}\right)\right] \geqslant 3 / 4$.
- If $w \notin L$, then $\operatorname{Pr}_{r \in\{0,1\}^{\ell}}\left[\sharp \psi_{w, r} \equiv-1\left(\bmod 2^{\ell+3}\right)\right] \leqslant 1 / 4$.

This is equivalent to the following.

- If $w \in L$, the sum $\sum_{r \in\{0,1\}^{\ell} \sharp \psi_{w, r}}$ lies in between -2^{ℓ} and $-\frac{3}{4} 2^{\ell}$ (modulo $2^{\ell+3}$).
- If $w \notin L$, the sum $\sum_{r \in\{0,1\}^{\ell} \sharp \psi_{w, r}}$ lies in between $-\frac{1}{4} 2^{\ell}$ and 0 (modulo $2^{\ell+3}$).

The sets of values that lie in between -2^{ℓ} and $-\frac{3}{4} 2^{\ell}$ and in between $-\frac{1}{4} 2^{\ell}$ and 0 (modulo $2^{\ell+3}$) are the following sets P and Q, respectively:

$$
P \stackrel{\text { def }}{=}\left\{28 \cdot 2^{\ell-2}, \ldots, 29 \cdot 2^{\ell-2}\right\} \quad \text { and } \quad Q \stackrel{\text { def }}{=}\left\{31 \cdot 2^{\ell-2}, \ldots, 2^{\ell+3}-1\right\} \cup\{0\}
$$

Note that P and Q are disjoint.
The main idea of Theorem 12.1 is that on input word w, the algorithm asks the \sharp SAT oracle for the value $\sum_{r \in\{0,1\}^{\ell} \sharp} \sharp \psi_{w, r}$ and checks whether the value is in the set P or Q. To this end, we need to construct a formula whose number of satisfying assignments is exactly $\sum_{r \in\{0,1\}^{\ell}} \sharp \psi_{w, r}$.

Consider the following NTM \mathcal{M}^{\prime}. On input word w, it does the following.

- Guess a string $r \in\{0,1\}^{\ell}$.
- Run \mathcal{M}_{2} on (w, r) to obtain a formula $\psi_{w, r}$.
- Guess a satisfying assignment for $\psi_{w, r}$.
- ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for $\psi_{w, r}$. Obviously, for every w, the number of accepting runs of \mathcal{M}^{\prime} on w is precisely $\sum_{r \in\{0,1\}^{\ell} \sharp \psi_{w, r} \text {. }}$

Now, to complete our proof, we present a polynomial time DTM \mathcal{M} that decides L (with oracle access to \sharp SAT). On input w, it does the following.

- Construct a formula Ψ_{w} such that the number of satisfying assignments of Ψ_{w} is exactly the number of accepting runs of \mathcal{M}^{\prime} on w.
Here we use Cook-Levin construction (on w and the transitions in \mathcal{M}^{\prime}). Recall that CookLevin reduction is parsimonious.
- Determine the value $\sharp \Psi_{w}$ (modulo $2^{\ell+3}$) by querying the \sharp SAT oracle.
- Determine whether $\sharp \Psi_{w}$ lies in P or Q, the answer of which implies whether $w \in L$.

[^0]: *Here we take the length of a path as the number of edges in it.

[^1]: *Based on Sect. 13.1 in N. Immerman's textbook "Descriptive Complexity" (1998). See also P. Beame's note "A switching lemma primer" (1994).

[^2]: *The girth of a graph is the length of its shortest cycle.

[^3]: ${ }^{\dagger}$ Recall that $\left(1-\frac{1}{x}\right)^{x}>1 / e$, for every $x>1$.

[^4]: *Abusing the notation, $O\left(m n^{2}\right)$ denotes $\leqslant c m n^{2}$, for some constant c.

[^5]: ${ }^{\dagger}$ Note that $\sim\left(\sim \psi_{1} \sqcap \cdots \sqcap \sim \psi_{8 m n}\right)$ is equivalent to $\psi_{1} \sqcup \cdots \sqcup \psi_{8 m n}$.

[^6]: ${ }^{\ddagger} \mathrm{GF}\left(2^{n}\right)$ denotes a finite field with 2^{n} elements, where each element can be encoded as a $0-1$ string of length n.

[^7]: $\S\{0,1\}^{n \times n}$ denotes the set of $0-1$ matrices with n rows and n columns and $\{0,1\}^{n \times 1}$ denotes the set of $0-1$ column vectors of n rows. Here the addition + and multiplication \cdot are defined over \mathbb{Z}_{2}.

