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Lesson 0: Preliminaries

Theme: Review of some introductory material.

Let N denote the set of natural numbers {0, 1, 2, . . .}. Let f and g be functions from N to N.

• f = O(g) means that there is c and n0 such that for every n > n0, f(n) 6 c · g(n).

It is usually phrased as “there is c such that for (all) sufficiently large n,” f(n) 6 c · g(n).

• f = Ω(g) means g = O(f).

• f = Θ(g) means g = O(f) and f = O(g).

• f = o(g) means for every c > 0, f(n) 6 c · g(n) for sufficiently large n.

Equivalently, f = o(g) means f = O(g) and g 6= O(f).

Another equivalent definition is f = o(g) means limn→∞
f(n)
g(n) = 0.

• f = ω(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω
notations. We also write f(n) = poly(n) to denote that f(n) = c · nk for some c and k > 1.

Throughout the course, for an integer n > 0, we will denote by bnc the binary representation
of n. Likewise, bGc the binary encoding of a graph G. In general, we write bXc to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, in
most cases we simply write X instead of bXc.

We usually write Σ to denote a finite input alphabet. Often Σ = {0, 1}. Recall also that for
a word w ∈ Σ∗, |w| denotes the length of w. For a DTM/NTM M, we write L(M) to denote
the language {w :M accepts w}.

We often view a language L ⊆ Σ∗ as a boolean function, i.e., L : Σ∗ → {true, false}, where
L(x) = true if and only if x ∈ L, for every x ∈ Σ∗.

1 Time complexity

Definition 0.1 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if every run ofM on w has length at most t. That
is, for every run ofM on w:

C0 ` C1 ` · · · ` Cm where Cm is a halting configuration,

we have m 6 t.

• M runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w,M decides
w in time c · f(|w|).

• M decides/accepts a language L in time O(f(n)), if L(M) = L andM runs in timeO(f(n)).

• Dtime[f(n)]
def
= {L : there is a DTMM that decides L in time O(f(n))}.

• Ntime[f(n)]
def
= {L : there is an NTMM that decides L in time O(f(n))}.
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We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

P def
=

⋃
f(n)=poly(n)

Dtime[f(n)] EXP def
=

⋃
f(n)=poly(n)

Dtime[2f(n)]

NP def
=

⋃
f(n)=poly(n)

Ntime[f(n)] NEXP def
=

⋃
f(n)=poly(n)

Ntime[2f(n)]

coNP def
= {L : Σ∗ − L ∈ NP} coNEXP def

= {L : Σ∗ − L ∈ NEXP}

Theorem 0.2 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

2 Space complexity

Definition 0.3 LetM be a DTM/NTM, w ∈ Σ∗, s ∈ N and f : N→ N be a function.

• M decides w using s space (or, in space s), ifM halts on w and for every run ofM on w:

C0 ` C1 ` · · · ` Cm where Cm is a halting configuration,

we have |Ci| 6 s for every 1 6 i 6 m.

• M uses space O(f(n)) (or, runs in space O(f(n))), if there is c > 0 such that for sufficiently
long word w,M decides w in space c · f(|w|).

• M decides/accepts a language L in space O(f(n)), if L(M) = L andM uses space O(f(n)).

• Dspace[f(n)]
def
= {L : there is a DTMM that decides L in space O(f(n))}.

• Nspace[f(n)]
def
= {L : there is an NTMM that decides L in space O(f(n))}.

We say thatM uses polynomial space, if there is f(n) = poly(n) such thatM uses space O(f(n)).
In this case, we also say thatM is a polynomial space TM.

The following are some of the important classes in the complexity theory.

PSPACE def
=

⋃
f(n)=poly(n)

Dspace[f(n)]

NPSPACE def
=

⋃
f(n)=poly(n)

Nspace[f(n)]

coNPSPACE def
= {L : Σ∗ − L ∈ NPSPACE}

In a few weeks we will show that PSPACE = NPSPACE = coNPSPACE.

Definition 0.4 (logarithmic space) LetM be a k-tape DTM/NTM, where k > 2.

• DTM/NTMM uses space O(log(n)), if there is c > 0 such that for sufficiently long word w,
the following holds.
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– The first tape always contains only the input word w, i.e.,M never changes the content
of the first tape.

– For all the other tapes, the number of cells used byM is 6 c · log(|w|).

• M decides/accepts a language L in space O(log(n)), if L(M) = L and M uses space
O(log(n)).

In this case, we say thatM uses logarithmic space, or thatM is a logarithmic space TM.

Similar to above, we can define the following clasess.

L def
= {L : there is a DTMM that decides L in space O(log(n))}

NL def
= {L : there is an NTMM that decides L in space O(log(n))}

coNL def
= {L : Σ∗ − L ∈ NL}

In a few weeks we will also show that NL = coNL. It is still an open question if L ?
= NL.

3 Universal Turing machines

Remark 0.5 For every k-tape TM M over input alphabet Σ = {0, 1}, there is a k-tape TM
M′ over the same input alphabet Σ = {0, 1} and tape alphabet Γ = {0, 1,t} such that L(M) =
L(M′). Moreover, ifM runs in time/space O(f(n)), so doesM′.

Due to this, we always assume that the input and tape alphabet of Turing machines are
Σ = {0, 1} and Γ = {0, 1,t}, respectively.

Recall that bMc denotes the encoding of a TMM.

Definition 0.6 A Universal Turing machine (UTM) is a k-tape DTM U , for some k > 1, such
that L(U) = {bMc$w | M accepts w and w ∈ {0, 1}∗}.

Theorem 0.7 There is a UTM U such that for every DTMM and every word w, ifM decides
w in time t, then U decides bMc$w in time (α · t · log t), where α does not depends |w|, but on
size of the tape alphabet ofM as well as the number of tapes and states ofM.

Appendix

A Turing machines

We reserve a special symbol t, called the blank symbol.
A 1-tape Turing machine (TM) is a systemM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉, where each compo-

nent is as follows.

• Σ is a finite alphabet, called the input alphabet, where t /∈ Σ.

• Γ is a finite alphabet, called the tape alphabet, where Σ ⊆ Γ and t ∈ Γ.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• qacc, qrej ∈ Q are two special states called the accept and reject states, respectively.
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• δ : Q− {qacc, qrej} × Γ→ Q× Γ× {Left, Right} is the transition function.

Intuitively, the intuitive meaning of δ(p, a) = (q, b, Move) is as follows. When the head reads a
symbol a, ifM is in state p, it “writes” symbol b on top of a, enters state q, and the head moves
left, if Move = Left, or moves right, if Move = Right.

To describe how a TM computes, we need a few terminologies. A configuration of M is a
string C from (Q∪Γ)∗ which contains exactly one symbol from Q. We call such symbol the state
of C. Intuitively, a configuration C = a1 · · · ai−1 pai · · · am means the content of the tape is:

· · · t t t a1 · · · ai−1ai · · · am t t t · · ·

with the head reading ai.
On input word w ∈ Σ∗, the initial configuration ofM on w is the string q0w. A configuration

is called accepting, if it contains qacc, and it is called rejecting, if it contains qrej. A halting
configuration is either an accepting or a rejecting configuration.

Let C = a1 · · · ai−1 pai · · · am be a configuration, where a1, . . . , am ∈ Γ and p ∈ Q such that
p 6= qacc, qrej. The transition δ yields the subsequent configuration C ′, denoted by C ` C ′, as
follows.

• If δ(p, ai) = (q, b, Left) and i > 2, then C ′ = a1 · · · ai−2 qai−1bai+1 · · · am.

• If δ(p, ai) = (q, b, Left) and i = 1, then C ′ = q t ba2 · · · am.

• If δ(p, ai) = (q, b, Right) and i 6 m− 1, then C ′ = a1 · · · ai−1b qai+1 · · · am.

• If δ(p, ai) = (q, b, Right) and i = m, then C ′ = a1 · · · am−1b qt.

The run ofM on w is the (possibly infinite) sequence:

C0 ` C1 ` C2 ` · · · , (1)

where C0 is the initial configuration ofM on w.
M stops when it reaches a halting configuration, i.e., when it reaches either qacc or qrej. If

M halts in an accepting configuration, then we say thatM accepts w. If it halts in a rejecting
configuration, then we say thatM rejects w. We denote by L(M)

def
= {w :M accepts w}.

Remark 0.8 Our definition of Turing machine above is usually called two-way infinite tape, in
the sense that the tape is unbounded on both the left and the right side. In most textbooks,
Turing machine is defined as only “one-way” in the sense that the left side is bounded, but the
right side is unbounded. Both definitions are equivalent. Neither one is computationally stronger
than the other.

Multi-tape Turing machines. A multi-tape Turing machine is a Turing machine that has a
few tapes. On each tape, the Turing machine has one head. Formally, it is defined as follows.
Let k > 1. A k-tape Turing machine isM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉, where δ is a function

δ : (Q− {qacc, qrej})× Γk → Q× (Γ− {t})k × {Left, Right}k

As before, an element of δ is written in the form:

(q, a1, . . . , ak)→ (p, b1, . . . , bk, Move1, . . . , Movek).

Intuitively, it means that if the TM is in state q, and on each i = 1, . . . , k, the head on tape i is
reading ai, then it enters state p, and for i = 1, . . . , k, the head on tape i writes the symbol bi
and moves according to Movei.
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A configuration ofM is of the form (q, u1, . . . , uk), where q ∈ Q and each ui is a string over
Γ∪{•} and the symbol • appears exactly once in each ui. The symbol • is to denote the position
of the head.

The input is always written in the first tape. All the other tapes are initially blank. Formally,
the initial configuration on input w is (q0, •w, •, . . . , •).

The notion of “one step computation” C ` C ′ is defined similarly as in the standard Turing
machine. Likewise, the conditions of acceptance and rejection are defined as when the Turing
machines enters the accepting and rejecting states, respectively.

Theorem 0.9 For k-tape TMM, there is a single tape TMM′ such that for every word w, the
following holds.

• IfM accepts w, thenM′ accepts w.

• IfM rejects w, thenM′ rejects w.

• IfM does not halt on w, thenM′ does not halt on w.

Non-deterministic Turing machines. A non-deterministic Turing machine (NTM) is a sys-
tem M = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉 defined as the standard Turing machine, with the exception
that δ is now a relation:

δ ⊆ (Q− {qacc, qrej})× Γ ×Q× Γ× {Left, Right}

As before, we write an element of δ is in the form:

(q, a)→ (p, b, Move).

The initial configuration ofM on input word w is q0w. For two configurations C,C ′, the notion
of “one step computation” C ` C ′ is defined similarly as in the standard Turing machine. A run
ofM on input w is a sequence:

C0 ` C1 ` · · · ,

where C0 is the initial configuration on w. A run is accepting/rejecting, if it ends up in an
accepting/rejecting configuration, respectively. However, due to non-determinism, for each C
there can be a few configurations C ′ such that C ` C ′, thus, there can be many runs. Some are
accepting, some are rejecting, and some other do not halt.

Encoding of Turing machines. We always assume that the alphabet and the tape alphabet
of our TM are Σ = {0, 1} and Γ = {0, 1,t}, respectively. Without loss of generality, we can also
assume that Q = {0, 1, . . . , n} for some positive integer n with 0 being the initial state.

We note the following.

• Each state i ∈ Q is written as a string in its binary form.

• Each transition (i, a) → (j, b, α) ∈ δ can be written as string over the symbols 0, 1, (, ), ,
, t̃, L, R, where the symbol t̃ represents t, and L, R represent Left, Right, respectively.

So, the whole systemM = 〈Σ,Γ, Q, 0, qacc, qrej, δ〉 can be written as a string:

bΣc # bΓc # bQc # b0c # bqaccc # bqrejc # bδc

where b·c denotes the string representing the component · and # the symbol separating two
consecutive components.
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This shows that every Turing machine (whose tape alphabet is Γ = {0, 1,t}) can be described
as a string over a fixed set of the symbols, i.e., 0, 1, (, ), , , t̃, L, R, #. All these symbols can
be further encoded into strings over 0 and 1 to obtain a binary string, which we denote by bMc.
That is, bMc is the binary string representing the Turing machineM. Sometimes, we will also
say bMc is the string description/encoding ofM, or the description/encoding ofM, for short.

B An informal definition of (deterministic) algorithms

Designing a TM is often a very tedious process. So we often resort to describing an “algorithm”
which is defined (informally) as consisting of one “main” Boolean function of the form:

Boolean main (String w)

{ statement;
...

statement;

}

and some (finite number of) functions of the form:

〈value-type〉 function 〈function-name〉 (〈variable-name〉,. . . ,〈variable-name〉)
{ statement;

...

statement;

}

Statements in the algorithm are of the following form:

• 〈variable-name〉 := 〈expression〉;

• 〈variable-name〉 := 〈function-name〉(〈variable-name〉,. . . ,〈variable-name〉);

• return 〈variable-name〉/〈some-value〉;

• if 〈condition〉
{ statement;

...

statement;

} else

{ statement;
...

statement;

}
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• while 〈condition〉 do
{ statement;

...

statement;

}

Note that we define our algorithm to mimic closely the C/C++/Java language. We may assume
that the variables used in each function have different names. Moreover, each variable can only
contain “string” value. Values of other types such as Integer and Real are represented in binary
forms as strings.

In measuring the space complexity of an algorithm, we count the maximum total length of
the strings stored in all variables at any time during its execution process.

C Non-deterministic algorithms

One can define a “non-deterministic” algorithm as a deterministic algorithm extended with an
additional special variable z and an instruction of the following form:

z := 0 ‖ 1; (2)

This instruction means “randomly assign variable z with either 0 or 1.”
A non-deterministic algorithm A “accepts” an input word w, if on every instruction of the

form (2), variable z can be assigned with 0 or 1 such that A will “return true.” Note that the
instruction (2) can be encountered more than once during the execution of algorithm A. For
example, it may appear inside a while-loop.
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Lesson 1: The class NP

Theme: Some classical results on the class NP.

1 Definitions

We recall the following definition of NP.

Definition 1.1 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L andM runs in time O(f(n)).

There is an alternative definition of NP.

Definition 1.2 A language L ⊆ Σ∗ is in NP if there is a language K ⊆ Σ∗ × Σ∗ such that the
following holds.

• For every w ∈ Σ∗, w ∈ L if and only if there is v ∈ Σ∗ such that (w, v) ∈ K.

• There is f(n) = poly(n) such that for every (w, v) ∈ K, |v| 6 f(|w|).

• The language K is accepted by a polynomial time DTM.

For (w, v) ∈ K, the string v is called the certificate/witness for w. We call the language K the
certificate/witness language for L.

Indeed Def. 1.1 and 1.2 are equivalent. That is, for every language L, L is in NP in the sense
of Def. 1.1 if and only if L is in NP in the sense of Def. 1.2.

2 NP-complete languages

Recall that a DTMM computes a function F : Σ∗ → Σ∗ in time O(g(n)), if there is a constant
c > 0 such that on every word w,M computes F (w) in time 6 cg(|w|). If g(n) = poly(n), such
fucntion F is called polynomial time computable function. Moreover, ifM uses only logarithmic
space, it is called logarithmic space computable function.

Definition 1.3 A language L1 is polynomial time reducible to another language L2, denoted by
L1 6p L2, if there is a polynomial time computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L1 is log-space reducible to L2,

denoted by L1 6log L2.
If L1 and L2 are in NP with certificate languages K1 and K2, respectively, we say that F is

parsimonious, if for every w ∈ Σ∗, w has the same number of certificates in K1 as F (w) in K2.

Definition 1.4 Let L be a language.

• L is NP-hard, if for every L′ ∈ NP, L′ 6p L.

• L is NP-complete, if L ∈ NP and L is NP-hard.
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Recall that a propositional formula (Boolean expression) with variables x1, . . . , xn is in Con-
junctive Normal Form (CNF), if it is of the form:

∧
i

∨
j `i,j where each `i,j is a literal, i.e., a

variable xk or its negation ¬xk. It is in 3-CNF, if it is of the form
∧

i

(
`i,1 ∨ `i,2 ∨ `i,3

)
. A

formula ϕ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ϕ that evaluates to true.

SAT

Input: A propositional formula ϕ in CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

3-SAT

Input: A propositional formula ϕ in 3-CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT def
= {ϕ : ϕ is satisfiable CNF formula}.

Likewise, for 3-SAT.

Theorem 1.5 (Cook 1971, Levin 1973) SAT and 3-SAT are NP-complete.

3 Ladner’s theorem: NP-intermediate language

Theorem 1.6 (Ladner 1975) If P 6= NP, then there is L ∈ NP such that L /∈ P and L is not
NP-complete.

For a function H : N→ N, define SATH as follows.

SATH
def
= {ϕ0 1 · · · 1︸ ︷︷ ︸

nH(n)

: ϕ ∈ SAT and |ϕ| = n}

We define H : N→ N such that SATH is the language L required in Theorem 1.6. For every
n > 1, the value H(n) is defined by Algorithm 1 below. HereMi is the DTM whose encoding
is the binary representation of i.

Algorithm 1
Input: 1n, where n > 1.
Task: Compute 1H(n).
1: for i = 1, . . . , log log(n)− 1 do
2: LetMi be the ith (1-tape) DTM.
3: for all x ∈ {0, 1}∗ where |x| 6 log n do
4: Compute SATH(x).
5: SimulateMi on x in i|x|i steps (using the UTM in Theorem 0.7).
6: if the results in lines 4 and 5 agree on all x ∈ {0, 1}∗ where |x| 6 log n then
7: return i.
8: return log logn.

Lemma 1.7

• Algorithm 1 runs in polynomial time and SATH ∈ NP.

• SATH ∈ P if and only if H(n) = O(1).

• SATH /∈ P and SATH is not NP-complete.
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4 TM with oracles

A TMM with oracle access to a language K, denoted byMK , is a TM with a special tape called
oracle tape and three special states qquery, qyes, qno. Each time it is in qquery, it moves to qyes, if
w ∈ K and to qno, if w /∈ K, where w is the string found in the oracle tape. In other words, when
it is in qquery, the machine can “query” the membership of the language K. Regardless of the
choice of K, such query counts only as one step. We denote by L(MK) the language accepted
byMK .

For a language K, we define the classes P and NP relativized to K as follows.

PK def
= {L : there is a polynomial time DTMMK such that L(MK) = L}

NPK def
= {L : there is a polynomial time NTMMK such that L(MK) = L}

Theorem 1.8 (Baker, Gill, Solovay 1975) There is language A and B such that PA = NPA

and PB 6= NPB.

Proof. For a PSPACE-complete language A, we can show that PA = NPA.
To show the existence of B, we need the following notation. For a language C ∈ {0, 1}∗,

define unary(C)
def
= {1n : there is w ∈ C with length n}. Obviously, for every C ∈ {0, 1}∗,

unary(C) ∈ NPC .
The language B will be defined as B def

=
⋃

i∈NBi where each Bi is a finite set defined inductively
as follows. Each Bi is associated with an integer ki such that Bi = B∩{0, 1}6ki . Here {0, 1}6k1 def

=
{w ∈ {0, 1}∗ : |w| 6 ki}.

The base case is B0 = ∅ and k0 = 0. For the induction step, Bi+1 is defined as follows, where
we assume an enumeration of all oracle DTMM0,M1, . . ..

• Let n = ki + 1.

• Simulate oracle TMMi+1 on 1n within 2n/10 steps.

During the simulationMi+1 may query the oracle. If the query strings are of length 6 ki,
then answer according to Bi. For all the other query strings, answer “no.”

• Let ki+1 be as follows.

ki+1
def
=

{
n, if all the query strings has length 6 ki
m, m is the maximal length of the query strings with length > ki + 1

• IfMi+1 accepts 1n within 2n/10 steps, we set Bi+1
def
= Bi.

• IfMi+1 does not accept 1n within 2n/10 steps, we set Bi+1
def
= Bi∪{w}, where w ∈ {0, 1}n

and w is not one of the query strings.

From the definition of B, we can show that unary(B) /∈ PB. �
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Appendix

A coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.

Definition 1.9 Let K be a language.

• K is coNP-hard, if for every L ∈ coNP, L 6p K.

• K is coNP-complete, if K ∈ coNP and K is coNP-hard.

Note that for every language K, K is NP-complete if and only if its complement K is coNP-
complete, where K

def
= Σ∗ −K. Thus, SAT def

= {ϕ : ϕ is not satisfiable} is coNP-complete.
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Lesson 2: The class NL

Theme: Some classical results on the class NL.

We recall the notion of log-space reduction. Let F : Σ∗ → Σ∗ be a function. We say that F
is computable in logarithmic space, if there is a 3-tape DTMM such that on input word w, it
works as follows.

• Tape 1 contains the input word w and its content never changes.

• There is a constant c such thatM uses only c log |w| space in tape 2.

• The head in tape 3 can only “write” and move right, i.e., once it writes a symbol to a cell,
the content of that cell will not change.

Tape 1 is called the input tape, tape 2 the work tape and tape 3 the output tape.

Definition 2.1 A language L is log-space reducible to another languageK, denoted by L 6log K,
if there is a function F : Σ∗ → Σ∗ computable in logarithmic space such that for every w ∈ Σ∗,
w ∈ L if and only if F (w) ∈ K.

Remark 2.2 The relation 6log is transitive in the sense that if L1 6log L2 and L2 6log L3, then
L1 6log L3.

Definition 2.3 Let K be a language.

• K is NL-hard, if for every language L ∈ NL, L 6log K.

• K is NL-complete, if K ∈ NL and K is NL-hard.

Define the following language PATH.

PATH def
= {(G, s, t) : G is directed graph and there is a path in G from vertex s to vertex t}

Theorem 2.4 PATH is NL-complete.

Theorem 2.5 (Savitch 1970) NL ⊆ Dspace[log2 n].

To prove Theorem 2.5, it suffices to show that PATH ∈ Dspace[log2 n]. See Appendix A.

Theorem 2.6 (Immerman 1988 and Szelepcsényi 1987) NL = coNL.

To prove Theorem 2.6, we consider the complement language of PATH:

PATH def
= {(G, s, t) : G is directed graph and there is no path in G from vertex s to vertex t}

Note that PATH is coNL-complete. To prove Theorem 2.6, it suffices to show that PATH ∈ NL.
See Appendix B.
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Appendix

A Proof of Theorem 2.5

Algorithm 1 below decides the language PATH.

Algorithm 1
Input: (G, s, t), where G is a directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is a path in G from s to t.
1: Let n be the number of vertices in G.
2: ACCEPT iff CheckG(s, t, dlog ne) = true.

It uses Procedure CheckG defined below.

Procedure CheckG

Input: (u, v, k) where u and v are two vertices in G, and k is an integer > 0.
Task: Return true, if there is a path in G of length 6 2k from u to v. Otherwise, return false.
1: if k = 0 then
2: return true iff (u = v or (u, v) is an edge in G).
3: for all vertex x in G do
4: b := CheckG(u, x, k − 1).
5: if b = true then
6: b := CheckG(x, v, k − 1).
7: if b = true then
8: return true.
9: return false.

Note that when computing CheckG(u, x, k−1) and CheckG(x, v, k−1), Procedure CheckG

can use the same space. Thus, it uses only O(k log n) space. Since k is initialized with dlog ne,
Algorithm 1 uses O(log2 n) space in total.

B Proof of Theorem 2.6

Consider the following algorithm.

Algorithm No-path
Input: (G, s, t) where G is directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is no path in G from s to t.
1: m := the number of vertices in G reachable from s.
2: {Note: This value m is computed with Procedure Count-VertexG below.}
3: for all vertex x in G do
4: Guess if x is reachable from s.
5: if the guess is “yes” then
6: m := m− 1.
7: Guess a path from s to x.
8: if it is not possible to guess such a path then REJECT.
9: if there is such a path and x = t then REJECT.

10: ACCEPT iff m = 0.
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The number of vertices reachable from s can be computed with Procedure Count-VertexG

defined below.

Procedure Count-VertexG

Input: u where u is a vertex in G.
Task: Return the number of vertices in G reachable from vertex u, where the number is written

in binary form.
1: Let n be the number of vertices in G.
2: m := 1 + the outdegree of u.
3: {Note: m is initialized with the number of vertices reachable from u in 6 1 steps.}
4: for i = 2, . . . , n do
5: m′ := 0.
6: for all vertex x in G do
7: Guess if there is a path from u to x with length 6 i.
8: if the guess is “yes” then
9: Verify it by guessing such a path (of length 6 i).

10: m′ := m′ + 1.
11: if the guess is “no” then
12: Verify that indeed there is no such a path (of length 6 i).
13: m := m′.
14: {Note: On each iteration, m is the number of vertices reachable from u in 6 i steps.}
15: return m

The verification in Line 12 above is done with the following procedure.

Procedure VerifyG

Input: (u, x,m, i) where u and x are vertices in G, i > 2 is an integer and m is the number of
vertices in G reachable from u in 6 i− 1 steps.

Task: Verify that x is not reachable from u in 6 i steps.
1: ` := m.
2: for all vertex y in G do
3: Guess if there is a path from u to y with length 6 i− 1.
4: if the guess is “yes” then
5: ` := `− 1.
6: Guess a path (of length 6 i− 1) from u to y.
7: Verify that the edge (y, x) does not exist in G.
8: Verification is complete iff ` = 0.

Note that if any of the verification in Lines 9 and 12 in Procedure Count-VertexG and
Line 7 in Procedure VerifyG fails, the whole algorithm rejects immediately.

The correctness of Procedure Count-VertexG can be established by induction on i. The
correctness of Algorithm No-path follows immediately from Count-VertexG.
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Lesson 3: The class PSPACE

Theme: Some classical results on the class PSPACE.

Definition 3.1 Let K be a language.

• K is PSPACE-hard, if for every language L ∈ PSPACE, L 6p K.

• K is PSPACE-complete, if K ∈ PSPACE and K is PSPACE-hard.

Quantified Boolean formulas (QBF) are formulas of the form:

Q1x1 Q2x2 · · · Qnxn ϕ(x1, . . . , xn)

where each Qi ∈ {∀, ∃} and ϕ(x1, . . . , xn) is a Boolean formula with variables x1, . . . , xn.
The intuitive meaning of each Qi is as follows.

• ∀x ψ means that for all x ∈ {true, false}, ψ is true.

• ∃x ψ means that there is x ∈ {true, false} such that ψ is true.

We define the problem TQBF:

TQBF

Input: A QBF ϕ.
Task: Return true, if ϕ is true. Otherwise, return false.

As usual, it can be viewed as a language TQBF def
= {ψ : ψ is a true QBF}. Note also that the

usual Boolean formula can be viewed as a QBF, where each Qi is ∃. Thus, TQBF is a more
general problem than SAT.

Theorem 3.2 (Stockmeyer and Meyer 1973) TQBF is PSPACE-complete.

Theorems 3.3 and 3.4 below are the polynomial space analog of Theorem 2.5 and 2.6, re-
spectively. In fact, they can be easily generalized to the so called time and space constructible
functions. See Appendix A.

Theorem 3.3 (Savitch 1970) Nspace[nk] ⊆ Dspace[n2k].

Theorem 3.4 (Immerman 1988 and Szelepcsényi 1987) Nspace[nk] = coNspace[nk].

Note that Theorem 3.3 implies PSPACE = NPSPACE = coNPSPACE.
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Appendix

A Time and space constructible functions

Definition 3.5 Let T : N→ N be a function.

• We say that T is time constructible, if for every n, T (n) > n and there is a DTM that on
input 1n computes 1T (n) in time O(T (n)).

• We say that T is space constructible, if there is a DTM that on input 1n computes 1T (n) in
space O(T (n)).

Intuitively, when we say that M runs in time/space O(T (n)), where T is time/space con-
structible function, we can assume that on input word w, M first “computes” the amount of
time/space needed to decide w, before going on to process w.

Theorems 3.3 and 3.4 can be easily generalized to space constructible functions as follows.

Theorem 3.6 Let f : N→ N be space constructible function such that f(n) > log n, for every n.

• (Savitch 1970) Nspace[f(n)] ⊆ Dspace[f(n)2].

• (Immerman 1988 and Szelepcsényi 1987) Nspace[f(n)] = coNspace[f(n)].

B Hardness via log space reduction

In our definition of hardness for NP, coNP and PSPACE, we require that the reduction is
polynomial time reduction. It is also common to define hardness by insisting the reduction is
log-space reduction. That is, we can define K as NP-hard by insisting L 6log K, for every
L ∈ NP, rather than L 6p K. Similarly, for coNP and PSPACE.

Most NP-, coNP- and PSPACE-complete problems are known to remain complete even
under log-space reduction, including SAT, 3-SAT and TQBF.

• SAT and 3-SAT are NP-complete under log-space reduction.

• TQBF is PSPACE-complete under log-space reduction.
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Lesson 4: Alternating Turing machines

Theme: The notion of alternating Turing machine and its relation with DTM.

1 Definition

A 1-tape alternating Turing machine (ATM) is a systemM = 〈Σ,Γ, Q, U, q0, qacc, qrej, δ〉, where
each component is as follows.

• Σ = {0, 1} and Γ = {0, 1,t} are the input and tape alphabets, respectively.

• Q is a finite set of states.

• U ⊆ Q is a finite subset of Q.

• q0, qacc, qrej are the initial state, accepting state and rejecting state, respectively.

• δ ⊆ (Q− {qacc, qrej})× Γ×Q× Γ× {Left, Right}.

Note that ATM is very much like NTM, except that it has one extra component U . The states
in U are called universal states, and the states in Q − U are called existential states. As in
DTM/NTM, for convenience, we assume that the tape is 2-way infinite.

The notions of initial/halting/accepting/rejecting configuration are defined similarly as in
NTM/DTM. A configuration C is called existential/universal configuration, if the the state in C
is an existential/universal state. The notion of “one step computation” C ` C ′ for ATM is also
similar to the one for DTM/NTM. When C ` C ′, we say that C ′ is one of the next configuration
of C (w.r.t. M).

On input word w, the run ofM on w is a tree T where each node in the tree is labelled with
a configuration ofM according to the following rules.

• The root node of T is labelled with the initial configuration ofM on w.

• Every other node x in T is labelled as follows.

If x is labelled with a configuration C and C1, . . . , Cn are all the next configurations of C,
then x has n children y1, . . . , yn labelled with C1, . . . , Cn, respectively.

Note that if x is labelled with C that does not have next configuration, then it is a leaf node,
i.e., it does not have any children.

Let T be the run ofM on w and let x be a node in T . We say that x leads to acceptance, if
the following holds.

• x is a leaf node labelled with an accepting configuration.

• If x is labelled with an existential configuration, then one of its children leads to acceptance.

• If x is labelled with a universal configuration, then all of its children lead to acceptance.

We say that T is accepting run, if its root node leads to acceptance. The ATMM accepts w, if
the run ofM on w is accepting run. As before, L(M)

def
= {w :M accepts w}.

Note that NTM is simply ATM where all the states are existential, and DTM is simply NTM
where every configuration (except the accepting/rejecting configuration) has exactly one next
configuration. The generalization of ATM to multiple tapes is straightforward.
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2 Time and space complexity for ATM

LetM be a ATM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if the run ofM on w has depth at most t.

• M decides w in space t (or, uses t cells/space), if in the run of M on w, every node is
labelled with configuration of length t.

• M runs in time/space O(f(n)), if there is c > 0 such that for sufficiently long word w,M
decides w in time/space c · f(|w|).

• M decides a language L in time/space O(f(n)), if M runs in time/space O(f(n)) and
L(M) = L.

• Atime[f(n)]
def
= {L : there is ATMM that decides L in time O(f(n))}.

• Aspace[f(n)]
def
= {L : there is ATMM that decides L in space O(f(n))}.

Analoguous to the DTM/NTM, we can define the classes of languages accepted by ATM run in
algorithmic/polynomial/exponential time/space.

AL def
= {L : there is ATMM that decides L in space O(log n)}

AP def
=

⋃
f(n)=poly(n)

Atime[f(n)]

APSPACE def
=

⋃
f(n)=poly(n)

Aspace[f(n)]

AEXP def
=

⋃
f(n)=poly(n)

Atime[2f(n)]

The following lemma links time/space complexity classes for ATM with those for DTM.

Lemma 4.1 Let T : N→ N and S : N→ N such that T (n) > n and S(n) > log n, for every n.

(a) Atime[T (n)] ⊆ Dspace[T (n)].

(b) Dspace[S(n)] ⊆ Atime[S(n)2].

(c) Aspace[S(n)] ⊆ Dtime[2O(S(n))].

(d) Dtime[T (n)] ⊆ Aspace[log T (n)].

Proof. (a) and (c) is by straightforward simulation of ATM with DTM. (b) is similar to the
proof of Savitch’s theorem. (d) is similar to the proof of Theorem 4.3 below, i.e., by viewing the
computation of DTM as a boolean circuit. �

Theorem 4.2 (Chandra, Kozen, Stockmeyer 1981)

• AL = P.

• AP = PSPACE.

• APSPACE = EXP.

• AEXP = EXPSPACE.

• · · · .
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Appendix

A P-complete languages

Boolean circuits. Let n ∈ N, where n > 1. An n-input Boolean circuit C is a directed acyclic
graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex
with no outgoing edge).

The source vertices are labelled with x1, . . . , xn. The non-source vertices, called gates, are
labelled with one of ∧,∨,¬. The vertices labelled with ∧ and ∨ have two incoming edges, whereas
the vertices labelled with ¬ have one incoming edge. The size of C, denoted by |C| is the number
of vertices in C.

On input w = x1 · · ·xn, where each xi ∈ {0, 1}, we write C(w) is the output of C on w,
defined as interpretating ∧,∨,¬ in the natural way and 0 and 1 as false and true, respectively.

(Boolean) straight line programs. It is sometimes more convenient to view a boolean circuit
a straight line program. The following is an example of straight line program, where the input is
w = x1 · · ·xn.

1: p1 := x1 ∧ x3.
2: p2 := ¬x4.
3: p3 := p1 ∨ p2.
...
`: p` := pi ∧ pj .

Intuitively, straight line programs are programs without if branch and while loop, hence, the
name “straight line” programs. It is assumed that such program always outputs the value in the
variable in the last line. In our example above, it outputs the value of variable p`.

Define the following problem.

CIRCUIT-EVAL

Input: An n input boolean circuit C and w ∈ {0, 1}n.
Task: Output C(w).

It can also be defined as the language CIRCUIT-EVAL def
= {(C,w) : C(w) = 1}.

For our proof of Theorem 4.3 below, it is also convenient to assume that vertices labelled
with ∧ and ∨ can have more than 2 incoming edges.

Theorem 4.3 CIRCUIT-EVAL is P-complete via log-space reductions.

Proof. Follows the reduction for the NP-completeness of SAT. �
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Lesson 5: The polynomial hierarchy and the complexity classes
for counting

Theme: The polynomial time hierarchy and the complexity classes for counting problems.

1 The polynomial hierarchy

For every integer i > 1, the class Σp
i is defined as follows. A language L ⊆ {0, 1}∗ is in Σp

i ,
if there is a polynomial q(n) and a polynomial time DTM M such that for every w ∈ {0, 1}∗,
w ∈ L if and only if the following holds.

∃y1 ∈ {0, 1}q(|w|) ∀y2 ∈ {0, 1}q(|w|) · · · Qyi ∈ {0, 1}q(|w|) M accepts (w, y1, . . . , yi) (1)

Here Q = ∃, if i is odd and Q = ∀, if i is even.
The class Πp

i is defined as above, but the sequence of quantifiers in (1) starts with ∀. Alter-
natively, it can also be defined as Πp

i
def
= {L : L ∈ Σp

i }. Note that NP = Σp
1 and coNP = Πp

1.

Remark 5.1 The class Σp
i can also be defined as follows. A language L is in Σp

i , if there is a
polynomial time ATMM that decides L such that for every input word w ∈ {0, 1}∗, the run of
M on w can be divided into i layers. Each layer consists of nodes of the same depth in the run.
(Recall that the run of an ATM is a tree.) In the first layer all nodes are labeled with existential
configurations, in the second layer with universal configurations, and so on. It is not difficult to
show that this definition is equivalent to the one above.

The polynomial time hierarchy (or, in short, polynomial hierarchy) is defined as the following
class.

PH def
=

∞⋃
i=1

Σp
i

Note that PH ⊆ PSPACE.
It is conjectured that Σp

1 ( Σp
2 ( Σp

3 ( · · · . In this case, we say that the polynomial
hierarchy does not collapse. We say that the polynomial hierarchy collapses, if there is i such that
PH = Σp

i , in which case we also say that the polynomial hierarchy collapses to level i.
We define the notion of hardness and completeness for each Σp

i as follows. For i > 1, a
language K is Σp

i -hard, if for every L ∈ Σp
i , L 6p K. It is Σp

i -complete, if it is in Σp
i and it is

Σp
i -hard. The same notion can be defined analoguously for PH and each Πp

i .
Define the language Σi-SAT as consisting of true QBF of the form:

∃x̄1 ∀x̄2 · · · Qx̄i ϕ(x̄1, . . . , x̄i)

where ϕ(x̄1, . . . , x̄i) is quantifier-free Boolean formula and Q = ∃, if i is odd, and Q = ∀, if i is
even. Here x̄1, . . . , x̄i are all vectors of boolean variables. In other words, Σi-SAT is a subset of
TQBF where the number of quantifier alternation is limited to (i − 1). The language Πi-SAT is
defined analoguously with the starting quantifiers being ∀.

Theorem 5.2

• For every i > 1, Σi-SAT is Σp
i -complete and Πi-SAT is Πp

i -complete.

• If Σp
i = Πp

i for some i > 1, then the polynomial hierarchy collapses.

• If there is language that is PH-complete, then the polynomial hierarchy collapses.
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2 Complexity classes for counting problems

2.1 The class FP

We denote by FP the class of functions f : {0, 1}∗ → N computable by polynomial time DTM.
Here the convention is that a natural number is always represented in binary form. So, when we
say that a DTMM computes a function f : {0, 1}∗ → N, on input word w, the output ofM on
w is f(w) in the binary representation.

Let ]CYCLE be the following problem.

]CYCLE

Input: A directed graph G.
Task: Output the number of cycles in G.

As before, ]CYCLE can also be viewed as a function. Note also that the number of cycles in a
graph with n vertices is at most exponential in n, thus, its binary representation only requires
polynomially many bits.

Theorem 5.3 If ]CYCLE is in FP, then P = NP.

Proof. Let G be a (directed) graph with n vertices. We construct a graph G′ obtained by
replacing every edge (u, v) in G with the following gadget:

u

a1

b1

a2

b2

. . .

. . .

am−1

bm−1

am

bm

v

Note that every simple cycle in G of length ` becomes (2m)` cycles in G′. Now, let m def
= n log n.

It is not difficult to show that G has a hamiltonian cycle (i.e., a simple cycle of length n) if
and only if G′ has more than n(n2) cycles. So, if ]CYCLE ∈ FP, then checking hamiltonian cycle
can be done is in P. �

Note that checking whether a graph has a cycle itself can be done in polynomial time. How-
ever, as Theorem 5.3 above states, it is unlikely that counting the number of cycles can be done
in polynomial time.

2.2 The class ]P

Definition 5.4 A function f : {0, 1}∗ → N is in ]P, if there is a polynomial q(n) and a polyno-
mial time DTMM such that for every word w ∈ {0, 1}∗, the following holds.

f(w) = |{y :M accepts (w, y) and y ∈ {0, 1}q(|w|)}|

Alternatively, we can say that f is in ]P, if there is a polynomial time NTM M such that for
every word w ∈ {0, 1}∗, f(w) = the number of accepting runs ofM on w.

For a function f : {0, 1}∗ → N, the language associated with the function f , denoted by Of ,
is defined as Of

def
= {(w, i) : the ith bit of f(w) is 1}. When we say that a TM M has oracle

access to a function f , we mean that it has oracle access to the language Of .
We define FPf as the class of functions g : {0, 1}∗ → N computable by a polynomial time

DTM with oracle access to f .
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Definition 5.5 Let f : {0, 1}∗ → N be a function.

• f is ]P-hard, if ]P ⊆ FPf , i.e., every function in ]P is computable by a polynomial time
DTM with oracle access to f .

• f is ]P-complete, if f ∈ ]P and f is ]P-hard.

Let ]SAT be the following problem.

]SAT

Input: A boolean formula ϕ.
Task: Output the number of satisfying assignments for ϕ.

As before, the output numbers are to be written in binary form. We can also view ]SAT as a
function ]SAT : {0, 1}∗ → N, where ]SAT(ϕ) = the number of satisfying assignment for ϕ.

Theorem 5.6 ]SAT is ]P-complete.

Proof. Cook-Levin reduction (to prove the NP-hardness of SAT) is parsimonious. �

There are usually two ways to prove a certain function is ]P-hard, as stated in Remark 5.7
and 5.8 below.

Remark 5.7 Let f1 and f2 be functions from {0, 1}∗ to N. Suppose L1 and L2 be languages in
NP such that f1 and f2 are the functions for the number of certificates for L1 and L2, respectively.
That is, for every word w ∈ {0, 1}∗,

fi(w) = the number of certificates of w in Li, for i = 1, 2.

If f1 is ]P-hard and there is a parsimonious (polynomial time) reduction from L1 to L2, then
f2 is ]P-hard.

Remark 5.8 Let f and g be two functions from {0, 1}∗ to N. If f is ]P-hard and f ∈ FPg,
then g is ]P-hard.

Since there is a parsimonious reduction from SAT to 3-SAT, by Theorem 5.6 and Remark 5.7,
we have the following corollary.

Corollary 5.9 ]3-SAT is ]P-complete.

Corollary 5.9 can also be proved by showing ]SAT ∈ FP]3-SAT.
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Lesson 6: Computing permanent

Theme: The complexity of computing the permanent of a matrix.

1 Definitions

For an integer n > 1, let [n] = {1, . . . , n}. The permanent of an n× n matrix A over integers is
defined as:

per(A)
def
=

∑
σ

n∏
i=1

Ai,σ(i)

where σ ranges over all permutation on [n]. Here Ai,j denotes the entry in row i and column j
in matrix A.

Consider the following problem.

PERM

Input: A square matrix A over integers.
Task: Output the permanent of A.

We denote it by 0|1-PERM, when the entries in the input matrix A are restricted to 0 or 1.

Theorem 6.1 (Valiant 1979) 0|1-PERM is ]P-complete.

To show that 0|1-PERM is in ]P, consider the following algorithm.

Input: A 0-1 matrix A.
1: Guess a permutation σ on [n], i.e., for each i ∈ [n], guess a value vi ∈ [n].
2: If the guessed σ is not a permutation, REJECT.
3: Compute the value

∏n
i=1Ai,σ(i).

4: ACCEPT if and only if the value is 1.

It is obvious that on input A, the number of accepting runs is the same as per(A).

2 Combinatorial view of permanent

Let G = (V,E,w) be a complete directed graph, i.e., E = V × V , and each edge (u, v) has a
weight w(u, v) ∈ Z. We write a (simple) cycle as a sequence p = (u1, . . . , u`), and its weight is
defined as:

w(p)
def
= w(u1, u2) · w(u2, u3) · . . . · w(u`−1, u`) · w(u`, u1)

A loop (u, u) is considered a cycle.
A cycle cover of G is a set R = {p1, . . . , pk} of pairwise disjoint cycles such that for every

vertex u ∈ V , there is a cycle pj ∈ R such that u appears in pj . The weight R is defined as:

w(R)
def
=

∏
pj∈R

w(Cj)
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Note that a cycle or a cycle cover can also be viewed as a set of edges.
Assuming that the vertices in G are {1, . . . , n}, let A be the adjacency matrix of G, i.e., A is

an (n× n) matrix over Z such that Ai,j = w(i, j).
A permutation σ = (d1,1, . . . , d1,k1), . . . , (dl,1, · · · , dl,kl) on [n] can be viewed as a cycle cover

whose weight is exactly the value
∏
i∈[n]Ai,σ(i). Thus, we have the equation:

per(A) =
∑

R is a cycle cover of G

w(R)

3 Reduction from 3-SAT to cycle cover

In this section we will show how to encode 3-SAT as the cycle cover problem.

3.1 Overview of the main idea

Let Ψ be a formula in 3-CNF. Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses. We
will construct a complete directed graph G = (V,E,w), where the weight of each edge can be
arbitrary integer and every boolean assignment φ : {x1, . . . , xn} → {0, 1} is associated with a set
Fφ of cycle covers of G such that the following holds.

• For two different assignments φ1, φ2, the sets Fφ1 and Fφ2 are disjoint.

• If φ is a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 43m, i.e.,∑
R∈Fφ

w(R) = 43m

• If φ is not a satisfying assignment for Ψ, the total weight of cycle covers in Fφ is 0, i.e.,∑
R∈Fφ

w(R) = 0

• The total weight of cycle covers not in any Fφ is 0, i.e.,∑
R/∈Fφ for any φ

w(R) = 0

If A is the adjacency matrix of G, it is clear that:

per(A) = 43m × (the number of satisfying assignment for Ψ)

3.2 The construction of the graph G

In the following we will draw an edge with a label indicating its weight. If the label is missing,
it means the weight is 1. When an edge is not drawn, it means the weight is 0.



CSIE 5046: Topics in complexity theory Lesson 6: Computing permanent

Variable gadget. For each variable xi, we have the following “variable gadget”:

si

ai,1

bi,1

ai,2

bi,2

. . .

. . .

ai,m

bi,m

ai,m+1

bi,m+1

ti

The upper edges, i.e., (ai,1, ai,2), . . . , (ai,m, ai,m+1), are called the external “true” edges of xi, and
the lower edges, i.e., (bi,1, bi,2), . . . , (bi,m, bi,m+1), the external “false” edges of xi.

Clause gadget. For each clause Cj , we have the following “clause gadget”:

zj

dj

ej fj

The “outer” edges (dj , ej), (ej , fj), (fj , dj) are intended to represent the literals in Cj . If `1, `2, `3
are the literals in Cj , then their associated edges are (dj , ej), (ej , fj), (fj , dj), respectively. To
avoid clutter, we will call those edges `1-edge, `2-edge and `3-edge, respectively.

The XOR operator. We also have the “XOR operator” between two edges (u1, u2) and (v1, v2):

u1 u2

α1

α2

α3

α4

v2 v1
−1

-1

2

3

−1

Definition 6.2 Let H be a graph, and let (u1, u2) and (v1, v2) are two non-adjacent edges in H.

• For a cycle cover R of H, we say that R respects the property (u1, u2)⊕(v1, v2), if R contains
exactly one of (u1, u2) or (v1, v2).
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• Let H ′ denotes the graph obtained from H by replacing the edges (u1, u2), (v1, v2) with the
edges in the XOR operator above.

A cycle cover R′ of H ′ is an associated cycle cover of R, if it satisfies the following condiiton.

– If R contains (u1, u2), then R′ contains a path from u1 to u2.

– If R contains (v1, v2), then R′ contains a path from v1 to v2.

– R \ {(u1, u2), (v1, v2)} ⊆ R′.

Lemma 6.3 Let H,H ′, R and (u1, u2), (v1, v2) be as in Definition 6.2. Then, the following holds.

∑
R′ is associated with R

w(R′) =

{
4w(R), if R respects (u1, u2)⊕ (v1, v2)
0, otherwise

Constructing the graph G. The graph G is defined as the disjoint union of all the variable
and clause gadgets and the following additional edges to connect them: For every clause Cj , for
every literal ` in Cj , if ` = xi, we “connect” the `-edge in the clause gadget of Cj with the edge
(ai,j , ai,j+1) via the XOR operator; and if ` = ¬xi, we “connect” it with the edge (bi,j , bi,j+1).

For an assignment φ : {x1, . . . , xn} → {0, 1}, we say that a cycle cover R is associated with
φ, if the following holds for every variable xi.

• If φ(xi) = 1, the cycle (si, ai,1, . . . , ai,m+1, ti) is in R.

• If φ(xi) = 0, the cycle (si, bi,1, . . . , bi,m+1, ti) is in R.

Lemma 6.4 For every assignment φ : {x1, . . . , xn} → {0, 1}, the following holds.

∑
R is associated with φ

w(R) =

{
43m, if φ is satisfying assignment for Ψ
0, if φ is not

Combining Lemmas 6.3 and 6.4, it is immediate that the following holds.

per(A) = 43m × (the number of satisfying assignments for Ψ)

Here A is the adjacency matrix of G.

4 Reduction from matrices over Z to matrices over {0, 1}
Reduction to matrices over integers of the form −2k, 0 or 2k. For each edge (u, v) with
weight 2k + 2l, we can replace it with 2 “parallel” edges with weights 2k and 2l, respectively.

u v

z1

z2

2k

2l
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Reduction to matrices over integers of the form −1, 0 or 1. For each edge (u, v) with
weight 2k, we can replace it with k “series” edges, each with weights 2.

u v
z1 z2 zk−1

. . .2 2 2

Each weight 2 edge can be further reduced to weight 1 edge as above.

Reduction to matrices over {0, 1}, but on modular arithmetic. The permanent of an
n×n matrix A over {−1, 0, 1} can only in between −n! and n!. Let m = n2. Since 2m+ 1 > 2n!,
it is sufficient to compute per(A) in Z2m+1. Since −1 ≡ 2m (mod 2m+1), we can replace each −1
with 2m, which can then be reduced to 1 as above.

5 Putting all the pieces together

Putting together all the pieces, we design a polynomial time algorithm to compute ]3-SAT (with
oracle access to language Oper, i.e., the language associated with permanent) . On input 3-CNF
formula Ψ, do the following.

• Let n and m be the number of variables and clauses in Ψ.

• Construct a matrix A over {−1, 0, 1} such that per(A) is 43m times the number of satisfying
assignments for Ψ.

• Let m be an integer for which we can compute per(A) modulo 2m + 1.

• Let A′ be the matrix obtained by replacing every −1 in A with 2m.

• Compute per(A′) by querying the oracle on each bit.

• Let Z be the remainder of per(A′) divided by 2m + 1.

• Divide Z by 43m, and output it.
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Lesson 7: Boolean circuits part. 1

Theme: Some classical results on boolean circuits.

Let n ∈ N, where n > 1. An n-input Boolean circuit C is a directed acyclic graph with
n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no
outgoing edge).

The source vertices are labelled with x1, . . . , xn. The non-source vertices, called gates, are
labelled with one of ∧,∨,¬. The vertices labelled with ∧ and ∨ have two incoming edges, whereas
the vertices labelled with ¬ have one incoming edge. The size of C, denoted by |C|, is the number
of vertices in C.

On input w = x1 · · ·xn, where each xi ∈ {0, 1}, we write C(w) to denote the output of C on
w, where ∧,∨,¬ are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as fan-in and fan-out, respec-
tively. In our definition above, we require fan-in 2.

• A circuit family is a sequence {Cn}n∈N such that every Cn has input n inputs and a single
output.

To avoid clutter, we write {Cn} to denote a circuit family.

• We say that {Cn} decides a language L, if for every n ∈ N, for every w ∈ {0, 1}n, w ∈ L if
and only if Cn(w) = 1.

• We say that {Cn} is of size T (n), where T : N→ N is a function, if |Cn| 6 T (n), for every
n ∈ N.

We define the following class.

P/poly
def
=

{
L : L is decided by {Cn} of size q(n) for some polynomial q(n)

}
That is, the class of languages decided by a circuit family of polynomial size.

Remark 7.1 It is not difficult to show that every unary language L is in P/poly. Thus, P/poly
contains some undecidable language.

Definition 7.2 A circuit family {Cn} is P-uniform, if there is a polynomial time DTM that on
input 1n, output the description of the circuit Cn.

Theorem 7.3 A language L is in P if and only if it is decided by a P-uniform circuit family.

Theorem 7.4 (Karp and Lipton 1980) If NP ⊆ P/poly, then PH = Σp
2.

Theorem 7.5 (Meyer 1980) If EXP ⊆ P/poly, then EXP = Σp
2.

Theorem 7.6 (Shannon 1949) For every n > 1, there is a function f : {0, 1}n → {0, 1} that
cannot be computed by a circuit of size 2n/(10n).
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The classes NC and AC. For a circuit C, the depth of C is the length of the longest directed
path from an input vertex to the output vertex.∗ For a function T : N→ N, we say that a circuit
family {Cn} has depth T (n), if for every n, the depth of Cn is 6 T (n).

For every i, the classes NCi and ACi are defined as follows.

• A language L is in NCi, if there is f(n) = poly(n) such that L is decided by a circuit family
of size f(n) and depth O(logi n).

• The class ACi is defined analogously, except that gates in the circuits are allowed to have
unbounded fan-in.

The classes NC and AC are defined as follows.

NC def
=
⋃
i>0

NCi and AC def
=
⋃
i>0

ACi

Note that NCi ⊆ ACi ⊆ NCi+1.

∗Here we take the length of a path as the number of edges in it.
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Lesson 8: Boolean circuits part. 2∗

Theme: Switching lemma and that parity function is not in AC0.

1 Definitions

In the following we will consider circuits with unbounded fan-in. We will often use the terms
“boolean formula” and “boolean function” interchangeably. Recall that a literal is either a
(boolean) variable or its negation.

A term is a conjunction of some literals. The length of a term is the number of literals in it.
A k-term is a term of length k. A formula is a DNF formula if it is a disjunction of terms. It is
k-DNF, if all its terms have length at most k.

Decision tree. Let F be a boolean function with variables x1, . . . , xn. A decision tree of F is
a tree constructed inductively as follows.

• If F already evaluates to a constant 0 or 1, the decision tree has only one node labelled
with 0 or 1, respectively.

• If F is not a constant, its decision tree has a root with two children, where the left and
right children are decision trees for F [x1 7→ 0] and F [x1 7→ 1], respectively.

Here F [x1 7→ b] denotes the resulting formula obtained by assigning x1 with b.

Note that a decision tree depends on the ordering of the variables x1, . . . , xn.

Canonical decision tree for DNF formulas. Let F = C1∨C2∨· · ·∨Cm be a DNF formula,
i.e., each Ci is a term. The canonical decision tree of F , denoted by T (F ), is the decision tree
obtained with the variables being ordered as follows: All the variables in C1 appear first, followed
by all the variables in C2 (which haven’t appeared yet), and so on. Let depth(T (F )) denote the
depth of the canonical decision tree of F .

Restriction. Let F be a formula with variables x1, . . . , xn. A restriction (on x1, . . . , xn) is a
function ρ : {x1, . . . , xn} → {0, 1, ∗}. Intuitively, ρ(xi) = ∗ means variable xi is not assigned.
We denote by F |ρ the resulting formula where we assign the variables in F according to ρ. Note
that if the formula F is DNF, the formula F |ρ is also DNF. For ` 6 n, R`n denotes the set of
restrictions (on n variables) where exactly ` variables are unassigned.

For two restrictions ρ1 and ρ2 whose sets of assigned variables are disjoint, we denote by
ρ1ρ2 the restriction obtained by combining both restrictions. That is, for every variable x, if x
is assigned according to ρ1 (or ρ2), then ρ1ρ2 assigns x according to ρ1 (or ρ2).

2 Switching lemma: Decision tree version

Lemma 8.1 (Switching lemma – Håstad 1986) Let F be a k-DNF formula with n variables.
For every s > 0 and every p 6 1/7, the following holds.

|{ρ ∈ Rpnn : depth(T (F |ρ)) > s}|
|Rpnn |

< (7pk)s (1)

∗Based on Sect. 13.1 in N. Immerman’s textbook “Descriptive Complexity” (1998). See also P. Beame’s note
“A switching lemma primer” (1994).
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One can also write Eq. (1) as Prρ∈Rpn
n

[depth(T (F |ρ)) > s] < (7pk)s. Here Prρ∈Rpn
n

[E ] denotes
the probability of event E where ρ is randomly chosen from Rpnn .

Let stars(k, s) be the set that contains a sequence Z̄ def
= (Z1, . . . , Zt) where

∑t
i=1 |Zi| = s and

each Zi is a non-empty subset of {1, . . . , k}. When s = 0, we define stars(k, s) to be {ε}, where
ε denotes the “empty sequence”. That is, |stars(k, 0)| = 1.

Lemma 8.2 For every k, s > 1, |stars(k, s)| 6 γs, where γ is such that (1 + 1
γ )k = 2. Hence,

|stars(k, s)| < (k/ ln 2)s.

Proof. The proof is by induction on s. Base case s = 0 is trivial.
For the induction hypothesis, we assume that the lemma holds for every s′ < s. The induction

step is as follows. Observe that if Z0 is a non-empty subset of {1, . . . , k} and Z̄ ∈ stars(k, s−|Z0|),
then (Z0, Z̄) ∈ stars(k, s). From here, we have:

|stars(k, s)| =

min(k,s)∑
i=1

(
k

i

)
|stars(k, s− i)| 6

k∑
i=1

(
k

i

)
|stars(k, s− i)|

6
k∑
i=1

(
k

i

)
γs−i

= γs
k∑
i=1

(
k

i

)
(1/γ)i

= γs
(
(1 + 1/γ)k − 1

)
= γs

�

Proof of Switching lemma: Let F be a k-DNF formula with n variables. Let s > 0 and
p 6 1/7. Let ` = pn. Let X be the set of restrictions ρ such that depth(T (F |ρ)) > s. We will
show that there is an injective function ξ:

ξ : X → R`−s × stars(k, s)× {0, 1}s

The existence of ξ implies |X| 6 |R`−s| · |stars(k, s)| ·2s and Switching lemma follows immediately
from Lemma 8.2 and the fact that |R`n| =

(
n
`

)
2n−`.

Let F def
= C1 ∨ C2 ∨ · · · , where each Ci is a term of length at most k. Let ρ ∈ X, i.e.,

depth(T (F |ρ)) > s. Consider the lexicographically first branch in T (F |ρ) with length > s and
let b be the first s steps in this branch. To define ξ(ρ), we do the following.

• Let Ci1 be the first term that is not set to 0 in F |ρ.
Let V1 be the set of variables in Ci1 |ρ. (Note that by the definition of the canonical decision
tree, this means the variables in V1 are assigned at the beginning of T (F |ρ).)
Let a1 be the (unique) assignment that makes Ci1 |ρ true.

Let b1 be the “initial” assignment of b that assigns variables in V1.
(If b ends before all the variables in V1 is used, let b1 = b and “shorten” a1 so that both a1
and b1 assign the same set of variables.)

Let S1 ⊆ {1, . . . , k} be the set of index j where the jth variable in Ci1 is assigned by a1.
(Note that from the term Ci1 and the set S1, we can reconstruct a1.)
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• Repeat the above process but with b \ b1, and we obtain a2, b2 and the set S2,

Performing the process above, we obtain a1 · · · at, b1 · · · bt and (S1, . . . , St). Note that b = b1 · · · bt.
Let a denote a1 · · · at. Note also that the number of variables assigned by both a and b is exactly s.
Thus, the sum |S1|+ · · ·+ |St| = s, and hence, (S1, . . . , St) ∈ stars(k, s).

Let δ : {1, . . . , s} → {0, 1} be a function defined as follows.

δ(j)
def
=

{
1, if a and b assign the same value to the variable in the jth step
0, otherwise

Note that δ can be viewed as a 0-1 string of length s.
Now we define the mapping ξ as follows.

ξ(ρ)
def
= (ρa, (S1, . . . , St), δ)

where a, (S1, . . . , St) and δ are defined as above.
We need to show that ξ is injective. We will show that if (ρ′, (S1, . . . , St), δ) is in the range

of ξ, we can construct a unique ρ such that ξ(ρ) = ρ′. Note that if (ρ′, (S1, . . . , St), δ) is in the
range of ξ, there is a1 · · · at such that ρ′ = ρa and (S1, . . . , St) and δ satisfy the property imposed
by the definition of ξ above. Thus, to reconstruct ρ, it suffices to reconstruct a1 · · · at.

We denote ρ′ by ρa1 · · · at for some a1 · · · at (which at this point is not known yet). We will
construct a1, . . . , at by doing the following.

• Find out the term Ci1 which is the first term in F that evaluates to 1 under ρ′.

From Ci1 and S1, we reconstruct a1.

From a1 and δ, we reconstruct b1.

• Repeat the same process but replacing ρ′ with (ρ′ \ a1)b1. (Here note that (ρ′ \ a1)b1 is the
same as ρb1a2 · · · at)
From this step, we figure out a2 and b2.

We repeat the same process until we figure out all a1, · · · , at and hence the restriction ρ. This
completes the proof of Lemma 8.1. �

3 Application

By the equivalence p1 ∧ · · · ∧ pm ≡ ¬(¬p1 ∨ · · · ∨¬pm), we can transform a circuit C into another
circuit C ′ that uses only ¬ and ∨ gates. Moreover, depth(C ′) 6 3 · depth(C). In this section we
always assume that circuits only use ¬ and ∨ gates.

Note that every gate g in a circuit defines a boolean formula. Abusing the notation, we will
often treat every gate as a formula too. For every vertex u in a circuit C, we define the height of
u, denoted by height(u), as follows.

• The height of a source vertex (i.e., the input vertex) is 0.

• The height of a gate vertex u is the maximum of height(v) + 1, where v ranges over all
edges (u, v) in C.

So, a circuit of depth d has vertices of height from 0 to d.
In the following, log has base 2.
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Lemma 8.3 Let C be a circuit with n variables, size m and depth d. For every 1 6 j 6 d, let
nj

def
= n

14(14 logm)j−1 . Assume that logm > 1. Then, the following holds.
For every 1 6 j 6 d, there is a restriction ρj ∈ R

nj
n such that for every gate f of height j

in C, the formula f |ρj has a decision tree with height < logm.

Proof. The proof is by induction on j. The base case is j = 1, where n1
def
= n/14. We randomly

choose (with equal probability) a restriction ρ from Rn1
n . For a gate f of height 1, let Ef denote

the event that “depth(T (f |ρ)) > logm.” Let E denote the event that “there is a gate f of height
1 such that depth(T (f |ρ)) > logm.”

We will first show that Prρ∈Rn1
n

[Ef ] < 1/m, for every gate f of height 1. Let f be a gate of
height 1. If f is a ¬-gate, then the depth of its decision tree is 1. Since logm > 1, we have:

Prρ∈Rn1
n

[Ef ] = 0 < 1/m

If f is an ∨-gate, we can view f as 1-DNF, i.e., every term has length 1. By Lemma 8.1 where
p = 1/14, k = 1 and s = logm, we have:

Prρ∈Rn1
n

[Ef ] < (7 · (1/14) · 1)logm = (1/2)logm = 1/m

Then,

Prρ∈Rn1
n

[E ] = Prρ∈Rn1
n

[ ⋃
f has height 1

Ef
]
6

∑
f has height 1

Prρ∈Rn1
n

[Ef ] < m · (1/m) = 1

This means Prρ∈Rn1
n

[E ] > 0, which means there is a restriction ρ ∈ Rn1
n such that for all gate f

of height 1, depth(T (f |ρ)) < logm, i.e., f |ρ has a decision tree with depth < logm.
For the induction hypothesis, we assume Lemma 8.3 holds for j − 1. Let ρ0 ∈ R

nj−1
n be a

restriction such that every gate g of height j− 1 has decision tree with depth < logm. Applying
ρ0 on all gates of height j − 1, we can view each gate of height j − 1 as DNF where each term
has length < logm.

Similar to above, we randomly choose a restriction ρ from Rnj
nj−1 . For a gate f of height j,

let E ′f denote the event that “every decision tree of f |ρ0ρ has depth > logm.” Let E ′ denote the
event that “there is a gate f of height j such that every decision tree of f |ρ0ρ has depth > logm.”

We will show that Pr
ρ∈R

nj
nj−1

[E ′f ] < 1/m, for every gate f of height j. Let f be a gate of

height j. If f is a ¬-gate, let f = ¬g, where g is of height j− 1. Since g|ρ0 has decision tree with
depth < logm, so does f |ρ0 . Thus,

Pr
ρ∈R

nj
nj−1

[E ′f ] = 0 < 1/m

If f is an ∨-gate, we can view f as k-DNF, where k = logm. By Lemma 8.1 with p = 1/(14 logm),
k = logm and s = logm, we have:

Pr
ρ∈R

nj
nj−1

[depth(T (f |ρ0ρ)) > logm] < (7 · 1

14 logm
· logm)logm = (1/2)logm = 1/m

Now, note that:

Pr
ρ∈R

nj
nj−1

[E ′f ] 6 Pr
ρ∈R

nj
nj−1

[depth(T (f |ρ0ρ)) > logm]

Thus,

Pr
ρ∈R

nj
nj−1

[E ′f ] < 1/m
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Applying similar argument as above, we obtain:

Pr
ρ∈R

nj
nj−1

[E ′] < 1

Hence, there is a restriction ρ ∈ Rnj
nj−1 such that for every gate f of height j, f |ρ0ρ has a decision

tree with depth < logm. Now, ρ0ρ ∈ R
nj
n . This completes the proof of Lemma 8.3. �

Consider the following language PARITY ⊆ {0, 1}∗.

PARITY def
= {w : the number of 1’s in w is odd}

Obviously, it can be viewed as a family of boolean functions {fn}n∈N, where each fn has n
variables x1, . . . , xn and fn(x1, . . . , xn)

def
=
∑n

i=1 xi (mod 2).
Applying Lemma 8.3, we immediately obtain that PARITY is not in AC0.

Theorem 8.4 (Furst, Saxe and Sipser 1981, Ajtai 1983, Yao 1985) PARITY /∈ AC0.
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Lesson 9: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.

Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system M =
〈Σ,Γ, Q, q0, qacc, qrej, δ〉 defined like the NTM, with the difference that δ ⊆ (Q−{qacc, qrej})×Γ ×
Q× Γ× {Left, Right} is now a relation such that for every (p, σ) ∈ (Q− {qacc, qrej})× Γ, there
are exactly two transitions that can be applied:

(p, σ)→ (q1, σ1, Move1) and (p, σ)→ (q2, σ2, Move2)

and the probability that each transition is applied is 1/2. Intuitively, when it is in state p reading
symbol σ,M tosses an unbiased coin to decide whether to apply (q1, σ1, Move1) or (q2, σ2, Move2).
On an input word w, the probability thatM accepts/rejects w is defined over all possible coin
tossing.

Similar to DTM/NTM, we say thatM runs in time f(n), if for every word w, every run of
M on w has length 6 f(|w|). We say thatM runs in polynomial time, if there is a polynomial
p(n) = poly(n) such thatM runs in time p(n). In this case we also say thatM is a polynomial
time PTM.

The class BPP is defined as follows. A language L is in the class BPP, if there a polynomial
time PTMM such that for every input word x, the following holds.

Pr[ M(x) = L(x) ] > 2/3

Here we treat a language L as a function L : {0, 1}∗ → {0, 1}, where L(x) = 1, if x ∈ L, and
L(x) = 0, if x /∈ L. Similarly, we treat TM M as a function M : {0, 1}∗ → {0, 1}, where
M(x) = 1, ifM accepts x, andM(x) = 0, ifM rejects x.

Note that BPP is closed under complement, union and intersection.

Remark 9.1 Alternatively, we can define the class BPP as follows. A language L is in the
class BPP, if there is a polynomial q(n) and a polynomial time DTM M such that for every
x ∈ {0, 1}∗, the following holds.

Prr∈{0,1}q(|x|) [ M(x, r) = L(x) ] > 2/3

Note that the DTM M takes as input (x, r). Intuitively, it can be viewed as a PTM that on
input x, first randomly choose a string r of length q(|x|), then run DTMM on (x, r).

Note the similarity with the alternative definition of NP (Def. 1.2), where an NTM first
guesses a certificate string r, and then runs a DTM for verification.

Theorem 9.2 (Error reduction) Let L ∈ BPP. Then, for every d > 1, there is a polynomial
time PTMM such that for every input word x:

Pr[ M(x) = L(x) ] > 1− 2−α|x|
d

(for some fixed α > 0)

Theorem 9.3 (Adleman 1978) BPP ⊆ P/poly.

Theorem 9.3 and Theorem 7.4 imply that if SAT ∈ BPP, then PH collapses to Σp
2.

Theorem 9.4 (Sipser, Gács, Lautemann 1983) BPP ⊆ Σp
2 ∩Πp

2.
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One-sided error PTM. The class RP is defined as follows. A language L is in the class RP,
if there a polynomial time PTMM such that for every input word x, the following holds.

• If x ∈ L, then Pr[ M(x) = 1 ] > 2/3.

• If x /∈ L, then Pr[ M(x) = 0 ] = 1.

Note thatM is never wrong when the input x /∈ L, hence, the name one-sided. The class coRP
is defined as coRP def

= {L : {0, 1}∗ \ L ∈ RP}.

Zero error PTM. A PTMM for a language L is a zero error PTM, if it never errs, i.e., for
every input word x, Pr[M(x) = L(x) ] = 1. Now for a PTMM and input word x, we can define
a random variable TM,x to denote the run time ofM on x, where the probability distribution is
Pr[ TM,x = t ] = p, if with probability p over the random strings ofM on input x, it halts in t
steps .

The class ZPP is defined as follows. A language L is in ZPP, if there is a polynomial q(n) =
poly(n) and a zero error PTMM for L such that for every input word x, Exp[TM,x] 6 q(|x|).

The algorithms for languages in BPP/RP/coRP are also called Monte Carlo algorithms,
and those for languages in ZPP are called Las Vegas algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let E1, . . . , Em be some m events. Then, the following holds.

Pr
[ m⋃
i=1

Ei
]

=
m∑
i=1

Pr[ Ei ]−
∑

16i1<i26m

Pr[ Ei1 ∩ Ei2 ] +
∑

16i1<i2<i36m

Pr[ Ei1 ∩ Ei2 ∩ Ei3 ]− · · ·

From here, we also obtain the so called union bound:

Pr
[ m⋃
i=1

Ei
]

6
m∑
i=1

Pr[ Ei ]

Markov inequality: Let X be a non-negative random variable with expectation µ. Then, for
every real c > 0, the following holds.

Pr[ X > cµ ] 6 1/c

Markov inequality is often also called averaging argument.

Chebyshev inequality: Let X be a random variable with expectation µ and variance σ2.
Then, for every real c > 0, the following holds.

Pr
[
|X − µ| > cσ

]
6 1/c2

Chernoff inequality: Let X1, . . . , Xm be (independent) 0,1 random variables. Suppose for
every 1 6 i 6 m, Pr[Xi = 1] = p, for some p > 1/2. Let X def

=
∑m

i=1Xi. Then, the following
holds.

Pr
[
X >

⌊
m/2

⌋ ]
> 1− 2−αm where α =

log2 e

2p

(
p− 1

2

)2
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Lesson 10: The probabilistic method

Theme: Some examples of the probabilistic method.

1 The basic counting argument

Let Kn be a complete (undirected) graph with n vertices without self-loop.

Proposition 10.1 For every n and k 6 n, the following holds. If
(
n
k

)
2−(k2)+1 < 1, then it is

possible to colour the edges of Kn (with either red or blue) so that it has no monochromatic Kk

subgraph.

Proof. Given a complete graph Kn, we randomly colour each edge independently with either
red or blue (with equal probability). Note that there are exactly

(
n
k

)
different k-cliques. Let

m =
(
n
k

)
. We fix an ordering of all of these k-cliques: C1, . . . , Cm and let Ei denote the event

that clique Ci is monochromatic. Then, Pr[ Ei ] = 2−(k2)+1.
The probability that there is a monochromatic k-clique is:

Pr[ E1 ∪ · · · ∪ Em ] 6
m∑
i=1

Pr[ Ei ] 6 m · 2−(k2)+1 < 1

Hence, the probability that none of the cliques C1, . . . , Cm are monochromatic is not zero, i.e.,
there is a colouring of the edges of Kn so that there is no monochromatic k-clique. �

The proof above can be converted into the following Las Vegas type of algorithm.

Algorithm 1

Input: A complete graph Kn and an integer k where
(
n
k

)
2−(k2)+1 < 1.

Task: Output a colouring of the edges of Kn in which there is no monochromatic k-clique.
1: Let ξ be a random colouring of the edges in Kn.
2: while there is a monochromatic k-clique with colouring ξ do
3: Choose another random colouring ξ.
4: Output ξ.

In principle, Algorithm 1 may not terminate, but the expected number of steps is finite. Let
p = Pr[ E1 ∪ · · · ∪ Em ] and let N be the random variable for the number of iterations (of the
while loop). Then, the expectation of N is 1/(1− p). Note that if k is fixed, 1/(1− p) = poly(n).

2 The expectation argument

In the following example we will use the fact that if X is a random variable, and µ is its expec-
tation, then Pr[ X > µ ] > 0 and Pr[ X 6 µ ] > 0.

Let G = (V,E) be an undirected graph. A cut of G is a pair C = (A,B) where A ∪ B is
partition of V . Its value is the number of edges of E that cross from A to B.

Proposition 10.2 Let G be an undirected graph with m edges. Then, it has a cut with value at
least m/2.
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Proof. Let G = (V,E) be an undirected graph with m edges. We construct a cut C = A ∪ B
by randomly assigning each vertex u ∈ V to either A or B (with equal probability).

Let e1, . . . , em be the edges in G. For each i = 1, . . . ,m, let Xi denote the random variable:

Xi
def
=

{
1, if the two endpoints of ei are in different sets
0, otherwise

Let X =
∑m

i=1Xi, i.e., X is the random variable for the value of the cut C = (A,B). Note that
Pr[ Xi = 1 ] = 1/2. Hence, Exp[X] = m/2. Therefore, G has a cut with value at least m/2. �

Similar to Algorithm 1 above, we can design a Las Vegas algorithm for finding a cut with
value m/2, where m is the number of edges in the input graph. To bound its expected run time,
let p = Pr[ C has value m/2 ]. Now, since Exp[X] = Exp[value of C] = m/2, we can calculate
that p > 1/(m2 + 1). Thus, the expected run time of our Las Vegas algorithm is 6 1/p = m

2 + 1.
Below we will show how it can be derandomized.

We need a few notations. Let G = (V,E) be an undirected graph and P,Q be two disjoint
subsets of V . Similar to above, to get a cut C = (A,B), we assign each vertex u ∈ V to either
A or B as follows.

• Every vertex u ∈ P is assigned to A.

• Every vertex u ∈ Q is assigned to B.

• Every vertex u /∈ P ∪Q is randomly assigned to either A or B (with equal probability).

Let N(P,Q) denote the random variable for the value of the cut C = (A,B) where P ⊆ A and
Q ⊆ B. Note that Exp[N(P,Q)] is exactly the value of (P,Q) plus half the number of edges in
E \ (P ∪Q)× (P ∪Q), i.e., the number of edges whose both endpoints are not in P ∪Q. Consider
the following deterministic algorithm.

Algorithm 2
Input: A graph G = (V,E).
Task: Output a cut C = (A,B) with value at least m/2, where m is the number of edges.
1: Let v1, . . . , vn be the vertices in G.
2: P := ∅ and Q := ∅.
3: for i = 1, . . . , n do
4: if Exp[N(P ∪ {vi}, Q)] > Exp[N(P,Q ∪ {vi})] then
5: P := P ∪ {vi} and Q := Q.
6: else
7: P := P and Q := Q ∪ {vi}.
8: Output the cut C = (P,Q).

That Algorithm 2 output a cut C = (P,Q) with value at least m/2 follows from the following
observations.

• Exp[N(∅, ∅)] > m/2 (by Proposition 10.2).

• Let (P0, Q0), . . . , (Pn, Qn) denote the sets (P,Q) after the ith iteration. Then, for every
i = 0, . . . , n− 1:

Exp[N(Pi, Qi)] 6 Exp[N(Pi+1, Qi+1)]

• Exp[N(Pn, Qn)] is the value of the cut C = (P,Q).

Checking whether Exp[N(P ∪ {xi}, Q)] > Exp[N(P,Q ∪ {xi})] can be done by comparing the
number of neighbours of xi that are in P and Q.
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3 Sample and modify

Proposition 10.3 Let G be a graph with n vertices and m edges where m = dn/2, for some d.
Then, G has an independent set with at least n/(2d) vertices.

Proof. Let G be a graph as stated. Consider the following algorithm.

• Delete every vertex (together with its incident edges) independently with probability 1−1/d.

• For each remaining edge, remove it and one of its incident vertices.

Obviously, the remaining set of vertices is independent set. Let X denote the number of vertices
that survive the first step and Y denote the number of edges that survive the first step. Note
that each vertex survives with probability 1/d and an edge survives with probability 1/d2. Thus,

Exp[X] =
n

d
and Exp[Y ] =

dn

2
· 1

d2
=

n

2d

The number of vertices removed in the second step is at most Y . So the number of remaining
vertices after the second step is at least X − Y . Since Exp[X − Y ] = n/(2d), the expected
number of vertices output the algorithm is at least n/(2d). Hence, there is an independent set
with at least n/(2d) vertices. �

Proposition 10.4 For every integer k > 3, there is an undirected graph with n vertices, at least
1
4n

1+(1/k) edges and girth at least k.∗

Proof. Let Gn,p be the random (undirected) graph with n vertices where between every pair of
vertices the probability that there is an edge between them is p. Consider the following algorithm.

• Sample G ∈ Gn,p with p = n(1/k)−1.

• For every cycle of length 6 k − 1, delete one of its edges.

Let X be the number of the edges in G after the first step and let Y be the number of the cycles
with length 6 k − 1. There are at most

(
n
i

) (i−1)!
2 cycles of length i. We have:

Exp[X] = p

(
n

2

)
=

1

2

(
1− 1

n

)
n1+(1/k)

Exp[Y ] =

k−1∑
i=3

(
n

i

)
(i− 1)!

2
pi 6

k−1∑
i=3

nipi =

k−1∑
i=3

ni/k < kn(k−1)/k

Thus, Exp[X − Y ] > 1
4n

1+(1/k).
Note that the number of edges after the second step is at least X−Y . Thus, there is a graph

with n vertices, at least 1
4n

1+(1/k) edges and girth at least k. �

∗The girth of a graph is the length of its shortest cycle.
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4 The local lemma

We say that an event E is mutually independent of events E1, . . . , En, if for every subset S ⊆
{1, . . . , n}, Pr[ E |

⋂
i∈S Ei ] = Pr[ E ]. The dependency graph of events E1, . . . , En is a graph

G = (V,E) where V = {1, . . . , n} and for every i = 1, . . . , n, event Ei is mutually independent of
the events in {Ej : (i, j) /∈ E}.

Lemma 10.5 is the symmetric version of the so called Lovász local lemma.

Lemma 10.5 (Symmetric local lemma) Let E1, . . . , En be n events. Let d be the degree of its
dependency graph and p be such that 4dp 6 1 and Pr[ Ei ] 6 p, for every i = 1, . . . , n. Then,

Pr[
n⋂

i=1

Ei ] > 0, where Ei is the complement of Ei

Proof. For a subset S ( {1, . . . , n}, we denote by FS the event
⋂

i∈S Ei. When S = ∅, we set F0

to be the whole sample space. We claim that for every S ( {1, . . . , n}, the following holds.

Pr[ FS ] > 0 and Pr[ Ek | FS ] 6 2p, for every k /∈ S

This claim immediately implies Lemma 10.5. To avoid clutter, for ` = 0, 1, . . . , n, let F` denote
the event

⋂`
i=1 Ei. Similar to above, we define F0

def
= Ω, i.e., the whole sample space. In other

words, F` = FS , where S = {1, . . . , `}. Now, we have the following.

Pr[
n⋂

i=1

Ei ] = Pr[ Fn ] =
n∏

i=1

Pr[ Ei | Fi−1 ] =
n∏

i=1

(
1 − Pr[ Ei | Fi−1 ]

)
>

n∏
i=1

(1− 2p) > 0

The second last inequality is by the claim.
Now we will show that the claim holds by induction on |S|. The base case S = ∅ is trivial.

For the induction hypothesis, we assume Claim 1 holds for every S where |S| 6 ` − 1. We will
show that it holds for S where |S| = `.

Without loss of generality, we assume that S = {1, . . . , `}. Thus, FS = F`. The proof for
Pr[ F` ] > 0 is similar to the one above:

Pr[ F` ] =
∏̀
i=1

Pr[ Ei | Fi−1 ] =
∏̀
i=1

(
1 − Pr[ Ei | Fi−1 ]

)
>
∏̀
i=1

(1− 2p) > 0

We now show that Pr[ Ek | F` ] 6 2p, for every k /∈ S. Let k /∈ S and let S1 and S2 be as follows.

S1
def
= {j ∈ S : (k, j) is an edge in G} and S2

def
= S \ S1

Note that Ek is mutually independent of the events in S2. We consider two cases: S2 = S or
S2 6= S.

The case when S2 = S is trivial since Pr[ Ek | FS ] = Pr[ Ek ] 6 p 6 2p. When S2 6= S, the
proof is as follows.

Pr[ Ek | FS ] =
Pr[ Ek ∩ FS ]

Pr[ FS ]
=

Pr[ Ek ∩ FS1 ∩ FS2 ]

Pr[ FS1 ∩ FS2 ]
=

Pr[ Ek ∩ FS1 | FS2 ] ·Pr[ FS2 ]

Pr[ FS1 | FS2 ] ·Pr[ FS2 ]

=
Pr[ Ek ∩ FS1 | FS2 ]

Pr[ FS1 | FS2 ]

Note that Pr[ Ek ∩ FS1 | FS2 ] 6 Pr[ Ek | FS2 ] = Pr[ Ek ] 6 p with the equality comes from the
fact that Ek is mutually independent of the events in S2.
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We can bound Pr[ FS1 | FS2 ] as follows.

Pr[ FS1 | FS2 ] = Pr[
⋂
j∈S1

Ej | FS2 ] = Pr[
⋃
j∈S1

Ej | FS2 ] = > 1−
∑
j∈S1

Pr[ Ej | FS2 ]

> 1− 2pd

> 1/2

The second last inequality comes from the induction hypothesis and |S1| 6 d. The last equality
comes from 4pd 6 1. Note that with the bound on Pr[ Ek ∩ FS1 | FS2 ] and Pr[ FS1 | FS2 ], we
have Pr[ Ek | FS ] 6 2p. �

Proposition 10.6 For every k-CNF formula ϕ, if every variable appears in at most 2k/(4k)
clauses, then ϕ is satisfiable.

Proof. Suppose ϕ has m clauses. We randomly assign each variable with 0 or 1 (with equal
probability). Let Ei be the event that the ith clause is not satisfied by the random assignment.
Then, Pr[ Ei ] = 2−k.

Event Ei is mutually independent of all the events Ej , if the jth clause does not share the
same variable as the ith clause. Thus, the degree of the dependency graph is 6 k ·2k/(4k) = 2k−2

and hence, 4dp 6 1. By Lemma 10.5, there is an assignment satisfying every clause. �

Lemma 10.7 (General local lemma, Erdös and Lovász 1975) Let E1, . . . , En be n events
and G = (V,E) be its dependency graph. Suppose there are real numbers x1, . . . , xn such that
0 6 xi < 1 and Pr[ Ei ] 6 xi

∏
(i,j)∈E(1− xj), for every i = 1, . . . , n. Then,

Pr
[ n⋂

i=1

Ei
]
>

n∏
i=1

(1− xi)

In particular, with positive probability no event Ei holds.

Proof. We use the same notation as in Lemma 10.5, where FS =
⋂

i∈S Ei and F` = F{1,...,`}. We
claim that for every S ( {1, . . . , n} and every k /∈ S, the following holds.

Pr[ Ek | FS ] 6 xk (1)

Similar to Lemma 10.5, this claim immediately implies Lemma 10.7.

Pr[

n⋂
i=1

Ei ] = Pr[ Fn ] =

n∏
i=1

Pr[ Ei | Fi−1 ] =

n∏
i=1

(
1 − Pr[ Ei | Fi−1 ]

)
>

n∏
i=1

(1− xi)

The proof of (1) is by induction on |S|. The base case S = ∅ is trivial. For the induction step,
the strategy is the same as in Lemma 10.5. Let S1 and S2 be the following sets.

S1
def
= {j ∈ S : (k, j) ∈ E} and S2

def
= S \ S1

When S2 6= S, we have the following.

Pr[ Ek | FS ] =
Pr[ Ek ∩ FS1 | FS2 ]

Pr[ FS1 | FS2 ]
(2)
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The numerator is bounded as follows.

Pr[ Ek ∩ FS1 | FS2 ] 6 Pr[ Ek | FS2 ] = Pr[ Ek ] 6 xi
∏

(i,j)∈E

(1− xj) (3)

The denominator is bounded as follows. Let S1 = {j1, . . . , jr}.

Pr[ FS1 | FS2 ] =

r∏
i=1

Pr[ Eji | FS2∪{j1,...,ji−1} ] >
r∏

i=1

(1− xji) =
∏

(k,j)∈E

(1− xj) (4)

Combining Inequalities (2), (3) and (4), we obtain Inequality (1). �

Lemma 10.7 implies the symmetric case with better bound.

Corollary 10.8 (Stronger symmetric local lemma) Let E1, . . . , En be n events. Let d be the
degree of its dependency graph and p be such that ep(d + 1) 6 1 and Pr[ Ei ] 6 p, for every
i = 1, . . . , n. Then,

Pr[
n⋂

i=1

Ei ] > 0,

Proof. The case when d = 0 is trivial. So, we assume that d > 1. Let G = (V,E) be
the dependency graph. For every i = 1, . . . , n, let xi = 1/(d + 1). Note that since d > 1,
1/(d+ 1) < 1 and 0 < 1− 1/(d+ 1) < 1.

For each i = 1, . . . , n, we have:†

xi
∏

(i,j)∈E

(1− xj) =
1

d+ 1

∏
(i,j)∈E

(
1− 1

d+ 1

)
>

1

d+ 1

(
1− 1

d+ 1

)d
>

1

d+ 1

(
1− 1

d+ 1

)d+1

>
1

(d+ 1)e

> p

> Pr[ Ei ]

Thus, we can apply Lemma 10.7 and conclude that Pr[
⋂n

i=1 Ei ] > 0. �

†Recall that
(
1− 1

x

)x
> 1/e, for every x > 1.
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Lesson 11: Probabilistic reductions

Theme: Probabilistic reductions and preliminary to Toda’s theorem.

1 Probabilistic reduction from SAT to USAT

Let USAT be the following language.

USAT def
= {ϕ : ϕ is a boolean formula with unique satisfying assignment}

Theorem 11.1 (Valiant and Vazirani, 1986) There is a probabilistic polynomial time algo-
rithm M such that on input (Boolean) formula ϕ, the output of M, denoted by M(ϕ), satisfies
the following.

• If ϕ ∈ SAT, then Pr[ M(ϕ) ∈ USAT ] > 3/(16n), where n is the number of variables in ϕ.

• If ϕ /∈ SAT, then Pr[ M(ϕ) ∈ SAT ] = 0.

Proof. The algorithmM works as follows. On input formula ϕ, do the following.

• Let x1, . . . , xn be the variables in ϕ.

• Let x def
= (x1, . . . , xn).

• Randomly choose k ∈ {2, . . . , n+ 1}.

• Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

• Output the formula ϕ(x) ∧ (h(x) = 0), where 0 is a column vector of zeroes of size k.

Note that the part h(x) = 0 can be stated as a boolean formula. If we use the collection Hn,k as
in Theorem 11.9, h(x) = 0 is of the form: Ax + b = 0, which is equivalent to Ax = b. This can
be written into the following form:

k∧
i=1

((
Ai,1x1 ⊕ · · · ⊕Ai,nxn

)
↔ bi

)
Here ⊕ denotes the XOR operation. Note that each Ai,1x1 ⊕ · · · ⊕ Ai,nxn can be rewritten into
formulas using only ∧,∨,¬ in quadratic time as follows. Divide it into two halves, rewrite each
half (recursively) and combine them with the standard definition of XOR.

Now, we prove the correctness of our algorithm. Obviously, if the input formula ϕ is not
satisfiable, so is the output formula. Suppose ϕ is satisfiable. Let S be the set of satisfying
assignments of ϕ. With probability 1/n, the algorithm chooses a value k such that 2k−2 6 |S| 6
2k−1. By Lemma 11.11, the probability that there is a unique x ∈ S such that h(x) = 0 is > 3/16.
Thus, the probability thatM(ϕ) ∈ USAT is at least 3/(16n). �



CSIE 5046: Topics in complexity theory Lesson 11: Probabilistic reductions

2 The language ⊕SAT and the class ⊕P

The language ⊕SAT is defined as follows.

⊕SAT def
= {ϕ : ϕ is a Boolean formula with odd number of satisfying assignments}

The class ⊕P is defined as follows. A language L ∈ ⊕P, if there is a polynomial time NTMM
such that for every input word w, w ∈ L if and only if the number of accepting runs ofM on w
is odd number.

We define a few terminology and notations. Let ]ϕ denote the number of satisfying assign-
ments of a (Boolean) formula ϕ. We will define operations ∼, u and t on formulas such that the
following holds.

](∼ ϕ) = ]ϕ+ 1 ](ϕ u φ) = ]ϕ · ]φ ](ϕ t φ) = (]ϕ+ 1) · (]φ+ 1) + 1

Obviously the following holds.

∼ ϕ ∈ ⊕SAT if and only if ϕ /∈ ⊕SAT
ϕ u φ ∈ ⊕SAT if and only if both ϕ, φ ∈ ⊕SAT
ϕ t φ ∈ ⊕SAT if and only if at least one of ϕ, φ ∈ ⊕SAT

These operations are defined as follows.

• For ϕ with variables x1, . . . , xn, we pick a “new” variable z and define ∼ ϕ as follows.

∼ ϕ def
=

(
¬z ∧ ϕ

)
∨
(
z ∧

n∧
i=1

xi
)

• For two formulas ϕ and ψ, we rename the variables so that the variables in ϕ and φ are
disjoint, and define ϕ u ψ as follows.

ϕ u φ def
= ϕ ∧ φ

• For two formulas ϕ and ψ, we rename the variables so that the variables in ϕ and φ are
disjoint, and define ϕ t ψ as follows.

ϕ t φ def
= ∼ (∼ ϕ u ∼ φ)

3 Probabilistic reductions from SAT and SAT to ⊕SAT

Theorem 11.1 can be easily extended to obtain reductions from SAT and SAT to ⊕SAT.

Lemma 11.2 (Reduction from SAT to ⊕SAT) There is a polynomial time PTMM that on
input formula ϕ and a positive integer m (in unary), outputs a formula, denoted by M(ϕ,m),
such that the following holds.

• If ϕ ∈ SAT, then Pr[ M(ϕ,m) ∈ ⊕SAT ] > 1− 2−m.

• If ϕ /∈ SAT, then Pr[ M(ϕ,m) ∈ ⊕SAT ] = 0.

Moreover, the outputM(ϕ,m) uses O(mn2) variables, where n is the number of variables in ϕ.∗

∗Abusing the notation, O(mn2) denotes 6 cmn2, for some constant c.
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Proof. On input ϕ with n variables, the algorithmM first runs the reduction in Theorem 11.1
on ϕ for 8mn times to obtain formulas ψ1, . . . , ψ8mn. Then, it outputs ∼ (∼ ψ1u · · · u ∼ ψ8mn).†

Obviously,M runs in polynomial time. Note also that the output formula uses 8mn(n+1)+1 =
O(mn2) variables.

Recall that on input ϕ with n variables, the reduction in Theorem 11.1 outputs a formula ψ
such that the following holds.

• If ϕ ∈ SAT, then Pr[ ψ ∈ USAT ] > 1/(8n).

• If ϕ /∈ SAT, then Pr[ ψ ∈ SAT ] = 0.

Note the following.

• If ψ /∈ ⊕SAT, then ψ /∈ USAT. Thus, Pr[ ψ /∈ ⊕SAT ] 6 Pr[ ψ /∈ USAT ].

•
⊔8mn

i=1 ψi ∈ ⊕SAT if and only if one of ψi ∈ ⊕SAT.

Thus, on input ϕ, the output
⊔8mn

i=1 ψi satisfies the following.

• If ϕ /∈ SAT, then none of the ψi is satisfiable. Thus,
⊔8mn

i=1 ψi /∈ ⊕SAT. Therefore,

Pr
[ 8mn⊔

i=1

ψi ∈ ⊕SAT
]

= 0

• If ϕ ∈ SAT, the following holds.

Pr
[ 8mn⊔

i=1

ψi /∈ ⊕SAT
]

=

8mn∏
i=1

Pr[ ψi /∈ ⊕SAT ] 6
(

1− 1

8n

)8mn
6 (1/e)m 6 (1/2)m

Therefore, Pr[
⊔8mn

i=1 ψi ∈ ⊕SAT ] > 1− (1/2)m.

This completes the proof of Lemma 11.2. �

Lemma 11.3 (Reduction from SAT to ⊕SAT) There is a polynomial time PTMM that on
input formula ϕ and a positive integer m (in unary), outputs a formula, denoted by M(ϕ,m),
such that the following holds.

• If ϕ ∈ SAT, then Pr[ M(ϕ,m) ∈ ⊕SAT ] = 1.

• If ϕ /∈ SAT, then Pr[ M(ϕ,m) ∈ ⊕SAT ] 6 (1/2)m.

Proof. The PTMM works as follows. On input ϕ and m, it runs the reduction in Lemma 11.2
to obtain a formula ψ, and then outputs ∼ ψ.

If ϕ ∈ SAT, then Pr[ ψ /∈ ⊕SAT ] = 1, and hence, Pr[ ∼ ψ ∈ ⊕SAT ] = 1.
If ϕ /∈ SAT, then Pr[ ∼ ψ ∈ ⊕SAT ] = Pr[ ψ /∈ ⊕SAT ] 6 (1/2)m. �

Combining Lemmas 11.2 and 11.3 and Cook-Levin reduction, we have the following.

Theorem 11.4 (Reductions from languages in NP∪ coNP to ⊕SAT) For every language
L ∈ NP∪ coNP, there is a polynomial time PTMM that on input word w and a number m (in
unary), outputs a formulaM(w,m) such that the following holds.

• If w ∈ L, then Pr[ M(w,m) ∈ ⊕SAT ] > 1− (1/2)m.

• If w /∈ L, then Pr[ M(w,m) ∈ ⊕SAT ] 6 (1/2)m.
†Note that ∼ (∼ ψ1 u · · · u ∼ ψ8mn) is equivalent to ψ1 t · · · t ψ8mn.
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4 Probabilistic reductions from languages in PH to ⊕SAT

In this section we will show how to extend Theorem 11.4 to all languages in PH. We need some
terminology and notations. We write x̄, ȳ or z̄ to denote a sequence of variables, and the length
is denoted by |x̄|, |ȳ| or |z̄|, respectively.

Recall that a QBF is formula of the form: Q1z̄1 · · ·Qkz̄k φ where each Qi ∈ {∀, ∃} and
Qi 6= Qi+1, each z̄i is a vector of variables and φ is a formula that uses variables z̄1, . . . , z̄k. Note
that all variables used in ψ are “quantified.”

QBF with free variables. A QBF with free variables is a QBF formula that has variables
that are not quantified, i.e., of the form:

ϕ
def
= Q1z̄1 · · ·Qkz̄k φ

where φ uses some variables ȳ that are “free,” i.e., not quantified by any quantifiers, in addition
to the variables z̄1, . . . , z̄k. In this case, we write ϕ(ȳ) to indicate that ȳ are free. For example,
in the formula ∀x∃z(x ∨ y ∨ z), variables x, z are quantified, but variable y is free.

We usually denote an assignment that assigns variables in ȳ as a string ā ∈ {0, 1}n with the
same length as ȳ. For a QBF ϕ(ȳ) with free variable ȳ and ā be an assignment on ȳ, we write
ϕ(ā) to denote the QBF (without free variables) obtained by substituting every variable in ȳ
according to ā.

In the following the term “QBF” means a QBF which may or may not contain free variables.
A k-QBF is a QBF in which there are k alternating quantifiers, i.e., Q1z̄1 · · ·Qkz̄k ψ, where each
Qi 6= Qi+1.

The operations ∼, u and t with formulas with “free” variables. In the following we
will deal with boolean formulas ϕ with “free” variables. Intuitively, free variables in a boolean
formula are variables that cannot be renamed. We write ϕ(ȳ) to indicate that ȳ are the free
variables in ϕ.

• ∼ ϕ(ȳ) is defined as before and the resulting formula ∼ (ϕ(ȳ)) also have free variables ȳ.

• For ϕ(ȳ) and φ(ȳ), we rename the variables so that ȳ are the only common variables in ϕ
and φ and define ϕ(ȳ) u φ(ȳ)

def
= ϕ(ȳ) ∧ φ(ȳ) with free variables ȳ.

• For ϕ(ȳ) and φ(ȳ), we define ϕ(ȳ) t φ(ȳ)
def
= ∼ (∼ ϕ(ȳ) u ∼ φ(ȳ)) with free variables ȳ.

Lemma 11.5 (Reductions from Σk-SAT and Πk-SAT to ⊕SAT) For every k > 1, there is
a probabilistic polynomial time algorithm M that on input a k-QBF ϕ(ȳ) and a positive integer
m (in unary), outputs a formula ψ(ȳ) such that

Pr[ ψ(ȳ) is “correct” ] > 1− (1/2)m

Here we define a formula ψ(ȳ) to be “correct” when ϕ(ā) is a true QBF if and only if ψ(ā) ∈ ⊕SAT,
for every assignment ā on ȳ.

Proof. The proof is by induction on k. The base case k = 1 is similar to Lemmas 11.2 and 11.3.
On input 1-QBF ϕ(ȳ) and integer m, the algorithmM works as follows.

• If ϕ(ȳ) is of the form ∃x̄ ψ(x̄, ȳ), where x̄ contains n variables, do the following.

For each i = 1, . . . , 8mn, construct formula αi(ȳ) as follows.
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– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula ψ(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ) is the formula
⊔8mn

i=1 αi(ȳ).

• If ϕ(ȳ) is of the form ∀x̄ ψ(x̄, ȳ), where x̄ contains n variables, do the following

For each i = 1, . . . , 8mn, construct formula αi(ȳ) as follows.

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula ¬ψ(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ), where ψ(ȳ) is the formula ∼
⊔8mn

i=1 αi(ȳ).

The proof that Pr[ ψ(ȳ) is correct ] > 1− (1/2)m is similar to Lemmas 11.2 and 11.3.
For the induction hypothesis, we assume Lemma 11.5 holds for k, i.e., there is a probabilistic

algorithmM0 that on input a k-QBF ϕ(ȳ) and a positive integerm (in unary), outputs a formula
ψ(ȳ) such that Pr[ ψ(ȳ) is correct ] > 1− (1/2)m.

For the induction step, on input (k+ 1)-QBF ϕ(ȳ) and m, the algorithmM works as follows.

• ϕ(ȳ) is of the form ∃x̄ φ(x̄, ȳ), where x̄ contains n variables.

For each i = 1, . . . , 8mn, construct a formula αi(ȳ) as follows.

– Let βi(x̄, ȳ) be the output ofM0 on input φ(x̄, ȳ) and (m+ 1).

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula βi(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ)
def
=
⊔8mn

i=1 αi(ȳ).

• ϕ(ȳ) is of the form ∀x̄ ψ(x̄, ȳ), where x̄ contains n variables.

For each i = 1, . . . , 8mn, construct a formula αi, as follows.

– Let βi(x̄, ȳ) be the output ofM0 on input ¬ψ(x̄, ȳ) and (m+ 1).

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) be the formula βi(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ)
def
=∼

⊔8mn
i=1 αi(ȳ).

We now calculate the probability of the event that ψ(ȳ) is correct.
We first consider the case that ϕ(ȳ) is of the form ∃x̄φ(x̄, ȳ). By the induction hypothesis,

Pr[ βi(x̄, ȳ) is correct ] > 1− (1/2)m+1, for each i = 1, . . . , 8mn. Note that βi(x̄, ȳ) is correct, if
for every assignment ā and b̄ on x̄ and ȳ, respectively, βi(ā, b̄) ∈ ⊕SAT if and only if φ(ā, b̄) is a
true QBF.

Assume that βi(x̄, ȳ) is correct. Let b̄ : ȳ → {0, 1} be such that ϕ(b̄) is true QBF. Thus, for
every assignment ā : x̄ → {0, 1}, if ϕ(ā, b̄) is true QBF, βi(ā, b̄) ∈ ⊕SAT. Otherwise, βi(ā, b̄) /∈
⊕SAT. So, we only need to consider all those assignments ā such that φi(ā, b̄) is true, which by
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the induction hypothesis, is equivalent to saying that βi(ā, b̄) ∈ ⊕SAT. By applying the same
technique as in Lemma 11.11 on the set of ā such that βi(ā, b̄) ∈ ⊕SAT, we randomly “choose” the
hash function h such that there is unique assignment ā such that h(ā) = 0, and the probability
that we choose such h is > 3/(16n). Thus, we have:

Pr[ βi(x̄, ȳ) ∧ h(x̄) = 0 is correct | βi(x̄, ȳ) is correct ] >
3

16n

Thus,

Pr[ ψi(x̄, ȳ) is correct ] = Pr[ βi(x̄, ȳ) ∧ h(x̄) = 0 is correct ] >
3

16n

(
1− (1/2)m+1

)
>

1

8n

where in the last inequality we assume that m > 1.
Note also that if b̄ : ȳ → {0, 1} is an assignment such that ϕ(b̄) is false QBF, then βi(ā, b̄) /∈

⊕SAT, for every assignment ā (since βi(x̄, ȳ) is a correct formula). Thus, for any choice of h,
βi(x̄, b̄) ∧ h(x̄) = 0 /∈ ⊕SAT.

Finally, note that
⊔8mn

i=1 αi(ȳ) is correct if and only if one of αi(ȳ) is correct. Therefore,

Pr
[ 8mn⊔

i=1

αi(ȳ) is not correct
]

= Pr[ αi(ȳ) is not correct, for each i = 1, . . . , 8mn ]

6
(

1− 1/(8n)
)8mn

6 (1/2)m

The proof for the case where ϕ(ȳ) is of the form ∀x̄ φ(x̄, ȳ) is similar. �

Combining Lemma 11.5 and the fact that Σk-SAT and Πk-SAT are Σp
k- and Πp

k-complete, for
each k > 1, we have the following theorem.

Theorem 11.6 (Reductions from languages in PH to ⊕SAT) For every language L ∈ PH,
there is a probabilistic polynomial time algorithm M that on input w, outputs a formula ψ such
that the following holds, where n = |w|.

• If w ∈ L, then Pr[ ψ ∈ ⊕SAT ] > 1− (1/2)n.

• If w /∈ L, then Pr[ ψ ∈ ⊕SAT ] 6 (1/2)n.

Appendix

A Pair-wise independent collection of hash functions

Definition 11.7 For n, k > 1, let Hn,k be a collection of functions from {0, 1}n to {0, 1}k. We
say that Hn,k is pair-wise independent, if for every x, x′ ∈ {0, 1}n where x 6= x′ and for every
y, y′ ∈ {0, 1}k, the following holds.

Prh∈Hn,k
[ h(x) = y ∧ h(x′) = y′ ] = 2−2k

In the following we show that Hn,k exists. First, we show that Hn,n exists. For every n > 1,
for every a, b ∈ GF(2n), define a function ha,b from {0, 1}n to {0, 1}n as follows.‡

ha,b(x)
def
= xa+ b

‡GF(2n) denotes a finite field with 2n elements, where each element can be encoded as a 0-1 string of length n.
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Theorem 11.8 The collection Hn,n
def
= {ha,b : a, b ∈ GF(2n)} is pair-wise independent.

We have another candidate for pair-wise independent collection. For every n > 1, for every
A ∈ {0, 1}n×n and b ∈ {0, 1}n×1, define a function hA,b from {0, 1}n×1 to {0, 1}n×1 as follows.§

hA,b(x)
def
= Ax+ b

Theorem 11.9 The collection Hn,n
def
= {hA,b : A ∈ {0, 1}n×n and b ∈ {0, 1}n×1} is pair-wise

independent.

Remark 11.10 Note that the existence of Hn,n implies the existence of Hn,k. If n < k, then
we can use Hk,k and extend n bit inputs to k by padding with zeros. If n > k, then we can use
Hn,n and reduce n bit outputs to k by truncating the last (n− k) bits.

Lemma 11.11 (Valiant and Vazirani, 1986) Let Hn,k be a pair-wise independent hash func-
tion collection. Let S ⊆ {0, 1}n such that 2k−2 6 |S| 6 2k−1. Then, the following holds.

Prh∈Hn,k
[ there is a unique x ∈ S such that h(x) = 0k ] >

3

16

Proof. Let N denote the number of x’s such that h(x) = 0, where h is randomly chosen from
Hn,k (with uniform distribution). We will calculate Pr[ N = 1 ]. Note that:

Pr[ N = 1 ] = Pr[ N > 1 ] − Pr[ N > 2 ]

= Pr
[ ⋃

x∈S
Ex
]
− Pr

[ ⋃
x,x′∈S and x 6=x′

Ex ∩ Ex′
]

where Ex denotes the event that h(x) = 0. In the following, we let p = 2−k.
Since Hn,k is pairwise independent, Pr[ Ex ] = p and Pr[ Ex ∩ Ex′ ] = p2, whenever x 6= x′.
By the inclusion-exclusion principle, we have:

Pr
[ ⋃

x∈S
Ex
]
>

∑
x∈S

Pr[ Ex ] −
∑

x,x′∈S and x 6=x′

Pr[ Ex ∩ Ex′ ] = |S|p −
(
|S|
2

)
· p2

By union bound, we have:

Pr
[ ⋃

x,x′∈S and x 6=x′

Ex ∩ Ex′
]
6

∑
x,x′∈S and x 6=x′

Pr[ Ex ∩ Ex′ ] 6

(
|S|
2

)
· p2

Combining both, we have:

Pr[ N = 1 ] = Pr[ N > 1 ]−Pr[ N > 2 ] > |S|p − |S|2p2

Since 1/4 6 |S|p 6 1/2, a straightforward calculation shows that |S|p− |S|2p2 > 3/16. �

§{0, 1}n×n denotes the set of 0-1 matrices with n rows and n columns and {0, 1}n×1 denotes the set of 0-1
column vectors of n rows. Here the addition + and multiplication · are defined over Z2.
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Lesson 12: Toda’s theorem

Theme: Toda’s theorem which states that every language in the polynomial hierarchy can be
decided by a polynomial time DTM with oracle access to ]SAT, i.e., PH ⊆ P]SAT.

Theorem 12.1 (Toda, 1991) PH ⊆ P]P.

1 Reduction from ⊕SAT to ]SAT

In the following we will use the notations from Note 11. Recall that ]ϕ denote the number of
satisfying assignments of a (Boolean) formula ϕ. Fwo formulas ϕ and ψ, the formula ϕ u ψ is a
formula such that ](ϕ u ψ) = ]ϕ · ]ψ.

We define an operation + as follows. Let x1, . . . , xn and y1, . . . , ym be the variables in ϕ and
ψ, respectively. Let z be a new variable.

ϕ+ ψ
def
=

(
ϕ ∧ z ∧

m∧
i=1

yi

)
∨

(
ψ ∧ ¬z ∧

n∧
i=1

xi

)
Note that ](ϕ+ ψ) = ]ϕ+ ]ψ.

Lemma 12.2 There is a deterministic polynomial time algorithm T , that on input formula ϕ
and positive integer m (in unary), outputs a formula ψ such that the following holds.

• If ϕ ∈ ⊕SAT, then ]ψ ≡ −1 (mod 2m+1).

• If ϕ /∈ ⊕SAT, then ]ψ ≡ 0 (mod 2m+1).

Proof. We will use the following identity for each i > 0 and n.

(a) If n ≡ −1 (mod 22
i
), then 4n3 + 3n4 ≡ −1 (mod 22

i+1
).

(b) If n ≡ 0 (mod 22
i
), then 4n3 + 3n4 ≡ 0 (mod 22

i+1
).

On input ϕ and m, the algorithm T does the following.

• For each i = 0, 1, . . . , dlog(m+ 1)e, define a formula ψi as follows.

ψi
def
=

{
ϕ if i = 0
4ψ3

i−1 + 3ψ4
i−1 if i > 1

Here 4ψ3
i−1 + 3ψ4

i−1 denotes the formula that has 4](ψi−1)
4 + 3](ψi−1)

3 satisfying assign-
ments. Note that such formula can be constructed easily using and using the operations +
and u.

• Output the formula ψdlog(m+1)e.

It is not difficult to show that the algorithm T runs in polynomial time. Its correctness follows
directly from the identities (a) and (b). �
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2 Proof of Theorem 12.1

Let L ∈ PH. We want to show that L ∈ P]SAT. By Theorem 11.6, there is a probabilistic
polynomial time algorithm M1 that on input w, outputs a formula ψ such that the following
holds.

• If w ∈ L, then Pr[ ψ ∈ ⊕SAT ] > 3/4.

• If w /∈ L, then Pr[ ψ ∈ ⊕SAT ] 6 1/4.

Using the alternative definition of PTM, we viewM1 as a DTM with two input (w, r), where r
is a random string. Let ` be the length of the random string.

Let M2 be the algorithm, that on input w and random string r, outputs the formula
T (M1(w, r), `+ 2), where T is the algorithm in Lemma 12.2. That is, it first runsM1(w, r) and
then runs T on input (M1(w, r), `+ 2)

Combining Theorem 11.6 and Lemma 12.2, on input w and random string r, the algorithm
M2 outputs a formula ψw,r such that the following holds.

• If w ∈ L, then Prr∈{0,1}` [ ]ψw,r ≡ −1 (mod 2`+3) ] > 3/4.

• If w /∈ L, then Prr∈{0,1}` [ ]ψw,r ≡ −1 (mod 2`+3) ] 6 1/4.

This is equivalent to the following.

• If w ∈ L, the sum
∑

r∈{0,1}` ]ψw,r lies in between −2` and −3
42` (modulo 2`+3).

• If w /∈ L, the sum
∑

r∈{0,1}` ]ψw,r lies in between −1
42` and 0 (modulo 2`+3).

The sets of values that lie in between −2` and −3
42` and in between −1

42` and 0 (modulo 2`+3)
are the following sets P and Q, respectively:

P
def
= {28 · 2`−2, . . . , 29 · 2`−2} and Q

def
= {31 · 2`−2, . . . , 2`+3 − 1} ∪ {0}

Note that P and Q are disjoint.
The main idea of Theorem 12.1 is that on input word w, the algorithm asks the ]SAT oracle

for the value
∑

r∈{0,1}` ]ψw,r and checks whether the value is in the set P or Q. To this end, we
need to construct a formula whose number of satisfying assignments is exactly

∑
r∈{0,1}` ]ψw,r.

Consider the following NTMM′. On input word w, it does the following.

• Guess a string r ∈ {0, 1}`.

• RunM2 on (w, r) to obtain a formula ψw,r.

• Guess a satisfying assignment for ψw,r.

• ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for ψw,r.

Obviously, for every w, the number of accepting runs ofM′ on w is precisely
∑

r∈{0,1}` ]ψw,r.
Now, to complete our proof, we present a polynomial time DTM M that decides L (with

oracle access to ]SAT). On input w, it does the following.

• Construct a formula Ψw such that the number of satisfying assignments of Ψw is exactly
the number of accepting runs ofM′ on w.
Here we use Cook-Levin construction (on w and the transitions inM′). Recall that Cook-
Levin reduction is parsimonious.

• Determine the value ]Ψw (modulo 2`+3) by querying the ]SAT oracle.

• Determine whether ]Ψw lies in P or Q, the answer of which implies whether w ∈ L.


