
Lesson 9. Non-deterministic Turing machines
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

1. Definitions and examples

2. Non-deterministic algorithms

1/22

Table of contents

1. Definitions and examples

2. Non-deterministic algorithms

2/22

Non-deterministic Turing machines

We have learnt that Turing machines are the formal definition of algorithms.

In this lesson we will discuss non-deterministic Turing machines.

Intuitively, non-deterministic Turing machines are algorithms with capability to

“guess correctly.”

They are an important model of computation for defining complexity classes

such as the class NP-complete.

3/22

Non-deterministic Turing machines

We have learnt that Turing machines are the formal definition of algorithms.

In this lesson we will discuss non-deterministic Turing machines.

Intuitively, non-deterministic Turing machines are algorithms with capability to

“guess correctly.”

They are an important model of computation for defining complexity classes

such as the class NP-complete.

3/22

Non-deterministic Turing machines

We have learnt that Turing machines are the formal definition of algorithms.

In this lesson we will discuss non-deterministic Turing machines.

Intuitively, non-deterministic Turing machines are algorithms with capability to

“guess correctly.”

They are an important model of computation for defining complexity classes

such as the class NP-complete.

3/22

Non-deterministic Turing machines

We have learnt that Turing machines are the formal definition of algorithms.

In this lesson we will discuss non-deterministic Turing machines.

Intuitively, non-deterministic Turing machines are algorithms with capability to

“guess correctly.”

They are an important model of computation for defining complexity classes

such as the class NP-complete.

3/22

The definition of non-deterministic Turing machine

(Def.) A non-deterministic Turing machine (NTM) is:

M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

All the components are defined as in the standard Turing machine.

The difference is that δ is now a relation, where there is one or two transitions

applicable on every pair (p, a) ∈ Q × Γ.

More precisely, for every pair (p, a) ∈ Q × Γ:

Either there is exactly one (q, b, α) such that:

(p, a)→ (q, b, α) ∈ δ

or there are exactly two (q1, b1, α1) and (q2, b2, α2) such that:

(p, a)→ (q1, b1, α1) ∈ δ and (p, a)→ (q2, b2, α2) ∈ δ

4/22

The definition of non-deterministic Turing machine

(Def.) A non-deterministic Turing machine (NTM) is:

M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

All the components are defined as in the standard Turing machine.

The difference is that δ is now a relation, where there is one or two transitions

applicable on every pair (p, a) ∈ Q × Γ.

More precisely, for every pair (p, a) ∈ Q × Γ:

Either there is exactly one (q, b, α) such that:

(p, a)→ (q, b, α) ∈ δ

or there are exactly two (q1, b1, α1) and (q2, b2, α2) such that:

(p, a)→ (q1, b1, α1) ∈ δ and (p, a)→ (q2, b2, α2) ∈ δ

4/22

Some remarks

In the standard Turing machine, there is exactly one transition applicable on

every pair (p, a) ∈ Q × Γ.

It works “deterministically”:

For every (p, a), there is only one (q, b, α) such that (p, a)→ (q, b, α) ∈ δ.

It is usually called deterministic Turing machine (DTM).

5/22

Some remarks

In the standard Turing machine, there is exactly one transition applicable on

every pair (p, a) ∈ Q × Γ.

It works “deterministically”:

For every (p, a), there is only one (q, b, α) such that (p, a)→ (q, b, α) ∈ δ.

It is usually called deterministic Turing machine (DTM).

5/22

Some remarks

In the standard Turing machine, there is exactly one transition applicable on

every pair (p, a) ∈ Q × Γ.

It works “deterministically”:

For every (p, a), there is only one (q, b, α) such that (p, a)→ (q, b, α) ∈ δ.

It is usually called deterministic Turing machine (DTM).

5/22

NTM vs. DTM

NTM vs. DTM ≡ NFA vs. DFA

The notions of configuration, initial configuration, accepting/rejecting

configuration and run for NTM are all defined exactly as in DTM.

• For every input word w , there is exactly one run of a DTM on w .

• For every input word w , there are many runs of an NTM on w .

6/22

NTM vs. DTM

NTM vs. DTM ≡ NFA vs. DFA

The notions of configuration, initial configuration, accepting/rejecting

configuration and run for NTM are all defined exactly as in DTM.

• For every input word w , there is exactly one run of a DTM on w .

• For every input word w , there are many runs of an NTM on w .

6/22

NTM vs. DTM

NTM vs. DTM ≡ NFA vs. DFA

The notions of configuration, initial configuration, accepting/rejecting

configuration and run for NTM are all defined exactly as in DTM.

• For every input word w , there is exactly one run of a DTM on w .

• For every input word w , there are many runs of an NTM on w .

6/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

Illustration

Let M be an NTM and w be the input word.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

7/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

The acceptance condition of an NTM

(Def.) An NTM M accepts w , if there is an accepting run of M on w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Cacc

Crej

Cacc

8/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej

Crej Crej Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej

Crej Crej Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej

Crej Crej Crej

9/22

Rejection condition of an NTM

(Def.) An NTM M rejects w , if all the runs of M on w are rejecting.

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej Crej Crej Crej Crej Crej Crej Crej Crej Crej

9/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

When NTM does not halt

An NTM M does not halt on w , if M neither accept nor reject w , i.e., M
does not accept w and it also does not reject w .

C0

C1 C ′1

C2 C ′2 C3 C ′3

Crej

Crej

Crej

Crej

Crej

10/22

Decidable and recognizable languages by NTM

(Def.) An NTM M decides a language L, if:

• for every w ∈ L, M accepts w ;

• for every w /∈ L, M rejects w .

(Def.) An NTM M recognizes a language L, if:

• for every w ∈ L, M accepts w ;

• for every w /∈ L, M does not accept w .

11/22

Decidable and recognizable languages by NTM

(Def.) An NTM M decides a language L, if:

• for every w ∈ L, M accepts w ;

• for every w /∈ L, M rejects w .

(Def.) An NTM M recognizes a language L, if:

• for every w ∈ L, M accepts w ;

• for every w /∈ L, M does not accept w .

11/22

NTM is equivalent to DTM

Theorem 9.1

For every language NTM M, there is DTM M′ such that for every input

word w, the following holds.

• IfM accepts w, thenM′ accepts w.

• IfM rejects w, thenM′ rejects w.

• IfM does not halt on w, thenM′ does not halt on w.

In other words,M andM′ are equivalent.

12/22

Proof of Theorem 9.1

Let M be an NTM.

The DTM M′ works by simulating M on the input word.

On input word w , do the following.

• Let C0 be the initial configuration of M on w .

• Let S = {C0}, i.e., a set that contains only one element C0.

• while (S 6= ∅) or (S contains an accepting configuration):

• Delete all the rejecting configurations from S .

• Compute the next configuration of each element in S .

Store them all in S .

• If S contains an accepting configuration, ACCEPT.

If S = ∅, REJECT.

13/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

Proof of Theorem 9.1 – Illustration

On input word w :

C0

C1 C ′1

C2 C ′2 C3 C ′3

14/22

NTM is equivalent to DTM

Theorem 9.1

For every language NTM M, there is DTM M′ such that for every input

word w, the following holds.

• IfM accepts w, thenM′ accepts w.

• IfM rejects w, thenM′ rejects w.

• IfM does not halt on w, thenM′ does not halt on w.

In other words,M andM′ are equivalent.

NTM can be generalized to multiple tape and Theorem 9.1 still holds.

15/22

NTM is equivalent to DTM

Theorem 9.1

For every language NTM M, there is DTM M′ such that for every input

word w, the following holds.

• IfM accepts w, thenM′ accepts w.

• IfM rejects w, thenM′ rejects w.

• IfM does not halt on w, thenM′ does not halt on w.

In other words,M andM′ are equivalent.

NTM can be generalized to multiple tape and Theorem 9.1 still holds.

15/22

Closure property of recognizable languages

Theorem 9.2

Recognizable languages are closed under concatenation and Kleene star.

(Proof) Let L1 and L2 be recognizable languages and let M1 and M2 be DTM

that recognize them. We assume that Σ = {0, 1}.

(Closure under concatenation) We present a 2-tape NTM M that recognizes

L1L2. On input word w :

• “Guess” a partition v1v2 of w .

• Copy v1 onto the second tape.

• Run M1 on v1 (on the second tape).

• If M1 accepts, erase the second tape and copy v2 onto the second tape

• Run M2 on v2 (on the second tape).

• If M2 accepts, ACCEPT.

16/22

Closure property of recognizable languages

Theorem 9.2

Recognizable languages are closed under concatenation and Kleene star.

(Proof) Let L1 and L2 be recognizable languages and let M1 and M2 be DTM

that recognize them. We assume that Σ = {0, 1}.

(Closure under concatenation) We present a 2-tape NTM M that recognizes

L1L2. On input word w :

• “Guess” a partition v1v2 of w .

• Copy v1 onto the second tape.

• Run M1 on v1 (on the second tape).

• If M1 accepts, erase the second tape and copy v2 onto the second tape

• Run M2 on v2 (on the second tape).

• If M2 accepts, ACCEPT.

16/22

Closure property of recognizable languages

Theorem 9.2

Recognizable languages are closed under concatenation and Kleene star.

(Proof) Let L1 and L2 be recognizable languages and let M1 and M2 be DTM

that recognize them. We assume that Σ = {0, 1}.

(Closure under concatenation) We present a 2-tape NTM M that recognizes

L1L2. On input word w :

• “Guess” a partition v1v2 of w .

• Copy v1 onto the second tape.

• Run M1 on v1 (on the second tape).

• If M1 accepts, erase the second tape and copy v2 onto the second tape

• Run M2 on v2 (on the second tape).

• If M2 accepts, ACCEPT.

16/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/
0̃0v1 v2

q0 p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0̃0v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/
0

0̃v1 v2

q0

p q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0

p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃

v1 v2

q0 p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

“Guess” a partition of w into w = v1v2 – Illustration

We have new symbols 0̃, 1̃, t̃.

The NTM looks like this:

q0 p q1
0 q1

ac

M1

q2
0 q2

ac

M2

0/1
R

0
0̃,L

1
1̃,L

t
t̃,L

0/1
L

/

0

0̃v1 v2

q0 p

q1
0

0/1
R

0
0̃,L

0/1
L

17/22

Proof of the closure under Kleene star

(Closure under Kleene star) We present a 2-tape NTM M that recognizes L∗1 .

On input word w :

• “Guess” a partition v1 · · · vk of w , for some k > 1.

• For each i = 1, . . . , k:

• Copy vi onto the second tape.

• Run M1 on vi (on the second tape).

• If M1 accepts, erase the second tape.

• ACCEPT.

18/22

Table of contents

1. Definitions and examples

2. Non-deterministic algorithms

19/22

How can we view non-deterministic algorithms?

Non-deterministic algorithms are standard algorithms extended with an

instruction of the form:

z := 0 ‖ 1;

It means “randomly assign variable z with either 0 or 1.”

(Def.) A non-deterministic algorithm A “accepts” an input word w , if on every

instruction:

z := 0 ‖ 1;

variable z can be assigned with 0 or 1 such that A will “return true.”

20/22

How can we view non-deterministic algorithms?

Non-deterministic algorithms are standard algorithms extended with an

instruction of the form:

z := 0 ‖ 1;

It means “randomly assign variable z with either 0 or 1.”

(Def.) A non-deterministic algorithm A “accepts” an input word w , if on every

instruction:

z := 0 ‖ 1;

variable z can be assigned with 0 or 1 such that A will “return true.”

20/22

How can we view non-deterministic algorithms?

Non-deterministic algorithms are standard algorithms extended with an

instruction of the form:

z := 0 ‖ 1;

It means “randomly assign variable z with either 0 or 1.”

(Def.) A non-deterministic algorithm A “accepts” an input word w , if on every

instruction:

z := 0 ‖ 1;

variable z can be assigned with 0 or 1 such that A will “return true.”

20/22

Example: The problem SAT

SAT

Input: A propositional formula ϕ.

Task: Output True, if ϕ has (at least one) satisfying assignment.

Otherwise, output False.

(Algo.) On input formula ϕ:

• Let x1, . . . , xn be the variables in ϕ.

• For each i = 1, . . . , n do:

• z := 0 ‖ 1;

• If z == 1, assign xi with True.

• If z == 0, assign xi with False.

• Check if the formula ϕ evaluates to true under the assignment.

• If it evaluates to True, then ACCEPT.

If it evaluates to False, then REJECT.

21/22

Example: The problem SAT

SAT

Input: A propositional formula ϕ.

Task: Output True, if ϕ has (at least one) satisfying assignment.

Otherwise, output False.

(Algo.) On input formula ϕ:

• Let x1, . . . , xn be the variables in ϕ.

• For each i = 1, . . . , n do:

• z := 0 ‖ 1;

• If z == 1, assign xi with True.

• If z == 0, assign xi with False.

• Check if the formula ϕ evaluates to true under the assignment.

• If it evaluates to True, then ACCEPT.

If it evaluates to False, then REJECT.

21/22

Example: The problem Independent-Set

Independent-Set

Input: An undirected graph G = (V , E) and an integer k > 1 (written in binary).

Task: Output True, if there is an independent set of k vertices in G .

Otherwise, output False.

(Def.) For a graph G = (V ,E), a set S ⊆ V is an independent set in G , if

every two vertices u, v in S are not adjacent, i.e., (u, v) /∈ E .

(Algo.) On input graph G = (V ,E) and an integer k > 1:

• S := ∅.
• For each vertex v ∈ V do:

• z := 0 ‖ 1;

• If z == 1, insert v into S.

• Check if the set S is an independent set and |S | > k.

• If it is, ACCEPT.

If it is not, REJECT.

22/22

Example: The problem Independent-Set

Independent-Set

Input: An undirected graph G = (V , E) and an integer k > 1 (written in binary).

Task: Output True, if there is an independent set of k vertices in G .

Otherwise, output False.

(Def.) For a graph G = (V ,E), a set S ⊆ V is an independent set in G , if

every two vertices u, v in S are not adjacent, i.e., (u, v) /∈ E .

(Algo.) On input graph G = (V ,E) and an integer k > 1:

• S := ∅.
• For each vertex v ∈ V do:

• z := 0 ‖ 1;

• If z == 1, insert v into S.

• Check if the set S is an independent set and |S | > k.

• If it is, ACCEPT.

If it is not, REJECT.

22/22

Example: The problem Independent-Set

Independent-Set

Input: An undirected graph G = (V , E) and an integer k > 1 (written in binary).

Task: Output True, if there is an independent set of k vertices in G .

Otherwise, output False.

(Def.) For a graph G = (V ,E), a set S ⊆ V is an independent set in G , if

every two vertices u, v in S are not adjacent, i.e., (u, v) /∈ E .

(Algo.) On input graph G = (V ,E) and an integer k > 1:

• S := ∅.
• For each vertex v ∈ V do:

• z := 0 ‖ 1;

• If z == 1, insert v into S.

• Check if the set S is an independent set and |S | > k.

• If it is, ACCEPT.

If it is not, REJECT.

22/22

End of Lesson 9

	1. Definitions and examples
	2. Non-deterministic algorithms

