Lesson 8. Reducibility

CSIE 3110 - Formal Languages and Automata Theory

Tony Tan Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

- $\mathsf{HALT} \hspace{.1 in} := \hspace{.1 in} \{ \lfloor \mathcal{M} \rfloor \$ w \hspace{.1 in} | \hspace{.1 in} \mathcal{M} \hspace{.1 in} \mathsf{accepts} \hspace{.1 in} w \hspace{.1 in} \mathsf{where} \hspace{.1 in} w \in \{0,1\}^* \}.$
- $\mathsf{HALT}_0 \quad := \quad \{ \lfloor \mathcal{M} \rfloor \ \mid \ \mathcal{M} \text{ accepts } \lfloor \mathcal{M} \rfloor \}.$
- $\mathsf{HALT}_0' \quad := \quad \{ \lfloor \mathcal{M} \rfloor \ \mid \ \mathcal{M} \text{ does not accept } \lfloor \mathcal{M} \rfloor \}.$

In Lesson 7 we proved that $HALT'_0$ is undecidable (by contradiction).

In Lesson 7 we proved that $HALT'_0$ is undecidable (by contradiction). This is the only language that we proved directly to be undecidable.

In Lesson 7 we proved that $HALT'_0$ is undecidable (by contradiction). This is the only language that we proved directly to be undecidable.

 $HALT_0$ is undecidable because it is the "complement" of $HALT'_0$.

In Lesson 7 we proved that $HALT'_0$ is undecidable (by contradiction). This is the only language that we proved directly to be undecidable.

 $HALT_0$ is undecidable because it is the "complement" of $HALT'_0$.

HALT is undecidable because it is a more "general" language than HALT₀.

In Lesson 7 we proved that $HALT'_0$ is undecidable (by contradiction). This is the only language that we proved directly to be undecidable.

 $HALT_0$ is undecidable because it is the "complement" of $HALT'_0$.

HALT is undecidable because it is a more "general" language than $HALT_0$.

This technique is called *reductions*.

Suppose we are given two problems (languages) K and L.

Suppose we are given two problems (languages) K and L. Suppose we can show how to "reduce" problem K to problem L.

Suppose we are given two problems (languages) K and L.

Suppose we can show how to "reduce" problem K to problem L.

Intuitively, this reduction means problem L is more "general" than problem K.

Suppose we are given two problems (languages) K and L.

Suppose we can show how to "reduce" problem K to problem L.

Intuitively, this reduction means problem L is more "general" than problem K. That is, problem L is "harder" than problem K.

Suppose we are given two problems (languages) K and L.

Suppose we can show how to "reduce" problem K to problem L.

Intuitively, this reduction means problem L is more "general" than problem K. That is, problem L is "harder" than problem K.

So, if problem K is undecidable, then problem L is undecidable too.

L

• Find an algorithm for L.

The focus of this lesson

Two types of reductions: *Mapping* reductions and *Turing* reductions.

Computable functions

Let $F:\Sigma^*\to\Sigma^*$ be a function from Σ^* to $\Sigma^*.$

(Def.) A Turing machine \mathcal{M} computes the function F, if \mathcal{M} is a 2-tape Turing machine that accepts every word $w \in \Sigma^*$ and when it halts, the content of its second tape is F(w).

Computable functions

Let $F: \Sigma^* \to \Sigma^*$ be a function from Σ^* to Σ^* .

(Def.) A Turing machine \mathcal{M} computes the function F, if \mathcal{M} is a 2-tape Turing machine that accepts every word $w \in \Sigma^*$ and when it halts, the content of its second tape is F(w).

Note that for \mathcal{M} to compute F, the content of the first tape can be anything when it halts. The main point is that when \mathcal{M} halts, the content of the second tape is F(w).

Computable functions

Let $F: \Sigma^* \to \Sigma^*$ be a function from Σ^* to Σ^* .

(Def.) A Turing machine \mathcal{M} computes the function F, if \mathcal{M} is a 2-tape Turing machine that accepts every word $w \in \Sigma^*$ and when it halts, the content of its second tape is F(w).

Note that for \mathcal{M} to compute F, the content of the first tape can be anything when it halts. The main point is that when \mathcal{M} halts, the content of the second tape is F(w).

(Def.) A function $F : \Sigma^* \to \Sigma^*$ is *computable*, if there is a Turing machine that computes it.

Computable functions by multi-tape Turing machines

The Turing machine M that computes F can be any multi-tape Turing machine with a designated output tape that contains the output string.

Computable functions by multi-tape Turing machines

The Turing machine M that computes F can be any multi-tape Turing machine with a designated output tape that contains the output string.

(Note) Any function that can be computed by a multi-tape Turing machine can also be computed by a 2-tape Turing machine.

(Def.) A language L_1 is mapping reducible to another language L_2 , denoted by:

$L_1 \leq M L_2$

if there is a computable function F such that for every $w \in \Sigma^*$:

 $w \in L_1$ if and only if $F(w) \in L_2$

(Def.) A language L_1 is mapping reducible to another language L_2 , denoted by:

$L_1 \leq M L_2$

if there is a computable function F such that for every $w \in \Sigma^*$:

```
w \in L_1 if and only if F(w) \in L_2
```

The function *F* is called *mapping reduction*.

(Def.) A language L_1 is mapping reducible to another language L_2 , denoted by:

$L_1 \leq M L_2$

if there is a computable function F such that for every $w \in \Sigma^*$:

```
w \in L_1 if and only if F(w) \in L_2
```

The function *F* is called *mapping reduction*.

Intuitively $L_1 \leq_m L_2$ means " L_2 is (computationally) more general than L_1 ".

(Def.) A language L_1 is mapping reducible to another language L_2 , denoted by:

$L_1 \leq M L_2$

if there is a computable function F such that for every $w \in \Sigma^*$:

```
w \in L_1 if and only if F(w) \in L_2
```

The function *F* is called *mapping reduction*.

Intuitively $L_1 \leq_m L_2$ means " L_2 is (computationally) more general than L_1 ".

It also means that a Turing machine that decides L_2 can be used to decide L_1 .

Turing reductions

(Def.) A language L_1 is *Turing reducible* to another language L_2 , denoted by:

$L_1 \leqslant_T L_2$

if there is a Turing machine M_2 that decides L_2 , then there is a Turing machine M_1 that decides L_1 using M_2 as a "subroutine."

Turing reductions

(Def.) A language L_1 is *Turing reducible* to another language L_2 , denoted by:

$L_1 \leqslant_T L_2$

if there is a Turing machine M_2 that decides L_2 , then there is a Turing machine M_1 that decides L_1 using M_2 as a "subroutine."

Here we assume that \mathcal{M}_2 decides L_2 in <u>one</u> step.

Turing reductions

(Def.) A language L_1 is *Turing reducible* to another language L_2 , denoted by:

$L_1 \leqslant_T L_2$

if there is a Turing machine M_2 that decides L_2 , then there is a Turing machine M_1 that decides L_1 using M_2 as a "subroutine."

Here we assume that \mathcal{M}_2 decides L_2 in <u>one</u> step.

(Def.) We call \mathcal{M}_1 a Turing machine with oracle access to L_2 .

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but they are different.

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but they are different.

 $(L_1 \leqslant_m L_2)$

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but they are different.

 $(L_1 \leqslant_m L_2)$

On the surface, mapping reductions and Turing reductions look similar, but they are different.

• $w \in L_1$ if and only if $v \in L_2$.

On the surface, mapping reductions and Turing reductions look similar, but they are different.

• $w \in L_1$ if and only if $v \in L_2$.

 \Rightarrow Very important!

On the surface, mapping reductions and Turing reductions look similar, but they are different.

- $w \in L_1$ if and only if $v \in L_2$. \Rightarrow Very important!
- Inside the algorithm we do not assume/use anything about L₂.

On the surface, mapping reductions and Turing reductions look similar, but they are different.

- $w \in L_1$ if and only if $v \in L_2$. \Rightarrow Very important!
- Inside the algorithm we do not assume/use anything about L_2 .
- View it this way: If L_2 is decidable by, say, M_2 , then in the algorithm we can only use M_2 once(!).

The answer provided by \mathcal{M}_2 must also be the answer to whether $w \in L_1$.

 $(L_1 \leqslant_T L_2)$

 $(L_1 \leqslant_T L_2)$

We assume a Turing machine M_2 that decides L_2 .

We assume a Turing machine M_2 that decides L_2 .

• Inside the algorithm the Turing machine M_2 can be called multiple times.

We assume a Turing machine M_2 that decides L_2 .

- Inside the algorithm the Turing machine \mathcal{M}_2 can be called multiple times.
- The (multiple) answers provided by \mathcal{M}_2 can be used to decided whether $w \in L_1$.

Example of a mapping reduction

 $HALT_0 \leq_m HALT$ via the following reduction:

Example of a mapping reduction

 $HALT_0 \leq_m HALT$ via the following reduction:

```
\begin{array}{l} \text{On input } \lfloor \mathcal{M} \rfloor : \\ \{ \quad \text{Output } \lfloor \mathcal{M} \rfloor \$ \lfloor \mathcal{M} \rfloor . \\ \} \end{array}
```

Example of a mapping reduction

 $HALT_0 \leq_m HALT$ via the following reduction:

```
\begin{array}{l} \text{On input } \lfloor \mathcal{M} \rfloor : \\ \{ \quad \text{Output } \lfloor \mathcal{M} \rfloor \$ \lfloor \mathcal{M} \rfloor . \\ \} \end{array}
```

Note that:

 $\lfloor \mathcal{M} \rfloor \in \mathsf{HALT}_0$ if and only if $\lfloor \mathcal{M} \rfloor \$ \lfloor \mathcal{M} \rfloor \in \mathsf{HALT}$

 $\mathsf{HALT}_0' \leqslant_{\mathsf{T}} \mathsf{HALT}_0$ via the following reduction:

 $HALT'_0 \leq_T HALT_0$ via the following reduction:

We assume that there is Turing machine \mathcal{A} that decides HALT₀.

```
On input [M]:
{ Run A on [M].
If (A accepts [M])
REJECT.
else
ACCEPT.
}
```

 $HALT'_0 \leq_T HALT_0$ via the following reduction:

We assume that there is Turing machine \mathcal{A} that decides HALT₀.

```
On input [M]:
{ Run A on [M].
If (A accepts [M])
REJECT.
else
ACCEPT.
}
```

In this algorithm we call ${\mathcal A}$ only once, but it makes some change to the answer it provides.

 $HALT'_0 \leq_T HALT_0$ via the following reduction:

We assume that there is Turing machine \mathcal{A} that decides HALT₀.

```
On input [M]:
{ Run A on [M].
If (A accepts [M])
REJECT.
else
ACCEPT.
}
```

In this algorithm we call ${\mathcal A}$ only once, but it makes some change to the answer it provides.

• If the answer from \mathcal{A} is "accept", the algorithm "rejects".

 $HALT'_0 \leq_T HALT_0$ via the following reduction:

We assume that there is Turing machine \mathcal{A} that decides HALT₀.

```
On input [M]:
{ Run A on [M].
If (A accepts [M])
REJECT.
else
ACCEPT.
}
```

In this algorithm we call ${\mathcal A}$ only once, but it makes some change to the answer it provides.

- If the answer from ${\cal A}$ is "accept", the algorithm "rejects".
- If the answer from \mathcal{A} is "reject", the algorithm "accepts".

• If $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$.

- If $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$.
- If $L_1 \leq_T L_2$ and L_1 is undecidable, then L_2 is also undecidable.

- If $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$.
- If $L_1 \leq_T L_2$ and L_1 is undecidable, then L_2 is also undecidable.

(Important) The following is NOT true.

- If $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$.
- If $L_1 \leq_T L_2$ and L_1 is undecidable, then L_2 is also undecidable.

(Important) The following is NOT true.

• If $L_1 \leq_T L_2$ and L_2 is undecidable, then L_1 is undecidable.

- If $L_1 \leq_m L_2$, then $L_1 \leq_T L_2$.
- If $L_1 \leq_T L_2$ and L_1 is undecidable, then L_2 is also undecidable.

(Important) The following is NOT true.

- If $L_1 \leq_T L_2$ and L_2 is undecidable, then L_1 is undecidable.
- If $L_1 \leq_m L_2$ and L_2 is undecidable, then L_1 is undecidable.

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

The following languages are all undecidable.

• $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

The following languages are all undecidable.

- $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$. That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{0,1\}^* \}.$

That is, $\lfloor \mathcal{M} \rfloor \in L_1$ if and only if \mathcal{M} accepts every word.

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

The following languages are all undecidable.

- $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$. That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{0, 1\}^* \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_1$ if and only if \mathcal{M} accepts every word.
- $L_2 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the empty word } \varepsilon \}$

That is, $\lfloor \mathcal{M} \rfloor \in L_2$ if and only if \mathcal{M} accepts the empty word ε .

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

- $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$. That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{0, 1\}^* \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_1$ if and only if \mathcal{M} accepts every word.
- $L_2 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the empty word } \varepsilon \}$ That is, $\lfloor \mathcal{M} \rfloor \in L_2$ if and only if \mathcal{M} accepts the empty word ε .
- $L_3 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the word } 1101 \}.$

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

- $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$. That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{0, 1\}^* \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_1$ if and only if \mathcal{M} accepts every word.
- $L_2 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the empty word } \varepsilon \}$ That is, $\lfloor \mathcal{M} \rfloor \in L_2$ if and only if \mathcal{M} accepts the empty word ε .
- $L_3 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the word } 1101 \}.$
- $L_4 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{ a^n b^n \mid n \ge 0 \} \}.$

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

- $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$. That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.
- $L_1 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{0, 1\}^* \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_1$ if and only if \mathcal{M} accepts every word.
- $L_2 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the empty word } \varepsilon \}$ That is, $\lfloor \mathcal{M} \rfloor \in L_2$ if and only if \mathcal{M} accepts the empty word ε .
- $L_3 := \{ \lfloor \mathcal{M} \rfloor \mid \mathcal{M} \text{ accepts the word } 1101 \}.$
- $L_4 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{ a^n b^n \mid n \ge 0 \} \}.$
- $L_5 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) \text{ is a regular language} \}.$

(Def.) $L(\mathcal{M})$ denotes the set of all words accepted by the Turing machine \mathcal{M} .

The following languages are all undecidable.

• $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}.$ That is, $\lfloor \mathcal{M} \rfloor \in L_0$ if and only if \mathcal{M} does not accept any word.

•
$$L_4 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \{ a^n b^n \mid n \ge 0 \} \}.$$

Proof that $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$ is undecidable

We show that HALT $\leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

Proof that $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$ is undecidable

We show that $HALT \leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.

– If \mathcal{M} accepts w, ACCEPT.

– If \mathcal{M} rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

Proof that $L_0 := \{ \lfloor \mathcal{M} \rfloor \mid L(\mathcal{M}) = \emptyset \}$ is undecidable

We show that $HALT \leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor$ $w \in HALT$,
We show that HALT $\leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor$ $w \in HALT$, then $L(\mathcal{K}_{\mathcal{M},w}) = \Sigma^*$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$.

We show that HALT $\leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \Sigma^*$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$. If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$,

We show that HALT $\leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output
$$[\mathcal{K}_{\mathcal{M},w}]$$
.

If $\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \Sigma^*$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$. If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin \overline{L}_0$.

We show that HALT $\leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*: – Run *M* on *w*. – If *M* accepts *w*, ACCEPT. – If *M* rejects *w*, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output
$$\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$$
.

If
$$\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$$
, then $L(\mathcal{K}_{\mathcal{M},w}) = \Sigma^*$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$.
If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin \overline{L}_0$.
Thus.

 $\lfloor \mathcal{M} \rfloor$ $w \in HALT$ if and only if $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$

We show that $HALT \leq_m \overline{L}_0$, where \overline{L}_0 is the complement of L_0 .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*: – Run *M* on *w*. – If *M* accepts *w*, ACCEPT. – If *M* rejects *w*, REJECT.

(Note: ACCEPT and REJECT above are inside $\mathcal{K}_{\mathcal{M},w}$.)

• Output
$$\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$$
.

If
$$\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$$
, then $L(\mathcal{K}_{\mathcal{M},w}) = \Sigma^*$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in \overline{L}_0$.
If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin \overline{L}_0$.
Thus.

$$[\mathcal{M}]$$
 $w \in HALT$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \in \overline{L}_0$

So, HALT $\leq_m \overline{L}_0$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*:

- Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:
 - On input u:
 - Run \mathcal{M} on w.
 - If \mathcal{M} accepts w, ACCEPT.
 - If \mathcal{M} rejects w, REJECT.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

- Make p_0 the initial state of $\mathcal{K}_{\mathcal{M},w}$.
- The accept state of $\mathcal{K}_{\mathcal{M},w}$ is the accept state of \mathcal{M} .
- The reject state of $\mathcal{K}_{\mathcal{M},w}$ is the reject state of \mathcal{M} .

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

Rewrite the content of the tape to be w.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

"Erase" the remaining of the input v when |v| > |w|.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input u:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

Move the head back to the beginning of the tape.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{M} on w.
- If \mathcal{M} accepts w, ACCEPT.
- If \mathcal{M} rejects w, REJECT.

Add the following: (where $w = a_1 a_2 \cdots a_n$)

When the head reaches the left-end marker <, it moves right.

It enters the state q_0 of \mathcal{M} (i.e., to run \mathcal{M} on w).

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that $HALT \leq_m L_4$.

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If \mathcal{A} rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor$ $w \in HALT$,

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{A} on u.
- If A rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor$ $w \in HALT$, then $L(\mathcal{K}_{\mathcal{M},w}) = \{a^n b^n | n \ge 0\}$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in L_4$.

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{A} on u.
- If A rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor w \in HALT$, then $L(\mathcal{K}_{\mathcal{M},w}) = \{a^n b^n | n \ge 0\}$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in L_4$. If $\lfloor \mathcal{M} \rfloor w \notin HALT$,

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{A} on u.
- If \mathcal{A} rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \{a^n b^n | n \ge 0\}$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in L_4$. If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin L_4$.

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input [𝓜]\$w:
Construct the following Turing machine denoted by 𝐾𝔄,w:
On input 𝑢:
- Run 𝔄 on 𝑢. (to che

– If \mathcal{A} rejects u, REJECT.

– If \mathcal{A} accepts u:

 $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$

* If \mathcal{M} accepts w, ACCEPT.

* If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor \$ w \in \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \{a^n b^n | n \ge 0\}$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in L_4$. If $\lfloor \mathcal{M} \rfloor \$ w \notin \mathsf{HALT}$, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin L_4$. Thus,

 $[\mathcal{M}]$ $w \in HALT$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \in L_4$

Let \mathcal{A} be a TM that decides the language $\{a^n b^n | n \ge 0\}$.

We show that HALT $\leq_m L_4$.

On input [M]\$w:
Construct the following Turing machine denoted by K_{M,w}:
On input u:

Run A on u.
(to che
If A rejects u, REJECT.
If A accepts u:

* Run M on w.

* If \mathcal{M} accepts w, ACCEPT.

* If \mathcal{M} rejects w, REJECT.

• Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

If $\lfloor \mathcal{M} \rfloor$ w \in HALT, then $L(\mathcal{K}_{\mathcal{M},w}) = \{a^n b^n | n \ge 0\}$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \in L_4$. If $\lfloor \mathcal{M} \rfloor$ w \notin HALT, then $L(\mathcal{K}_{\mathcal{M},w}) = \emptyset$, so, $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor \notin L_4$. Thus,

 $[\mathcal{M}]$ $w \in HALT$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \in L_4$

So, HALT $\leq_m L_4$.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.
- If \mathcal{A} accepts u:
 - $* \operatorname{Run} \mathcal{M}$ on w.
 - * If \mathcal{M} accepts w, ACCEPT.
 - * If \mathcal{M} rejects w, REJECT.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.

– If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{A} on u.
- If A rejects u, REJECT.

- If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

(to check if $u \in \{a^n b^n | n \ge 0\}$.)

Turing machine \mathcal{B} writes w on the tape and enters $q_0^{\mathcal{M}}$ (to run \mathcal{M} on w).

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.

– If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

(to check if $u \in \{a^n b^n | n \ge 0\}$.)

 $q_0^{\mathcal{A}}$ is the initial state.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.

- If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

(to check if $u \in \{a^n b^n | n \ge 0\}$.)

 $q_{\rm acc}^{\mathcal{M}}$ is the accept state.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- $-\operatorname{Run} \mathcal{A}$ on u.
- If A rejects u, REJECT.

- If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

(to check if $u \in \{a^n b^n | n \ge 0\}$.)

 $q_{\rm rej}^{\mathcal{M}}$ is the reject state

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$:

On input *u*:

- Run \mathcal{A} on u.
- If A rejects u, REJECT.

– If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

(to check if $u \in \{a^n b^n | n \ge 0\}$.)

Add a transition so that from $q_{rej}^{\mathcal{A}}$ the TM enters $q_{rej}^{\mathcal{M}}$.

The proof can be generalized to the so called *Rice's theorem*.

The proof can be generalized to the so called *Rice's theorem*.

(Def.) Let *P* be a set of descriptions of Turing machines. *P* is a *property*, if for every Turing machines M_1 and M_2 , if:

 $L(\mathcal{M}_1) = L(\mathcal{M}_2)$

then:

either $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \in P$ or $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \notin P$

The proof can be generalized to the so called *Rice's theorem*.

(Def.) Let *P* be a set of descriptions of Turing machines. *P* is a *property*, if for every Turing machines M_1 and M_2 , if:

 $L(\mathcal{M}_1) = L(\mathcal{M}_2)$

then:

either $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \in P$ or $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \notin P$

The criteria for $\lfloor \mathcal{M} \rfloor$ to be in P depends on the language $L(\mathcal{M})$, and not on the string $\lfloor \mathcal{M} \rfloor$ itself.

The proof can be generalized to the so called *Rice's theorem*.

(Def.) Let *P* be a set of descriptions of Turing machines. *P* is a *property*, if for every Turing machines M_1 and M_2 , if:

 $L(\mathcal{M}_1) = L(\mathcal{M}_2)$

then:

either $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \in P$ or $\lfloor \mathcal{M}_1 \rfloor, \lfloor \mathcal{M}_2 \rfloor \notin P$

The criteria for $\lfloor \mathcal{M} \rfloor$ to be in P depends on the language $L(\mathcal{M})$, and *not* on the string $\lfloor \mathcal{M} \rfloor$ itself.

(Def.) A property *P* is called a *trivial* property, if: either $P = \emptyset$ or *P* contains all the descriptions of Turing machines

Theorem 8.6 (Rice's theorem)

For a property P, if P is not a trivial property, then P is undecidable.

Theorem 8.6 (Rice's theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

Theorem 8.6 (Rice's theorem) For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where *P* does not contain $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Theorem 8.6 (Rice's theorem) For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where *P* does not contain $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Let \mathcal{A} be a Turing machine where $\lfloor \mathcal{A} \rfloor \in \mathcal{P}$.
Rice's theorem - continued

Theorem 8.6 (Rice's theorem) For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where *P* does not contain $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Let \mathcal{A} be a Turing machine where $\lfloor \mathcal{A} \rfloor \in \mathcal{P}$. Such \mathcal{A} exists since \mathcal{P} is not trivial.

We show that $HALT \leq_m P$.

- We show that $HALT \leq_m P$.
 - On input $\lfloor \mathcal{M} \rfloor$ \$w:
 - \bullet Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}:$
 - On input u:
 - Run \mathcal{A} on u.

(to check if $u \in L(\mathcal{A})$.)

- If \mathcal{A} accepts u:
 - $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$

– If A rejects u, REJECT.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.
- Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

We show that $HALT \leq_m P$.

On input $\lfloor \mathcal{M} \rfloor$ \$w:

\bullet Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}:$

On input u:

– Run \mathcal{A} on u.

(to check if $u \in L(\mathcal{A})$.)

– If \mathcal{A} accepts u:

 $* \operatorname{Run} \mathcal{M}$ on w.

– If A rejects u, REJECT.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.

- We show that $HALT \leq_m P$.
 - On input $\lfloor \mathcal{M} \rfloor$ \$w:
 - \bullet Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}:$
 - On input u:
 - Run \mathcal{A} on u.

(to check if $u \in L(\mathcal{A})$.)

- If \mathcal{A} accepts u:
 - $* \ \mathsf{Run} \ \mathcal{M} \ \mathsf{on} \ w.$

– If A rejects u, REJECT.

- * If \mathcal{M} accepts w, ACCEPT.
- * If \mathcal{M} rejects w, REJECT.
- Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

We show that HALT $\leq_m P$. On input $\lfloor \mathcal{M} \rfloor$ ^{\$w:} • Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$: On input u: - Run \mathcal{A} on u. (to check if $u \in L(\mathcal{A})$.) - If \mathcal{A} rejects u, REJECT. - If \mathcal{A} accepts u: * Run \mathcal{M} on w. * If \mathcal{M} accepts w, ACCEPT. * If \mathcal{M} rejects w, REJECT. • Output $\lfloor \mathcal{K}_{\mathcal{M},w} \rfloor$.

By similar reasoning as the proof of the undecidability of L_4 :

 \mathcal{M} $w \in HALT$ if and only if $|\mathcal{K}_{\mathcal{M},w}| \in P$

We show that HALT $\leq_m P$. On input $[\mathcal{M}]$ \$w: • Construct the following Turing machine denoted by $\mathcal{K}_{\mathcal{M},w}$: On input u: - Run \mathcal{A} on u. (to check if $u \in L(\mathcal{A})$.) - If \mathcal{A} rejects u, REJECT. - If \mathcal{A} accepts u: * Run \mathcal{M} on w. * If \mathcal{M} accepts w, ACCEPT. * If \mathcal{M} rejects w, REJECT. • Output $[\mathcal{K}_{\mathcal{M},w}]$.

By similar reasoning as the proof of the undecidability of L_4 :

 \mathcal{M} $w \in HALT$ if and only if $[\mathcal{K}_{\mathcal{M},w}] \in P$

Thus, we have proved Rice's theorem for the case where P does not contain $\lfloor M \rfloor$ where $L(M) = \emptyset$

Now we consider the case where *P* contains $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Now we consider the case where *P* contains $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of P, denoted by \overline{P} .

Now we consider the case where *P* contains $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of P, denoted by \overline{P} .

Now \overline{P} does not contain $\lfloor \mathcal{M} \rfloor$ where $L(\mathcal{M}) = \emptyset$.

Now we consider the case where *P* contains $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of *P*, denoted by \overline{P} . Now \overline{P} does not contain $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Since *P* is not a trivial property, we have $\overline{P} \neq \emptyset$.

Now we consider the case where *P* contains $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of *P*, denoted by \overline{P} . Now \overline{P} does not contain $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Since *P* is not a trivial property, we have $\overline{P} \neq \emptyset$. So we can pick a Turing machine \mathcal{A} where $|\mathcal{A}| \in \overline{P}$.

Now we consider the case where *P* contains $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of P, denoted by \overline{P} . Now \overline{P} does not contain $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Since *P* is not a trivial property, we have $\overline{P} \neq \emptyset$. So we can pick a Turing machine *A* where $|\mathcal{A}| \in \overline{P}$.

The previous case already establishes HALT $\leq_m \overline{P}$.

Now we consider the case where *P* contains $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Consider the complement of P, denoted by \overline{P} . Now \overline{P} does not contain $|\mathcal{M}|$ where $L(\mathcal{M}) = \emptyset$.

Since *P* is not a trivial property, we have $\overline{P} \neq \emptyset$. So we can pick a Turing machine *A* where $|\mathcal{A}| \in \overline{P}$.

The previous case already establishes HALT $\leq_m \overline{P}$. This means \overline{P} is undecidable, and hence, P is also undecidable.

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

CEL	1.1		
(– – –	-Inte	rsecti	on
- Ci L		JUCCI	

CFL-Intersection

This problem can be viewed as a language:

```
\mathsf{CFL-Intersection} := \{ \lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor \mid L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset \}
```

where $|\mathcal{G}|$ denotes the encoding of \mathcal{G} as a string over some fixed alphabet.

CFL-Intersection

This problem can be viewed as a language:

 $\mathsf{CFL-Intersection} := \{ \lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor \mid L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset \}$

where $|\mathcal{G}|$ denotes the encoding of \mathcal{G} as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet $\Sigma \cup \{0, 1, \langle, \rangle, \rightarrow, \diamond, \#\}$.

CFL-Intersection

This problem can be viewed as a language:

 $\mathsf{CFL-Intersection} := \{ \lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor \mid L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset \}$

where $|\mathcal{G}|$ denotes the encoding of \mathcal{G} as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet $\Sigma \cup \{0, 1, \langle, \rangle, \rightarrow, \diamond, \#\}$. Let \mathcal{G} be a CFG with *n* variables.

CFL-Intersection

This problem can be viewed as a language:

 $\mathsf{CFL-Intersection} := \{ \lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor \mid L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset \}$

where $|\mathcal{G}|$ denotes the encoding of \mathcal{G} as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet $\Sigma \cup \{0, 1, \langle, \rangle, \rightarrow, \diamond, \#\}$. Let \mathcal{G} be a CFG with *n* variables.

The variables can be encoded as ⟨i⟩, where i is an integer (written in binary) between 0 and n − 1.

CFL-Intersection

This problem can be viewed as a language:

 $\mathsf{CFL-Intersection} := \{ \lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor \mid L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset \}$

where $|\mathcal{G}|$ denotes the encoding of \mathcal{G} as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet $\Sigma \cup \{0, 1, \langle, \rangle, \rightarrow, \diamond, \#\}$. Let \mathcal{G} be a CFG with *n* variables.

- The variables can be encoded as ⟨i⟩, where i is an integer (written in binary) between 0 and n − 1.
- A rule, say, S → 0X11 is encoded as (0) → 0(3)11. (Assuming that S is represented as 0 and X as 3).

The problem/language CFL-Intersection is undecidable

Theorem 8.8

The problem CFL-Intersection is undecidable.

The problem/language CFL-Intersection is undecidable

Theorem 8.8 *The problem* CFL-Intersection *is undecidable.*

We will show that HALT \leq_m CFL-Intersection.

The problem/language CFL-Intersection is undecidable

Theorem 8.8 *The problem* CFL-Intersection *is undecidable.*

We will show that HALT \leq_m CFL-Intersection.

We assume that HALT contains only $\lfloor \mathcal{M} \rfloor$ ^{\$w} where \mathcal{M} is a 1-tape Turing machine and \mathcal{M} accepts w.

Let $\ensuremath{\mathcal{M}}$ be a Turing machine.

Let $\ensuremath{\mathcal{M}}$ be a Turing machine.

• Add a "new" state q_{loop} such that instead of entering the q_{rej} , M enters q_{loop} and loops forever.

Let $\ensuremath{\mathcal{M}}$ be a Turing machine.

- Add a "new" state q_{loop} such that instead of entering the q_{rej} , \mathcal{M} enters q_{loop} and loops forever.
- Add some states, so that for every word *w* accepted by *M*, the run has odd length:

 $C_0 \vdash C_1 \vdash C_2 \vdash C_3 \vdash \cdots \vdash C_n$

where *n* is odd.

Let ${\mathcal M}$ be a Turing machine.

- Add a "new" state q_{loop} such that instead of entering the q_{rej} , \mathcal{M} enters q_{loop} and loops forever.
- Add some states, so that for every word *w* accepted by *M*, the run has odd length:

 $C_0 \vdash C_1 \vdash C_2 \vdash C_3 \vdash \cdots \vdash C_n$

where *n* is odd.

After adding those states, the following holds for every word w:

Let ${\mathcal M}$ be a Turing machine.

- Add a "new" state q_{loop} such that instead of entering the q_{rej} , \mathcal{M} enters q_{loop} and loops forever.
- Add some states, so that for every word w accepted by M, the run has odd length:

 $C_0 \vdash C_1 \vdash C_2 \vdash C_3 \vdash \cdots \vdash C_n$

where *n* is odd.

After adding those states, the following holds for every word w:

• If \mathcal{M} accepts w, then the run is finite and has odd length.

Let ${\mathcal M}$ be a Turing machine.

- Add a "new" state q_{loop} such that instead of entering the q_{rej} , \mathcal{M} enters q_{loop} and loops forever.
- Add some states, so that for every word w accepted by M, the run has odd length:

 $C_0 \vdash C_1 \vdash C_2 \vdash C_3 \vdash \cdots \vdash C_n$

where *n* is odd.

After adding those states, the following holds for every word w:

- If \mathcal{M} accepts w, then the run is finite and has odd length.
- If \mathcal{M} does not w, then the run is infinite.

Some observations – continued

Recall that the states of a Turing machines \mathcal{M} are represented as numbers written in binary form. Thus, the run (1) can be viewed as a string over the alphabet $\{\vdash, 0, 1, \tilde{\sqcup}, [,]\}$, where we write [i] to represent the state in the configuration.

On input $\lfloor \mathcal{M} \rfloor$ ^{\$w}, construct \mathcal{G}_1 and \mathcal{G}_2 such that:

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, construct \mathcal{G}_1 and \mathcal{G}_2 such that:

• If \mathcal{M} \$ $w \in HALT$, then $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains exactly one word:

 $C_0 \vdash C_1^r \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n^r$

where C_i^r denotes the reverse of C_i and

 $C_0 \vdash C_1 \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n$

is the run of \mathcal{M} on w.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, construct \mathcal{G}_1 and \mathcal{G}_2 such that:

• If \mathcal{M} \$ $w \in HALT$, then $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains exactly one word:

 $C_0 \vdash C_1^r \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n^r$

where C_i^r denotes the reverse of C_i and

$$C_0 \vdash C_1 \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n$$

is the run of \mathcal{M} on w.

• If \mathcal{M} \$ $w \notin$ HALT, then $L(\mathcal{G}_1) \cap L(\mathcal{G}_2) = \emptyset$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, construct \mathcal{G}_1 and \mathcal{G}_2 such that:

• If \mathcal{M} \$ $w \in HALT$, then $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains exactly one word:

 $C_0 \vdash C_1^r \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n^r$

where C_i^r denotes the reverse of C_i and

$$C_0 \vdash C_1 \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n$$

is the run of \mathcal{M} on w.

• If \mathcal{M} \$ $w \notin$ HALT, then $L(\mathcal{G}_1) \cap L(\mathcal{G}_2) = \emptyset$.

(Def.) We call the string: $C_0 \vdash C_1^r \vdash C_2 \vdash C_3^r \vdash \cdots \vdash C_n^r$ the reverse representation of the run: $C_0 \vdash C_1 \vdash C_2 \vdash C_3 \vdash \cdots \vdash C_n$.

The construction of \mathcal{G}_1 and \mathcal{G}_2

A string $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \vdash \cdots \vdash u_n$ is the reverse representation of the run of \mathcal{M} on w, if:
A string $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \vdash \cdots \vdash u_n$ is the reverse representation of the run of \mathcal{M} on w, if:

(a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.
- (d) $u_{i-1}^r \vdash u_i$, for each even *i* in between 1 and *n*.

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.
- (d) $u_{i-1}^r \vdash u_i$, for each even *i* in between 1 and *n*.
- (e) The last string u_n contains $[q_{acc}]$.

A string $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \vdash \cdots \vdash u_n$ is the reverse representation of the run of \mathcal{M} on w, if:

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.
- (d) $u_{i-1}^r \vdash u_i$, for each even *i* in between 1 and *n*.
- (e) The last string u_n contains $[q_{acc}]$.

There is an algorithm where on input $\lfloor \mathcal{M} \rfloor$, it constructs a CFG \mathcal{G}_1 such that \mathcal{G}_1 generates the strings that satisfies conditions (a), (b) and (c).

A string $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \vdash \cdots \vdash u_n$ is the reverse representation of the run of \mathcal{M} on w, if:

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.
- (d) $u_{i-1}^r \vdash u_i$, for each even *i* in between 1 and *n*.
- (e) The last string u_n contains $[q_{acc}]$.

There is an algorithm where on input $\lfloor \mathcal{M} \rfloor$, it constructs a CFG \mathcal{G}_1 such that \mathcal{G}_1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input $\lfloor \mathcal{M} \rfloor$, it constructs a CFG \mathcal{G}_2 such that \mathcal{G}_2 generates the strings that satisfies conditions (d) and (e).

A string $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \vdash \cdots \vdash u_n$ is the reverse representation of the run of \mathcal{M} on w, if:

- (a) *n* is an odd number, i.e., the symbol \vdash appears even number of times.
- (b) u_0 is the initial configuration of \mathcal{M} on w.
- (c) $u_{i-1} \vdash u_i^r$, for each odd *i* in between 1 and *n*.
- (d) $u_{i-1}^r \vdash u_i$, for each even *i* in between 1 and *n*.
- (e) The last string u_n contains $[q_{acc}]$.

There is an algorithm where on input $\lfloor \mathcal{M} \rfloor$, it constructs a CFG \mathcal{G}_1 such that \mathcal{G}_1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input $\lfloor \mathcal{M} \rfloor$, it constructs a CFG \mathcal{G}_2 such that \mathcal{G}_2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Add some new states to *M* so that:
 M accepts *w* iff the run of *M* on *w* is finite and has odd length.
- Construct \mathcal{G}_1 that generates words satisfying conditions (a), (b) and (c).
- Construct \mathcal{G}_2 that generates words satisfying conditions (d) and (e).
- Output $\lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Add some new states to *M* so that:
 M accepts *w* iff the run of *M* on *w* is finite and has odd length.
- Construct \mathcal{G}_1 that generates words satisfying conditions (a), (b) and (c).
- Construct \mathcal{G}_2 that generates words satisfying conditions (d) and (e).
- Output $\lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor$.

 $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains the reverse representation of the accepting run of \mathcal{M} on w.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Add some new states to *M* so that:
 M accepts *w* iff the run of *M* on *w* is finite and has odd length.
- Construct \mathcal{G}_1 that generates words satisfying conditions (a), (b) and (c).
- Construct \mathcal{G}_2 that generates words satisfying conditions (d) and (e).
- Output $\lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor$.

 $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains the reverse representation of the accepting run of \mathcal{M} on w.

Thus,

```
\lfloor \mathcal{M} \rfloor w \in HALT if and only if L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset
```

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Add some new states to *M* so that:
 M accepts *w* iff the run of *M* on *w* is finite and has odd length.
- Construct \mathcal{G}_1 that generates words satisfying conditions (a), (b) and (c).
- Construct \mathcal{G}_2 that generates words satisfying conditions (d) and (e).
- Output $\lfloor \mathcal{G}_1 \rfloor \$ \lfloor \mathcal{G}_2 \rfloor$.

 $L(\mathcal{G}_1) \cap L(\mathcal{G}_2)$ contains the reverse representation of the accepting run of \mathcal{M} on w.

Thus,

```
\lfloor \mathcal{M} \rfloor w \in HALT if and only if L(\mathcal{G}_1) \cap L(\mathcal{G}_2) \neq \emptyset
```

Hence, CFL-Intersection is undecidable.

CFL universality

~	-					14 A - 1
- C	н	- 1	U	nive	rsal	litv
<u> </u>		_	~			

Input:	A CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ where $\Sigma = \{0, 1\}$.
Task:	Output True, if $L(\mathcal{G}) = \Sigma^*$. Otherwise, output False

CFL universality

CFL-Universality			
Input:	A CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ where $\Sigma = \{0, 1\}$.		
Task:	Output True, if $L(\mathcal{G}) = \Sigma^*$. Otherwise, output False.		

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as language.

CFL universality

CFL-Universality			
Input:	A CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ where $\Sigma = \{0, 1\}$.		
Task:	Output True, if $L(\mathcal{G}) = \Sigma^*$. Otherwise, output False.		

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as language.

Theorem 8.9 *The problem* CFL-Universality *is undecidable.*

The proof is similar to Theorem 8.8.

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input $\lfloor \mathcal{M} \rfloor$ w:

- Construct a CFG ${\mathcal G}$ such that:
 - \mathcal{G} generates all strings that are not(!) the run of \mathcal{M} on w.

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input $\lfloor \mathcal{M} \rfloor$ w:

- Construct a CFG G such that: G generates all strings that are not(!) the run of M on w.
- If $\lfloor \mathcal{M} \rfloor$ $w \notin HALT$, then $L(\mathcal{G}) = \Sigma^*$.

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct a CFG \mathcal{G} such that: \mathcal{G} generates all strings that are *not*(!) the run of \mathcal{M} on *w*.

If $\lfloor \mathcal{M} \rfloor w \notin HALT$, then $L(\mathcal{G}) = \Sigma^*$.

If $\lfloor \mathcal{M} \rfloor$ $w \in HALT$, then $L(\mathcal{G}) \neq \Sigma^*$.

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input $\lfloor \mathcal{M} \rfloor$ w:

• Construct a CFG G such that: G generates all strings that are not(!) the run of M on w.

```
If \lfloor \mathcal{M} \rfloor w \notin HALT, then L(\mathcal{G}) = \Sigma^*.
```

```
If \lfloor \mathcal{M} \rfloor  w \in HALT, then L(\mathcal{G}) \neq \Sigma^*.
```

Thus,

 $|\mathcal{M}|$ $w \in HALT$ if and only if $L(\mathcal{G}) \neq \Sigma^*$

The construction of the CFG ${\cal G}$

The construction of the CFG ${\mathcal G}$

A word $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \cdots \vdash u_n$ is not the reverse representation of the run \mathcal{M} on w, if at least one of the following holds.

(C1) The symbol \vdash appears even number of times.

The construction of the CFG ${\mathcal G}$

A word $u_0 \vdash u_1 \vdash u_2 \vdash u_3 \cdots \vdash u_n$ is not the reverse representation of the run \mathcal{M} on w, if at least one of the following holds.

(C1) The symbol \vdash appears even number of times.

(C2) u_0 is not the initial configuration.

The construction of the CFG ${\cal G}$

- (C1) The symbol \vdash appears even number of times.
- (C2) u_0 is not the initial configuration.
- (C3) For some 0 ≤ i ≤ n, the string u_i is not a configuration. It does not contain a state or the states appear at least twice or the brackets [and] do not appear "properly" or inside the bracket [and] is not a state of M.

The construction of the CFG ${\cal G}$

- (C1) The symbol \vdash appears even number of times.
- (C2) u_0 is not the initial configuration.
- (C3) For some 0 ≤ i ≤ n, the string u_i is not a configuration. It does not contain a state or the states appear at least twice or the brackets [and] do not appear "properly" or inside the bracket [and] is not a state of M.
- (C4) For some $0 \le i \le n-1$, the string $u_i \vdash u_i$ is not according to the transitions of \mathcal{M} .

The construction of the CFG ${\mathcal G}$

- (C1) The symbol \vdash appears even number of times.
- (C2) u_0 is not the initial configuration.
- (C3) For some 0 ≤ i ≤ n, the string u_i is not a configuration. It does not contain a state or the states appear at least twice or the brackets [and] do not appear "properly" or inside the bracket [and] is not a state of M.
- (C4) For some $0 \le i \le n-1$, the string $u_i \vdash u_i$ is not according to the transitions of \mathcal{M} .
- (C5) For some $o \le i \le n-1$, the string u_i is not the reverse of u_{i+1} (disregarding the state symbol and the symbols next to the state in both u_i and u_{i+1}).

The construction of the CFG ${\mathcal G}$

- (C1) The symbol \vdash appears even number of times.
- (C2) u_0 is not the initial configuration.
- (C3) For some 0 ≤ i ≤ n, the string u_i is not a configuration. It does not contain a state or the states appear at least twice or the brackets [and] do not appear "properly" or inside the bracket [and] is not a state of M.
- (C4) For some $0 \le i \le n-1$, the string $u_i \vdash u_i$ is not according to the transitions of \mathcal{M} .
- (C5) For some $o \le i \le n-1$, the string u_i is not the reverse of u_{i+1} (disregarding the state symbol and the symbols next to the state in both u_i and u_{i+1}).
- (C6) The last string u_n does not contain $q_{\rm acc}$.

The construction of the CFG $\mathcal G$ – continued

We can construct one CFG G_i that generates all the strings that satisfy one condition (Ci), where $1 \le i \le 6$.

The construction of the CFG $\mathcal G$ – continued

We can construct one CFG G_i that generates all the strings that satisfy one condition (Ci), where $1 \le i \le 6$.

It is useful to recall that CFL are closed union.

The construction of the CFG $\mathcal G$ – continued

We can construct one CFG G_i that generates all the strings that satisfy one condition (Ci), where $1 \le i \le 6$.

It is useful to recall that CFL are closed union.

The final CFG \mathcal{G} generates $L(\mathcal{G}_1) \cup \cdots \cup L(\mathcal{G}_6)$.

The following algorithm assumes that there is an algorithm for checking whether $L(\mathcal{G}) = \Sigma^*$.

The following algorithm assumes that there is an algorithm for checking whether $L(\mathcal{G}) = \Sigma^*$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

The following algorithm assumes that there is an algorithm for checking whether $L(\mathcal{G}) = \Sigma^*$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

• Construct the CFG *G* that generates words where at least one of (C1)–(C6) holds.

The following algorithm assumes that there is an algorithm for checking whether $L(\mathcal{G}) = \Sigma^*$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Construct the CFG *G* that generates words where at least one of (C1)–(C6) holds.
- If $L(\mathcal{G}) = \Sigma^*$, then REJECT. If $L(\mathcal{G}) \neq \Sigma^*$, then ACCEPT.

The following algorithm assumes that there is an algorithm for checking whether $L(\mathcal{G}) = \Sigma^*$.

On input $\lfloor \mathcal{M} \rfloor$ \$*w*, do the following.

- Construct the CFG *G* that generates words where at least one of (C1)–(C6) holds.
- If $L(\mathcal{G}) = \Sigma^*$, then REJECT. If $L(\mathcal{G}) \neq \Sigma^*$, then ACCEPT.

The algorithm is correct due to:

 $\lfloor \mathcal{M} \rfloor$ $w \in HALT$ if and only if $L(\mathcal{G}) \neq \Sigma^*$

To conclude:

CFL-Intersection and CFL-Universality are both undecidable.
To conclude:

CFL-Intersection and CFL-Universality are both undecidable.

Consider the following problem.

CFL-Subset		
Input: Task:	Two CFG $\mathcal{G}_1 = \langle \Sigma, V_1, R_1, S_1 \rangle$ and $\mathcal{G}_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$, where $\Sigma = \{0, 1\}$. Output True, if $L(\mathcal{G}_1) \subseteq L(\mathcal{G}_2)$. Otherwise, output False.	

To conclude:

CFL-Intersection and CFL-Universality are both undecidable.

Consider the following problem.

CFL-Subset		
Input:	Two CFG $\mathcal{G}_1 = \langle \Sigma, V_1, R_1, S_1 \rangle$ and $\mathcal{G}_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$, where $\Sigma = \{0, 1\}$.	
Task:	Output True, if $L(\mathcal{G}_1) \subseteq L(\mathcal{G}_2)$. Otherwise, output False.	

The following is a direct consequence of the undecidability of CFL-Universality.

Corollary 8.10 *The problem* CFL-Subset *is undecidable.*

End of Lesson 8