
Lesson 8. Reducibility
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

1/38

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

2/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

Recall

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

In Lesson 7 we proved that HALT′0 is undecidable (by contradiction).

This is the only language that we proved directly to be undecidable.

HALT0 is undecidable because it is the “complement” of HALT′0.

HALT is undecidable because it is a more “general” language than HALT0.

This technique is called reductions.

3/38

The main idea of reductions

Suppose we are given two problems (languages) K and L.

Suppose we can show how to “reduce” problem K to problem L.

Intuitively, this reduction means problem L is more “general” than problem K .

That is, problem L is “harder” than problem K .

So, if problem K is undecidable, then problem L is undecidable too.

4/38

The main idea of reductions

Suppose we are given two problems (languages) K and L.

Suppose we can show how to “reduce” problem K to problem L.

Intuitively, this reduction means problem L is more “general” than problem K .

That is, problem L is “harder” than problem K .

So, if problem K is undecidable, then problem L is undecidable too.

4/38

The main idea of reductions

Suppose we are given two problems (languages) K and L.

Suppose we can show how to “reduce” problem K to problem L.

Intuitively, this reduction means problem L is more “general” than problem K .

That is, problem L is “harder” than problem K .

So, if problem K is undecidable, then problem L is undecidable too.

4/38

The main idea of reductions

Suppose we are given two problems (languages) K and L.

Suppose we can show how to “reduce” problem K to problem L.

Intuitively, this reduction means problem L is more “general” than problem K .

That is, problem L is “harder” than problem K .

So, if problem K is undecidable, then problem L is undecidable too.

4/38

The main idea of reductions

Suppose we are given two problems (languages) K and L.

Suppose we can show how to “reduce” problem K to problem L.

Intuitively, this reduction means problem L is more “general” than problem K .

That is, problem L is “harder” than problem K .

So, if problem K is undecidable, then problem L is undecidable too.

4/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable

undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L.

• Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

The general strategy to deal with a problem/language

L

decidable undecidable

• Find an algorithm for L. • Find a language K that is known to be undecidable.

• Show how to reduce K to L

The focus of this lesson

Two types of reductions: Mapping reductions and Turing reductions.

5/38

Computable functions

Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗.

(Def.) A Turing machine M computes the function F , if M is a 2-tape Turing

machine that accepts every word w ∈ Σ∗ and when it halts, the content of its

second tape is F (w).

Note that for M to compute F , the content of the first tape can be anything

when it halts. The main point is that when M halts, the content of the second

tape is F (w).

(Def.) A function F : Σ∗ → Σ∗ is computable, if there is a Turing machine

that computes it.

6/38

Computable functions

Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗.

(Def.) A Turing machine M computes the function F , if M is a 2-tape Turing

machine that accepts every word w ∈ Σ∗ and when it halts, the content of its

second tape is F (w).

Note that for M to compute F , the content of the first tape can be anything

when it halts. The main point is that when M halts, the content of the second

tape is F (w).

(Def.) A function F : Σ∗ → Σ∗ is computable, if there is a Turing machine

that computes it.

6/38

Computable functions

Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗.

(Def.) A Turing machine M computes the function F , if M is a 2-tape Turing

machine that accepts every word w ∈ Σ∗ and when it halts, the content of its

second tape is F (w).

Note that for M to compute F , the content of the first tape can be anything

when it halts. The main point is that when M halts, the content of the second

tape is F (w).

(Def.) A function F : Σ∗ → Σ∗ is computable, if there is a Turing machine

that computes it.

6/38

Computable functions by multi-tape Turing machines

The Turing machine M that computes F can be any multi-tape Turing

machine with a designated output tape that contains the output string.

(tape-1) ·

(tape-2) ·

(tape-3) ·

(output tape) the output · · ·

(Note) Any function that can be computed by a multi-tape Turing machine

can also be computed by a 2-tape Turing machine.

7/38

Computable functions by multi-tape Turing machines

The Turing machine M that computes F can be any multi-tape Turing

machine with a designated output tape that contains the output string.

(tape-1) ·

(tape-2) ·

(tape-3) ·

(output tape) the output · · ·

(Note) Any function that can be computed by a multi-tape Turing machine

can also be computed by a 2-tape Turing machine.

7/38

Mapping reductions

(Def.) A language L1 is mapping reducible to another language L2, denoted by:

L1 6m L2

if there is a computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

The function F is called mapping reduction.

Intuitively L1 6m L2 means “L2 is (computationally) more general than L1”.

It also means that a Turing machine that decides L2 can be used to decide L1.

8/38

Mapping reductions

(Def.) A language L1 is mapping reducible to another language L2, denoted by:

L1 6m L2

if there is a computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

The function F is called mapping reduction.

Intuitively L1 6m L2 means “L2 is (computationally) more general than L1”.

It also means that a Turing machine that decides L2 can be used to decide L1.

8/38

Mapping reductions

(Def.) A language L1 is mapping reducible to another language L2, denoted by:

L1 6m L2

if there is a computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

The function F is called mapping reduction.

Intuitively L1 6m L2 means “L2 is (computationally) more general than L1”.

It also means that a Turing machine that decides L2 can be used to decide L1.

8/38

Mapping reductions

(Def.) A language L1 is mapping reducible to another language L2, denoted by:

L1 6m L2

if there is a computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

The function F is called mapping reduction.

Intuitively L1 6m L2 means “L2 is (computationally) more general than L1”.

It also means that a Turing machine that decides L2 can be used to decide L1.

8/38

Turing reductions

(Def.) A language L1 is Turing reducible to another language L2, denoted by:

L1 6T L2

if there is a Turing machine M2 that decides L2, then there is a Turing

machine M1 that decides L1 using M2 as a “subroutine.”

Here we assume that M2 decides L2 in one step.

(Def.) We call M1 a Turing machine with oracle access to L2.

9/38

Turing reductions

(Def.) A language L1 is Turing reducible to another language L2, denoted by:

L1 6T L2

if there is a Turing machine M2 that decides L2, then there is a Turing

machine M1 that decides L1 using M2 as a “subroutine.”

Here we assume that M2 decides L2 in one step.

(Def.) We call M1 a Turing machine with oracle access to L2.

9/38

Turing reductions

(Def.) A language L1 is Turing reducible to another language L2, denoted by:

L1 6T L2

if there is a Turing machine M2 that decides L2, then there is a Turing

machine M1 that decides L1 using M2 as a “subroutine.”

Here we assume that M2 decides L2 in one step.

(Def.) We call M1 a Turing machine with oracle access to L2.

9/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)

On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2.

⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions

On the surface, mapping reductions and Turing reductions look similar, but

they are different.

(L1 6m L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

some algorithm

Output v

}

• w ∈ L1 if and only if v ∈ L2. ⇒ Very important!

• Inside the algorithm we do not assume/use anything about L2.

• View it this way: If L2 is decidable by, say, M2, then in the algorithm we

can only use M2 once(!).

The answer provided by M2 must also be the answer to whether w ∈ L1.

10/38

Mapping reductions vs. Turing reductions – continued

(L1 6T L2)

On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

.

.

.

some algorithm that decides L1

}

We assume a Turing machine M2 that decides L2.

• Inside the algorithm the Turing machine M2 can be called multiple times.

• The (multiple) answers provided by M2 can be used to decided whether

w ∈ L1.

11/38

Mapping reductions vs. Turing reductions – continued

(L1 6T L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

.

.

.

some algorithm that decides L1

}

We assume a Turing machine M2 that decides L2.

• Inside the algorithm the Turing machine M2 can be called multiple times.

• The (multiple) answers provided by M2 can be used to decided whether

w ∈ L1.

11/38

Mapping reductions vs. Turing reductions – continued

(L1 6T L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

.

.

.

some algorithm that decides L1

}

We assume a Turing machine M2 that decides L2.

• Inside the algorithm the Turing machine M2 can be called multiple times.

• The (multiple) answers provided by M2 can be used to decided whether

w ∈ L1.

11/38

Mapping reductions vs. Turing reductions – continued

(L1 6T L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

.

.

.

some algorithm that decides L1

}

We assume a Turing machine M2 that decides L2.

• Inside the algorithm the Turing machine M2 can be called multiple times.

• The (multiple) answers provided by M2 can be used to decided whether

w ∈ L1.

11/38

Mapping reductions vs. Turing reductions – continued

(L1 6T L2)
On input w :
{ · · · · · ·
· · · · · ·

.

.

.

.

.

.

.

.

.

some algorithm that decides L1

}

We assume a Turing machine M2 that decides L2.

• Inside the algorithm the Turing machine M2 can be called multiple times.

• The (multiple) answers provided by M2 can be used to decided whether

w ∈ L1.

11/38

Example of a mapping reduction

HALT0 6m HALT via the following reduction:

On input bMc:
{ Output bMc$bMc.
}

Note that:

bMc ∈ HALT0 if and only if bMc$bMc ∈ HALT

12/38

Example of a mapping reduction

HALT0 6m HALT via the following reduction:

On input bMc:
{ Output bMc$bMc.
}

Note that:

bMc ∈ HALT0 if and only if bMc$bMc ∈ HALT

12/38

Example of a mapping reduction

HALT0 6m HALT via the following reduction:

On input bMc:
{ Output bMc$bMc.
}

Note that:

bMc ∈ HALT0 if and only if bMc$bMc ∈ HALT

12/38

Example of a Turing reduction

HALT′0 6T HALT0 via the following reduction:

We assume that there is Turing machine A that decides HALT0.

On input bMc:
{ Run A on bMc.

If (A accepts bMc)
REJECT .

else

ACCEPT .

}

In this algorithm we call A only once, but it makes some change to the answer

it provides.

• If the answer from A is “accept”, the algorithm “rejects”.

• If the answer from A is “reject”, the algorithm “accepts”.

13/38

Example of a Turing reduction

HALT′0 6T HALT0 via the following reduction:

We assume that there is Turing machine A that decides HALT0.

On input bMc:
{ Run A on bMc.

If (A accepts bMc)
REJECT .

else

ACCEPT .

}

In this algorithm we call A only once, but it makes some change to the answer

it provides.

• If the answer from A is “accept”, the algorithm “rejects”.

• If the answer from A is “reject”, the algorithm “accepts”.

13/38

Example of a Turing reduction

HALT′0 6T HALT0 via the following reduction:

We assume that there is Turing machine A that decides HALT0.

On input bMc:
{ Run A on bMc.

If (A accepts bMc)
REJECT .

else

ACCEPT .

}

In this algorithm we call A only once, but it makes some change to the answer

it provides.

• If the answer from A is “accept”, the algorithm “rejects”.

• If the answer from A is “reject”, the algorithm “accepts”.

13/38

Example of a Turing reduction

HALT′0 6T HALT0 via the following reduction:

We assume that there is Turing machine A that decides HALT0.

On input bMc:
{ Run A on bMc.

If (A accepts bMc)
REJECT .

else

ACCEPT .

}

In this algorithm we call A only once, but it makes some change to the answer

it provides.

• If the answer from A is “accept”, the algorithm “rejects”.

• If the answer from A is “reject”, the algorithm “accepts”.

13/38

Example of a Turing reduction

HALT′0 6T HALT0 via the following reduction:

We assume that there is Turing machine A that decides HALT0.

On input bMc:
{ Run A on bMc.

If (A accepts bMc)
REJECT .

else

ACCEPT .

}

In this algorithm we call A only once, but it makes some change to the answer

it provides.

• If the answer from A is “accept”, the algorithm “rejects”.

• If the answer from A is “reject”, the algorithm “accepts”.

13/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Some observations

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

(Important) The following is NOT true.

• If L1 6T L2 and L2 is undecidable, then L1 is undecidable.

• If L1 6m L2 and L2 is undecidable, then L1 is undecidable.

14/38

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

15/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Some variants of the halting problem

(Def.) L(M) denotes the set of all words accepted by the Turing machine M.

The following languages are all undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only if M does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only if M accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only if M accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.

• L4 := {bMc | L(M) = {anbn | n > 0}}.

• L5 := {bMc | L(M) is a regular language}.

16/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT,

then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT,

then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable

We show that HALT 6m L0, where L0 is the complement of L0.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

(Note: ACCEPT and REJECT above are inside KM,w .)

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = Σ∗, so, bKM,wc ∈ L0.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L0.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L0

So, HALT 6m L0.

17/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

• Make p0 the initial state of KM,w .

• The accept state of KM,w is the accept state of M.

• The reject state of KM,w is the reject state of M.

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

Rewrite the content of the tape to be w .

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

“Erase” the remaining of the input v when |v | > |w |.

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

Move the head back to the beginning of the tape.

18/38

Proof that L0 := {bMc | L(M) = ∅} is undecidable – illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run M on w .

– If M accepts w , ACCEPT.

– If M rejects w , REJECT.

Add the following: (where w = a1a2 · · · an)

p0 p1 p2 · · · · · · pn−1 pn

pq0M

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

0/1
t,Rt

L

0/1/t
L

/
R

p0 p1 p2 · · · · · · pn−1 pn

0/1/t
a1,R

0/1/t
a2,R

0/1/t
an,R

pn

0/1
t,R

pn

p

t
L

0/1/t
L

pq0

/
R

When the head reaches the left-end marker /, it moves right.

It enters the state q0 of M (i.e., to run M on w).

18/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT,

then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT,

then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable

Let A be a TM that decides the language {anbn|n > 0}.

We show that HALT 6m L4.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

If bMc$w ∈ HALT, then L(KM,w) = {anbn|n > 0}, so, bKM,wc ∈ L4.

If bMc$w /∈ HALT, then L(KM,w) = ∅, so, bKM,wc /∈ L4.

Thus,

bMc$w ∈ HALT if and only if bKM,wc ∈ L4

So, HALT 6m L4.

19/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0 qMacc

qMrejqMrejqArej
0/1/t

R

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0 qMacc

qMrejqMrejqArej
0/1/t

R

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B MB

qA0 qMacc

qMrejqMrejqArej
0/1/t

R

Turing machine B writes w on the tape and enters qM0 (to run M on w).

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0

qMacc

qMrejqMrejqArej
0/1/t

R

qA0 is the initial state.

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0

qMacc

qMrejqMrejqArej
0/1/t

R

qMacc is the accept state.

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0 qMacc

qMrej

qMrejqArej
0/1/t

R

qMrej is the reject state

20/38

Proof that L4 := {bMc | L(M) = {anbn | n > 0}} is undecidable – Illustration

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– RunA on u. (to check if u ∈ {anbn|n > 0}.)
– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

B

qA0 qMacc

qMrej

qMrejqArej
0/1/t

R

Add a transition so that from qArej the TM enters qMrej .

20/38

Rice’s theorem

The proof can be generalized to the so called Rice’s theorem.

(Def.) Let P be a set of descriptions of Turing machines.

P is a property, if for every Turing machines M1 and M2, if:

L(M1) = L(M2)

then:

either bM1c, bM2c ∈ P or bM1c, bM2c /∈ P

The criteria for bMc to be in P depends on the language L(M), and not on

the string bMc itself.

(Def.) A property P is called a trivial property, if:

either P = ∅ or P contains all the descriptions of Turing machines

21/38

Rice’s theorem

The proof can be generalized to the so called Rice’s theorem.

(Def.) Let P be a set of descriptions of Turing machines.

P is a property, if for every Turing machines M1 and M2, if:

L(M1) = L(M2)

then:

either bM1c, bM2c ∈ P or bM1c, bM2c /∈ P

The criteria for bMc to be in P depends on the language L(M), and not on

the string bMc itself.

(Def.) A property P is called a trivial property, if:

either P = ∅ or P contains all the descriptions of Turing machines

21/38

Rice’s theorem

The proof can be generalized to the so called Rice’s theorem.

(Def.) Let P be a set of descriptions of Turing machines.

P is a property, if for every Turing machines M1 and M2, if:

L(M1) = L(M2)

then:

either bM1c, bM2c ∈ P or bM1c, bM2c /∈ P

The criteria for bMc to be in P depends on the language L(M), and not on

the string bMc itself.

(Def.) A property P is called a trivial property, if:

either P = ∅ or P contains all the descriptions of Turing machines

21/38

Rice’s theorem

The proof can be generalized to the so called Rice’s theorem.

(Def.) Let P be a set of descriptions of Turing machines.

P is a property, if for every Turing machines M1 and M2, if:

L(M1) = L(M2)

then:

either bM1c, bM2c ∈ P or bM1c, bM2c /∈ P

The criteria for bMc to be in P depends on the language L(M), and not on

the string bMc itself.

(Def.) A property P is called a trivial property, if:

either P = ∅ or P contains all the descriptions of Turing machines

21/38

Rice’s theorem – continued

Theorem 8.6 (Rice’s theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where P does not contain bMc where L(M) = ∅.

Let A be a Turing machine where bAc ∈ P.

Such A exists since P is not trivial.

22/38

Rice’s theorem – continued

Theorem 8.6 (Rice’s theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where P does not contain bMc where L(M) = ∅.

Let A be a Turing machine where bAc ∈ P.

Such A exists since P is not trivial.

22/38

Rice’s theorem – continued

Theorem 8.6 (Rice’s theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where P does not contain bMc where L(M) = ∅.

Let A be a Turing machine where bAc ∈ P.

Such A exists since P is not trivial.

22/38

Rice’s theorem – continued

Theorem 8.6 (Rice’s theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where P does not contain bMc where L(M) = ∅.

Let A be a Turing machine where bAc ∈ P.

Such A exists since P is not trivial.

22/38

Rice’s theorem – continued

Theorem 8.6 (Rice’s theorem)

For a property P, if P is not a trivial property, then P is undecidable.

(Proof) Let P be a non-trivial property.

First, we consider the case where P does not contain bMc where L(M) = ∅.

Let A be a Turing machine where bAc ∈ P.

Such A exists since P is not trivial.

22/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

qA0 qAacc

qArej

p0 p qM0 qMacc

qMrej
0/1/t

R

KM,w : A B M

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem

We show that HALT 6m P.

On input bMc$w :

• Construct the following Turing machine denoted by KM,w :

On input u:

– Run A on u. (to check if u ∈ L(A).)

– If A rejects u, REJECT.

– If A accepts u:

∗ Run M on w .

∗ If M accepts w , ACCEPT.

∗ If M rejects w , REJECT.

• Output bKM,wc.

By similar reasoning as the proof of the undecidability of L4:

M$w ∈ HALT if and only if bKM,wc ∈ P

Thus, we have proved Rice’s theorem for the case where P does not contain

bMc where L(M) = ∅

23/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

The proof of Rice’s theorem – continued

Now we consider the case where P contains bMc where L(M) = ∅.

Consider the complement of P, denoted by P.

Now P does not contain bMc where L(M) = ∅.

Since P is not a trivial property, we have P 6= ∅.

So we can pick a Turing machine A where bAc ∈ P.

The previous case already establishes HALT 6m P.

This means P is undecidable, and hence, P is also undecidable.

24/38

Table of contents

1. Reductions

2. Some variants of the halting problem

3. Some undecidable problems concerning CFL

25/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

CFL intersection

CFL-Intersection

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of G as a string over some fixed alphabet.

A CFG over Σ can be encoded using the alphabet Σ ∪ {0, 1, 〈, 〉,→, �,#}.

Let G be a CFG with n variables.

• The variables can be encoded as 〈i〉, where i is an integer (written in

binary) between 0 and n − 1.

• A rule, say, S → 0X11 is encoded as 〈0〉 → 0〈3〉11.

(Assuming that S is represented as 0 and X as 3).

26/38

The problem/language CFL-Intersection is undecidable

Theorem 8.8

The problem CFL-Intersection is undecidable.

We will show that HALT 6m CFL-Intersection.

We assume that HALT contains only bMc$w where M is a 1-tape Turing

machine and M accepts w .

27/38

The problem/language CFL-Intersection is undecidable

Theorem 8.8

The problem CFL-Intersection is undecidable.

We will show that HALT 6m CFL-Intersection.

We assume that HALT contains only bMc$w where M is a 1-tape Turing

machine and M accepts w .

27/38

The problem/language CFL-Intersection is undecidable

Theorem 8.8

The problem CFL-Intersection is undecidable.

We will show that HALT 6m CFL-Intersection.

We assume that HALT contains only bMc$w where M is a 1-tape Turing

machine and M accepts w .

27/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations

Let M be a Turing machine.

• Add a “new” state qloop such that instead of entering the qrej, M enters

qloop and loops forever.

• Add some states, so that for every word w accepted by M, the run has

odd length:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn

where n is odd.

After adding those states, the following holds for every word w :

• If M accepts w , then the run is finite and has odd length.

• If M does not w , then the run is infinite.

28/38

Some observations – continued

Recall that the states of a Turing machines M are represented as numbers

written in binary form. Thus, the run (1) can be viewed as a string over the

alphabet {`, 0, 1, t̃, [,]}, where we write [i] to represent the state in the

configuration.

29/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , construct G1 and G2 such that:

• If M$w ∈ HALT, then L(G1) ∩ L(G2) contains exactly one word:

C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

where C r
i denotes the reverse of Ci and

C0 ` C1 ` C2 ` C r
3 ` · · · ` Cn

is the run of M on w .

• If M$w /∈ HALT, then L(G1) ∩ L(G2) = ∅.

(Def.) We call the string: C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

the reverse representation of the run: C0 ` C1 ` C2 ` C3 ` · · · ` Cn.

30/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , construct G1 and G2 such that:

• If M$w ∈ HALT, then L(G1) ∩ L(G2) contains exactly one word:

C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

where C r
i denotes the reverse of Ci and

C0 ` C1 ` C2 ` C r
3 ` · · · ` Cn

is the run of M on w .

• If M$w /∈ HALT, then L(G1) ∩ L(G2) = ∅.

(Def.) We call the string: C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

the reverse representation of the run: C0 ` C1 ` C2 ` C3 ` · · · ` Cn.

30/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , construct G1 and G2 such that:

• If M$w ∈ HALT, then L(G1) ∩ L(G2) contains exactly one word:

C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

where C r
i denotes the reverse of Ci and

C0 ` C1 ` C2 ` C r
3 ` · · · ` Cn

is the run of M on w .

• If M$w /∈ HALT, then L(G1) ∩ L(G2) = ∅.

(Def.) We call the string: C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

the reverse representation of the run: C0 ` C1 ` C2 ` C3 ` · · · ` Cn.

30/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , construct G1 and G2 such that:

• If M$w ∈ HALT, then L(G1) ∩ L(G2) contains exactly one word:

C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

where C r
i denotes the reverse of Ci and

C0 ` C1 ` C2 ` C r
3 ` · · · ` Cn

is the run of M on w .

• If M$w /∈ HALT, then L(G1) ∩ L(G2) = ∅.

(Def.) We call the string: C0 ` C r
1 ` C2 ` C r

3 ` · · · ` C r
n

the reverse representation of the run: C0 ` C1 ` C2 ` C3 ` · · · ` Cn.

30/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The construction of G1 and G2

A string u0 ` u1 ` u2 ` u3 ` · · · ` un is the reverse representation of the

run of M on w , if:

(a) n is an odd number, i.e., the symbol ` appears even number of times.

(b) u0 is the initial configuration of M on w .

(c) ui−1 ` ur
i , for each odd i in between 1 and n.

(d) ur
i−1 ` ui , for each even i in between 1 and n.

(e) The last string un contains [qacc].

There is an algorithm where on input bMc, it constructs a CFG G1 such that

G1 generates the strings that satisfies conditions (a), (b) and (c).

There is an algorithm where on input bMc, it constructs a CFG G2 such that

G2 generates the strings that satisfies conditions (d) and (e).

(See Note 8 for the details.)

31/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , do the following.

• Add some new states to M so that:

M accepts w iff the run of M on w is finite and has odd length.

• Construct G1 that generates words satisfying conditions (a), (b) and (c).

• Construct G2 that generates words satisfying conditions (d) and (e).

• Output bG1c$bG2c.

L(G1) ∩ L(G2) contains the reverse representation of the accepting run of M on

w .

Thus,

bMc$w ∈ HALT if and only if L(G1) ∩ L(G2) 6= ∅

Hence, CFL-Intersection is undecidable.

32/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , do the following.

• Add some new states to M so that:

M accepts w iff the run of M on w is finite and has odd length.

• Construct G1 that generates words satisfying conditions (a), (b) and (c).

• Construct G2 that generates words satisfying conditions (d) and (e).

• Output bG1c$bG2c.

L(G1) ∩ L(G2) contains the reverse representation of the accepting run of M on

w .

Thus,

bMc$w ∈ HALT if and only if L(G1) ∩ L(G2) 6= ∅

Hence, CFL-Intersection is undecidable.

32/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , do the following.

• Add some new states to M so that:

M accepts w iff the run of M on w is finite and has odd length.

• Construct G1 that generates words satisfying conditions (a), (b) and (c).

• Construct G2 that generates words satisfying conditions (d) and (e).

• Output bG1c$bG2c.

L(G1) ∩ L(G2) contains the reverse representation of the accepting run of M on

w .

Thus,

bMc$w ∈ HALT if and only if L(G1) ∩ L(G2) 6= ∅

Hence, CFL-Intersection is undecidable.

32/38

The reduction HALT 6m CFL-Intersection

On input bMc$w , do the following.

• Add some new states to M so that:

M accepts w iff the run of M on w is finite and has odd length.

• Construct G1 that generates words satisfying conditions (a), (b) and (c).

• Construct G2 that generates words satisfying conditions (d) and (e).

• Output bG1c$bG2c.

L(G1) ∩ L(G2) contains the reverse representation of the accepting run of M on

w .

Thus,

bMc$w ∈ HALT if and only if L(G1) ∩ L(G2) 6= ∅

Hence, CFL-Intersection is undecidable.

32/38

CFL universality

CFL-Universality

Input: A CFG G = 〈Σ,V ,R, S〉 where Σ = {0, 1}.
Task: Output True, if L(G) = Σ∗. Otherwise, output False.

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as

language.

Theorem 8.9

The problem CFL-Universality is undecidable.

33/38

CFL universality

CFL-Universality

Input: A CFG G = 〈Σ,V ,R, S〉 where Σ = {0, 1}.
Task: Output True, if L(G) = Σ∗. Otherwise, output False.

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as

language.

Theorem 8.9

The problem CFL-Universality is undecidable.

33/38

CFL universality

CFL-Universality

Input: A CFG G = 〈Σ,V ,R, S〉 where Σ = {0, 1}.
Task: Output True, if L(G) = Σ∗. Otherwise, output False.

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as

language.

Theorem 8.9

The problem CFL-Universality is undecidable.

33/38

Proof that CFL-Universality is undecidable

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input bMc$w :

• Construct a CFG G such that:

G generates all strings that are not(!) the run of M on w .

If bMc$w /∈ HALT, then L(G) = Σ∗.

If bMc$w ∈ HALT, then L(G) 6= Σ∗.

Thus,

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

34/38

Proof that CFL-Universality is undecidable

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input bMc$w :

• Construct a CFG G such that:

G generates all strings that are not(!) the run of M on w .

If bMc$w /∈ HALT, then L(G) = Σ∗.

If bMc$w ∈ HALT, then L(G) 6= Σ∗.

Thus,

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

34/38

Proof that CFL-Universality is undecidable

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input bMc$w :

• Construct a CFG G such that:

G generates all strings that are not(!) the run of M on w .

If bMc$w /∈ HALT, then L(G) = Σ∗.

If bMc$w ∈ HALT, then L(G) 6= Σ∗.

Thus,

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

34/38

Proof that CFL-Universality is undecidable

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input bMc$w :

• Construct a CFG G such that:

G generates all strings that are not(!) the run of M on w .

If bMc$w /∈ HALT, then L(G) = Σ∗.

If bMc$w ∈ HALT, then L(G) 6= Σ∗.

Thus,

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

34/38

Proof that CFL-Universality is undecidable

The proof is similar to Theorem 8.8.

We describe an algorithm that does the following.

On input bMc$w :

• Construct a CFG G such that:

G generates all strings that are not(!) the run of M on w .

If bMc$w /∈ HALT, then L(G) = Σ∗.

If bMc$w ∈ HALT, then L(G) 6= Σ∗.

Thus,

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

34/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G

A word u0 ` u1 ` u2 ` u3 · · · ` un is not the reverse representation of the

run M on w , if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a configuration.

It does not contain a state or the states appear at least twice or the

brackets [and] do not appear “properly” or inside the bracket [and] is

not a state of M.

(C4) For some 0 6 i 6 n − 1, the string ui ` ui is not according to the

transitions of M.

(C5) For some o 6 i 6 n − 1, the string ui is not the reverse of ui+1

(disregarding the state symbol and the symbols next to the state in both

ui and ui+1).

(C6) The last string un does not contain qacc.

35/38

The construction of the CFG G – continued

We can construct one CFG Gi that generates all the strings that satisfy one

condition (Ci), where 1 6 i 6 6.

It is useful to recall that CFL are closed union.

The final CFG G generates L(G1) ∪ · · · ∪ L(G6).

36/38

The construction of the CFG G – continued

We can construct one CFG Gi that generates all the strings that satisfy one

condition (Ci), where 1 6 i 6 6.

It is useful to recall that CFL are closed union.

The final CFG G generates L(G1) ∪ · · · ∪ L(G6).

36/38

The construction of the CFG G – continued

We can construct one CFG Gi that generates all the strings that satisfy one

condition (Ci), where 1 6 i 6 6.

It is useful to recall that CFL are closed union.

The final CFG G generates L(G1) ∪ · · · ∪ L(G6).

36/38

The reduction HALT 6T CFL-Universality

The following algorithm assumes that there is an algorithm for checking

whether L(G) = Σ∗.

On input bMc$w , do the following.

• Construct the CFG G that generates words where at least one of

(C1)–(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

The algorithm is correct due to:

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

37/38

The reduction HALT 6T CFL-Universality

The following algorithm assumes that there is an algorithm for checking

whether L(G) = Σ∗.

On input bMc$w , do the following.

• Construct the CFG G that generates words where at least one of

(C1)–(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

The algorithm is correct due to:

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

37/38

The reduction HALT 6T CFL-Universality

The following algorithm assumes that there is an algorithm for checking

whether L(G) = Σ∗.

On input bMc$w , do the following.

• Construct the CFG G that generates words where at least one of

(C1)–(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

The algorithm is correct due to:

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

37/38

The reduction HALT 6T CFL-Universality

The following algorithm assumes that there is an algorithm for checking

whether L(G) = Σ∗.

On input bMc$w , do the following.

• Construct the CFG G that generates words where at least one of

(C1)–(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

The algorithm is correct due to:

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

37/38

The reduction HALT 6T CFL-Universality

The following algorithm assumes that there is an algorithm for checking

whether L(G) = Σ∗.

On input bMc$w , do the following.

• Construct the CFG G that generates words where at least one of

(C1)–(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

The algorithm is correct due to:

bMc$w ∈ HALT if and only if L(G) 6= Σ∗

37/38

To conclude:

CFL-Intersection and CFL-Universality are both undecidable.

Consider the following problem.

CFL-Subset

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ⊆ L(G2). Otherwise, output False.

The following is a direct consequence of the undecidability of CFL-Universality.

Corollary 8.10

The problem CFL-Subset is undecidable.

38/38

To conclude:

CFL-Intersection and CFL-Universality are both undecidable.

Consider the following problem.

CFL-Subset

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ⊆ L(G2). Otherwise, output False.

The following is a direct consequence of the undecidability of CFL-Universality.

Corollary 8.10

The problem CFL-Subset is undecidable.

38/38

To conclude:

CFL-Intersection and CFL-Universality are both undecidable.

Consider the following problem.

CFL-Subset

Input: Two CFG G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ⊆ L(G2). Otherwise, output False.

The following is a direct consequence of the undecidability of CFL-Universality.

Corollary 8.10

The problem CFL-Subset is undecidable.

38/38

End of Lesson 8

	1. Reductions
	2. Some variants of the halting problem
	3. Some undecidable problems concerning CFL

