
Lesson 7. Universal Turing machines and the halting

problem
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

1. The string representation of a Turing machine

2. Universal Turing machines

3. The halting problem

1/22

Table of contents

1. The string representation of a Turing machine

2. Universal Turing machines

3. The halting problem

2/22

Recall and assumptions

(Recall) A Turing machine is a system M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉.

From now on, we assume that Σ = {0, 1} and Γ = {0, 1,t}.

We also assume that Q = {0, 1, . . . , n} for some positive integer n.

(Goal) To show that Turing machines can be represented as strings and there

is an algorithm/TM that verifies whether a string represents a Turing machine.

3/22

Recall and assumptions

(Recall) A Turing machine is a system M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉.

From now on, we assume that Σ = {0, 1} and Γ = {0, 1,t}.

We also assume that Q = {0, 1, . . . , n} for some positive integer n.

(Goal) To show that Turing machines can be represented as strings and there

is an algorithm/TM that verifies whether a string represents a Turing machine.

3/22

Recall and assumptions

(Recall) A Turing machine is a system M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉.

From now on, we assume that Σ = {0, 1} and Γ = {0, 1,t}.

We also assume that Q = {0, 1, . . . , n} for some positive integer n.

(Goal) To show that Turing machines can be represented as strings and there

is an algorithm/TM that verifies whether a string represents a Turing machine.

3/22

Recall and assumptions

(Recall) A Turing machine is a system M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉.

From now on, we assume that Σ = {0, 1} and Γ = {0, 1,t}.

We also assume that Q = {0, 1, . . . , n} for some positive integer n.

(Goal) To show that Turing machines can be represented as strings and there

is an algorithm/TM that verifies whether a string represents a Turing machine.

3/22

The encoding of a Turing machine M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

Each state i ∈ Q can be written as a string in its binary form.

Each transition (i , a) → (j , b, α) in δ can be written as a string over the

alphabet {0, 1, (,), �,→, t̃, L, R}.

The intention is to use � to represent the comma, t̃ to represent t, and L, R to

represent Left, Right, respectively.

For example, a transition

(5, 0) → (8, 1, Right)

is written as the string:

(101 � 0) → (1000 � 1 � R)

4/22

The encoding of a Turing machine M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

Each state i ∈ Q can be written as a string in its binary form.

Each transition (i , a) → (j , b, α) in δ can be written as a string over the

alphabet {0, 1, (,), �,→, t̃, L, R}.

The intention is to use � to represent the comma, t̃ to represent t, and L, R to

represent Left, Right, respectively.

For example, a transition

(5, 0) → (8, 1, Right)

is written as the string:

(101 � 0) → (1000 � 1 � R)

4/22

The encoding of a Turing machine M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

Each state i ∈ Q can be written as a string in its binary form.

Each transition (i , a) → (j , b, α) in δ can be written as a string over the

alphabet {0, 1, (,), �,→, t̃, L, R}.

The intention is to use � to represent the comma, t̃ to represent t, and L, R to

represent Left, Right, respectively.

For example, a transition

(5, 0) → (8, 1, Right)

is written as the string:

(101 � 0) → (1000 � 1 � R)

4/22

The encoding of a Turing machine M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉

Each state i ∈ Q can be written as a string in its binary form.

Each transition (i , a) → (j , b, α) in δ can be written as a string over the

alphabet {0, 1, (,), �,→, t̃, L, R}.

The intention is to use � to represent the comma, t̃ to represent t, and L, R to

represent Left, Right, respectively.

For example, a transition

(5, 0) → (8, 1, Right)

is written as the string:

(101 � 0) → (1000 � 1 � R)

4/22

The generalization to multiple tape Turing machines

For 3-tape Turing machine, e.g., a transition

(7, 0,t, 1) → (9, 1, 0, 1, Right, Left, Left)

is written as the string:

(111 � 0 � t̃ � 1) → (1001 � 1 � 0 � 1 � R � L � L)

5/22

The encoding of a Turing machine, continued

The TM M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉 can be written as a string:

bΣc # bΓc # bQc # bq0c # bqaccc # bqrejc # bδc

where b·c denotes the string representing the component · and # the symbol

separating two consecutive components.

For example, if Q = {0, . . . , 45}, 0 is the initial state, 3 is qacc and 4 is qrej,

then the TM is written as a string:

0 � 1︸︷︷︸
bΣc

0 � 1 � t̃︸ ︷︷ ︸
bΓc

45︸︷︷︸
bQc

0︸︷︷︸
bq0c

3︸︷︷︸
bqaccc

4︸︷︷︸
bqrejc

· · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
the list of the transitions

(Note) Every TM (whose tape alphabet is Γ = {0, 1,t}) can be described as a

string over the alphabet {0, 1, (,), �,→, t̃, L, R, #}.

6/22

The encoding of a Turing machine, continued

The TM M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉 can be written as a string:

bΣc # bΓc # bQc # bq0c # bqaccc # bqrejc # bδc

where b·c denotes the string representing the component · and # the symbol

separating two consecutive components.

For example, if Q = {0, . . . , 45}, 0 is the initial state, 3 is qacc and 4 is qrej,

then the TM is written as a string:

0 � 1︸︷︷︸
bΣc

0 � 1 � t̃︸ ︷︷ ︸
bΓc

45︸︷︷︸
bQc

0︸︷︷︸
bq0c

3︸︷︷︸
bqaccc

4︸︷︷︸
bqrejc

· · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
the list of the transitions

(Note) Every TM (whose tape alphabet is Γ = {0, 1,t}) can be described as a

string over the alphabet {0, 1, (,), �,→, t̃, L, R, #}.

6/22

The encoding of a Turing machine, continued

The TM M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉 can be written as a string:

bΣc # bΓc # bQc # bq0c # bqaccc # bqrejc # bδc

where b·c denotes the string representing the component · and # the symbol

separating two consecutive components.

For example, if Q = {0, . . . , 45}, 0 is the initial state, 3 is qacc and 4 is qrej,

then the TM is written as a string:

0 � 1︸︷︷︸
bΣc

0 � 1 � t̃︸ ︷︷ ︸
bΓc

45︸︷︷︸
bQc

0︸︷︷︸
bq0c

3︸︷︷︸
bqaccc

4︸︷︷︸
bqrejc

· · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
the list of the transitions

(Note) Every TM (whose tape alphabet is Γ = {0, 1,t}) can be described as a

string over the alphabet {0, 1, (,), �,→, t̃, L, R, #}.

6/22

The 0-1 string representation of a Turing machine

Each of the symbols 0, 1, (,), �, →, t̃, L, R, # can be encoded as 0-1 string

of length 4. For example,

symbol the encoding

0 0000

1 0001

(0010

) 0011

� 0100

symbol the encoding

→ 0101

t̃ 0110

L 0111

R 1000

1001

(Def.) bMc denotes the 0-1 string obtained by such encoding.

We call bMc the binary string representation of the Turing machine M, or the

description ofM.

7/22

The 0-1 string representation of a Turing machine

Each of the symbols 0, 1, (,), �, →, t̃, L, R, # can be encoded as 0-1 string

of length 4. For example,

symbol the encoding

0 0000

1 0001

(0010

) 0011

� 0100

symbol the encoding

→ 0101

t̃ 0110

L 0111

R 1000

1001

(Def.) bMc denotes the 0-1 string obtained by such encoding.

We call bMc the binary string representation of the Turing machine M, or the

description ofM.

7/22

Verifying the description of a Turing machine

A string w represents a Turing machine, if it is of the form:

u1 # u2 # u3 # u4 # u5 # u6 # u7

each string ui satisfies the following.

• u1 is 0 � 1 and u2 is 0 � 1 � t̃.

• u3 is an integer n (written in binary form) and u4, u5, u6 are all some

numbers (in binary form) between 0 and n.

• u7 is a string that lists all the transitions: For every (i , a), there is

exactly one (j , b, α) where

(i � a)→ (j � b � α)

appears in u7.

(Note) We can write an algorithm/computer program that on input w , checks

whether it satisfies all the properties above.

8/22

Verifying the description of a Turing machine – continued

Recalling the following encoding.

symbol the encoding

0 0000

1 0001

(0010

) 0011

� 0100

symbol the encoding

→ 0101

t̃ 0110

L 0111

R 1000

1001

We can modify the program for verifying all the properties above when each of

the symbols 0, 1, (,), �, →, t̃, L, R, # is encoded as 0-1 string above.

9/22

Verifying the description of a Turing machine – continued

Recalling the following encoding.

symbol the encoding

0 0000

1 0001

(0010

) 0011

� 0100

symbol the encoding

→ 0101

t̃ 0110

L 0111

R 1000

1001

We can modify the program for verifying all the properties above when each of

the symbols 0, 1, (,), �, →, t̃, L, R, # is encoded as 0-1 string above.

9/22

Verifying the description of a Turing machine – continued

Verifying the description of a Turing machine

Input: A string w over the alphabet {0, 1}.

Task: Output True, if w is the description of a TM M, i.e. w = bMc
(under the 0-1 encoding shown in the table above)

Output False, otherwise.

Proposition 7.2

There is an algorithm A for the problem Verifying the description of a

Turing machine.

10/22

Verifying the description of a Turing machine – continued

Verifying the description of a Turing machine

Input: A string w over the alphabet {0, 1}.

Task: Output True, if w is the description of a TM M, i.e. w = bMc
(under the 0-1 encoding shown in the table above)

Output False, otherwise.

Proposition 7.2

There is an algorithm A for the problem Verifying the description of a

Turing machine.

10/22

Table of contents

1. The string representation of a Turing machine

2. Universal Turing machines

3. The halting problem

11/22

Universal Turing machines

(Def.) A universal Turing machine (UTM) is a Turing machine U that on

input bMc$w , where w ∈ {0, 1}∗, does the following.

• If M accepts w , then U accepts bMc$w .

• If M rejects w , then U rejects bMc$w .

• If M does not halt on w , then U does not halt on bMc$w .

12/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works

On input word u:

• Check if u is of the form:

v$w

where v ,w ∈ {0, 1}∗.

• Check if v is indeed the description of a TM M, i.e.,

v = bMc

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration C of M on w .

• while (C is not a halting configuration):

- Compute the next configuration of C (by accessing the transition of M).

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

13/22

How a UTM U works – continued

The UTM U basically constructs the run of M on w .

It is similar to the proof of Theorem 6.1.

(Note) A UTM is defined according to the 0-1 encoding of the symbols 0, 1, (,

), �, →, t̃, L, R, #.

Different encoding yields different UTM.

14/22

How a UTM U works – continued

The UTM U basically constructs the run of M on w .

It is similar to the proof of Theorem 6.1.

(Note) A UTM is defined according to the 0-1 encoding of the symbols 0, 1, (,

), �, →, t̃, L, R, #.

Different encoding yields different UTM.

14/22

How a UTM U works – continued

The UTM U basically constructs the run of M on w .

It is similar to the proof of Theorem 6.1.

(Note) A UTM is defined according to the 0-1 encoding of the symbols 0, 1, (,

), �, →, t̃, L, R, #.

Different encoding yields different UTM.

14/22

How a UTM U works – continued

The UTM U basically constructs the run of M on w .

It is similar to the proof of Theorem 6.1.

(Note) A UTM is defined according to the 0-1 encoding of the symbols 0, 1, (,

), �, →, t̃, L, R, #.

Different encoding yields different UTM.

14/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

An analogy of a UTM

As an analogy, a compiler is a sort of UTM.

For example, C++ compiler accepts as input a C++ program P and the input

w for P. Then, it “simulates” the program P on input w .

We can likewise view Python compiler as a UTM.

We can view C++ syntax and Python syntax are two different

descriptions/encodings of Turing machines.

C++ compiler can only run C++ programs (i.e., programs written in C++

syntax) and Pyhton compiler can only run Python programs.

A PC/laptop/phone is also UTM in the sense that it takes as input a

program/app P and an input w , and it simulates P on w . (though it makes

the impression that you run P yourself.)

15/22

Table of contents

1. The string representation of a Turing machine

2. Universal Turing machines

3. The halting problem

16/22

The halting problem

In the following we assume that the description of Turing machines is defined

under a fixed encoding.

Consider the following languages

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We can view HALT′0 is the “complement” of HALT0.

Technically this is not “correct”, since the complement of HALT0 includes

strings that are not the description of Turing machines.

However, recall that we have an algorithm that checks whether a string is really

the description of a Turing machine (Proposition 7.2), which we can use to

accept/reject strings that are not descriptions of Turing machines.

17/22

The halting problem

In the following we assume that the description of Turing machines is defined

under a fixed encoding.

Consider the following languages

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We can view HALT′0 is the “complement” of HALT0.

Technically this is not “correct”, since the complement of HALT0 includes

strings that are not the description of Turing machines.

However, recall that we have an algorithm that checks whether a string is really

the description of a Turing machine (Proposition 7.2), which we can use to

accept/reject strings that are not descriptions of Turing machines.

17/22

The halting problem

In the following we assume that the description of Turing machines is defined

under a fixed encoding.

Consider the following languages

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We can view HALT′0 is the “complement” of HALT0.

Technically this is not “correct”, since the complement of HALT0 includes

strings that are not the description of Turing machines.

However, recall that we have an algorithm that checks whether a string is really

the description of a Turing machine (Proposition 7.2), which we can use to

accept/reject strings that are not descriptions of Turing machines.

17/22

The halting problem

In the following we assume that the description of Turing machines is defined

under a fixed encoding.

Consider the following languages

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We can view HALT′0 is the “complement” of HALT0.

Technically this is not “correct”, since the complement of HALT0 includes

strings that are not the description of Turing machines.

However, recall that we have an algorithm that checks whether a string is really

the description of a Turing machine (Proposition 7.2), which we can use to

accept/reject strings that are not descriptions of Turing machines.

17/22

The languages HALT and HALT0

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

Proposition 7.5

The language HALT0 and HALT are recognizable.

(Proof) Use the UTM U .

18/22

The languages HALT and HALT0

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

Proposition 7.5

The language HALT0 and HALT are recognizable.

(Proof) Use the UTM U .

18/22

The languages HALT and HALT0

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

Proposition 7.5

The language HALT0 and HALT are recognizable.

(Proof) Use the UTM U .

18/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0

Theorem 7.6

HALT′0 is undecidable.

(Proof) Suppose to the contrary that HALT′0 is decidable.

Let B be the TM that decides HALT′0.

• If B accepts bBc.

Since B decides HALT′0, this means bBc ∈ HALT′0.

By the definition of HALT′0, B does not accept bBc. A contradiction.

• If B rejects bBc.

Since B decides HALT′0, this means bBc /∈ HALT′0.

By the definition of HALT′0, B accepts bBc. A contradiction.

Both cases yield contradiction. Thus, HALT′0 is undecidable.

19/22

The language HALT′
0 – continued

Theorem 7.6 actually states the same thing as Theorem 0.1 in Lesson 0.

The only difference is that Theorem 7.6 is formulated in term of the Turing

machines while Theorem 0.1 is formulated in term of the C++ programs.

20/22

The language HALT′
0 – continued

Theorem 7.6 actually states the same thing as Theorem 0.1 in Lesson 0.

The only difference is that Theorem 7.6 is formulated in term of the Turing

machines while Theorem 0.1 is formulated in term of the C++ programs.

20/22

Some easy corollaries

Note that if HALT0 and HALT are decidable, then HALT′0 is also decidable.

Thus,

Corollary 7.7

HALT0 and HALT are undecidable.

Moreover, HALT′0 is the complement of HALT0 and HALT0 is recognizable.

Thus,

Corollary 7.8

The language HALT′0 is not recognizable.

21/22

Some easy corollaries

Note that if HALT0 and HALT are decidable, then HALT′0 is also decidable.

Thus,

Corollary 7.7

HALT0 and HALT are undecidable.

Moreover, HALT′0 is the complement of HALT0 and HALT0 is recognizable.

Thus,

Corollary 7.8

The language HALT′0 is not recognizable.

21/22

Some easy corollaries

Note that if HALT0 and HALT are decidable, then HALT′0 is also decidable.

Thus,

Corollary 7.7

HALT0 and HALT are undecidable.

Moreover, HALT′0 is the complement of HALT0 and HALT0 is recognizable.

Thus,

Corollary 7.8

The language HALT′0 is not recognizable.

21/22

To conclude:

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We have proved:

• HALT0 and HALT are undecidable, but recognizable.

• HALT′0 is not recognizable.

22/22

To conclude:

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We have proved:

• HALT0 and HALT are undecidable, but recognizable.

• HALT′0 is not recognizable.

22/22

To conclude:

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.

HALT0 := {bMc | M accepts bMc}.

HALT′0 := {bMc | M does not accept bMc}.

We have proved:

• HALT0 and HALT are undecidable, but recognizable.

• HALT′0 is not recognizable.

22/22

End of Lesson 7

	1. The string representation of a Turing machine
	2. Universal Turing machines
	3. The halting problem

