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Multi-tape Turing machines

Recall that a TM has one tape (with infinitely many cells).

· · ·/ 1 0 ~ 1 1 # 1 1 0 # t t t

We can view the tape as a “scrap” paper for the TM to do its computation.

In this lesson we will extend TM with multiple tapes
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Example: 5-tape TM

On input w :

(tape-1) · · ·/ 1 0 ~ 1 1 # 1 1 0 # t t t

(tape-2) · · ·/ 1 0 0 1 1 0 t t t t t t t

(tape-3) · · ·/ 1 0 1 ⊕ 1 1 # 1 0 0 0 t t

(tape-4) · · ·/ 1 0 1 ~ 1 0 0 ⊕ # t t t t

(tape-5) · · ·/ 1 0 1 1 1 0 # 1 0 0 0 # t

To help with computation, the TM has five tapes and one head on each tape.

(Note) The number of tapes is fixed, i.e., 5. On whatever input word w , the

TM has 5 tapes to do the computation.
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Multi-tape Turing machines

We can talk about 10-tape Turing machine, 1010-tape Turing machine or

1020-tape Turing machine.

In general we can talk about a k-tape TM for any integer k > 0, where k is a

fixed number like 10, 1010 or 1020.

Theorem 6.1 (intuitive version)

Every k-tape TM M, where k > 2, is “equivalent” to a 1-tape TM M′,
i.e., M and M′ compute the same thing.

Intuitively Theorem 6.1 is correct since a tape has infinitely many cells.

So the amount of information that can be stored in, say 1010 tapes, can also be

stored in a single tape.
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The formal definition of k-tape Turing machines

(Def.) A k-tape Turing machine is a system M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉:

• Σ, Γ, Q, q0, qacc and qrej are the same as in the 1-tape TM.

• δ is the transition function:

δ : (Q − {qacc, qrej})× Γk → Q × Γk × {Left, Right}k

whose elements are written in the form:

(p, a1, . . . , ak) → (q, b1, . . . , bk , α1, . . . , αk)

where p, q ∈ Q, a1, . . . , ak , b1, . . . , bk ∈ Γ and α1, . . . , αk ∈ {Left, Right}.
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The intuitive meaning of (p, a1, . . . , ak) → (q, b1, . . . , bk , α1, . . . , αk)

p q

a1,...,ak
b1,...,bk ,α1,...,αk

p

a1,...,ak
b1,...,bk ,α1,...,αk

a1,...,ak
b1,...,bk ,α1,...,αk

a1,...,ak
b1,...,bk ,α1,...,αk

q

If:

• the TM is in state p,

• for each i = 1, . . . , k, the head on tape i is reading symbol ai ,

then:

• for each i = 1, . . . , k, the head on tape i writes symbol bi ,

• for each i = 1, . . . , k, the head moves αi where αi ∈ {Left, Right},

• the TM enters state q.
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Configuration of a k-tape Turing machine

Let M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉 be a k-tape TM.

(Def.) A configuration of M is a string of the form:

(q, /u1, . . . , /uk)

where q ∈ Q, each ui is a string over Γ ∪ {•} and the symbol • appears exactly

once in each ui .

The symbol • denotes the position of the head. As before, the symbol / is the

left-end marker of each tape.

(Recall) In 1-tape TM a configuration is a string of the form:

/a1 · · · ai−1 p ai · · · am

where we use the state p to indicate the position of the head.
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Acceptance and rejection by a k-tape TM

(Def.) The initial configuration of M on input w is

(q0, / • w , /•, . . . , /•)

That is, the first tape initially contains the input word and all the other tapes

are initially blank.

The notion of “one step computation” C ` C ′ is defined as in 1-tape TM.

(Def.) The run of M on input word w :

C0 ` C1 ` · · ·

where C0 is the initial configuration of M on w .

M accepts w , if the run is accepting. M rejects w , if the run is rejecting.
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The equivalence between k-tape TM and 1-tape TM

Theorem 6.1

For every k-tape TM M, where k > 2, there is a 1-tape TM M′ such that

for every input word w , the following holds.

• If M accepts w , then M′ accepts w .

• If M rejects w , then M′ rejects w .

• If M does not halt on w , then M′ does not halt on w .

(Proof) Let M = 〈Σ, Γ,Q, q0, qacc, qrej, δ〉 be a k-tape TM.

On input w , the TMM′ simulates the run ofM on w , i.e., computing the run:

C0 ` C1 ` · · ·

From each Ci , it computes the next configuration Ci+1.
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Some details on the proof of Theorem 6.1, part. 1

A configuration (of M):

(q, /u1, . . . . . . . . . , /uk)

is viewed as a string over the alphabet Q ∪ Γ ∪ {/̃, •}:

q/̃u1 · · · · · · · · · /̃uk

One tape is sufficient to store this string.

The symbol /̃ is used to represent the left-end marker of M.
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Some details on the proof of Theorem 6.1, part. 2

(The algorithm/TM M′) On input word w , do the following.

• Let C be the initial configuration of M on w .

• While (C is not a halting configuration of M):

C := the next configuration of C .

- Scan the string C from left to right to find out the symbol read by each

“head.”

- Move the head back to the beginning of the tape.

- While moving back, change the state and the position of each head in C

according to the transition function δ.

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

(Note) M′ uses only one “variable” C which can be stored in one tape.
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Proof of Theorem 6.1: Illustration

On input:

· · ·/ w t t t t t t t t t t t t t

Write the initial configuration of M on the tape:

· · · · · · · · ·/ q0 /̃ • w /̃ • /̃ • /̃ • t

Updating the current configuration:

· · · · · · · · · · · · · · · · · · · · ·/ p

q

/̃

•

• a1

b c

/̃ • ak

b •

t

Scan the string from left to right.

Remember p in the state (of M′) and a1 and so on until ak .

Scan from right to left and update the position of each • along the way.
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Proof: Illustration

Sometimes M′ needs to shift right while updating the position of each •:

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·/ q /̃ • /̃ t

Shift right one cell

(Remark) Since the number of states in M is already fixed, it is not necessary

to store the state q in the string C . The Turing machine M′ can “remember”

q in its states.

So it is sufficient to just store the content of each tape, i.e., the string C is of

the form:

/̃u1 · · · · · · · · · /̃uk
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The equivalence between k-tape TM and 1-tape TM

Theorem 6.1

For every k-tape TM M, where k > 2, there is a 1-tape TM M′ such that

for every input word w , the following holds.

• If M accepts w , then M′ accepts w .

• If M rejects w , then M′ rejects w .

• If M does not halt on w , then M′ does not halt on w .
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An informal definition of algorithm: A C++ like pseudo-code

We define an algorithm (informally) as a program of the form:

Boolean main (w)

{ statement;
...

statement; }

The input w is always a string.

It also has some (finite number of) functions of the form:

Boolean/string function 〈name〉 (〈var-name〉,. . . ,〈var-name〉)
{ statement;

...

statement; }

Note that functions always return Boolean or String values.
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What is a “statement”?

• 〈var-name〉 := 〈‘‘expression’’〉;

• 〈var-name〉 := 〈function-name〉(〈var-name〉,. . . ,〈var-name〉);

• return 〈var-name〉; or return 〈some-value〉;
• if 〈condition〉

{ statement;
...

statement; }
else

{ statement;
...

statement; }

Variables can only store Boolean or string values. Of course, Boolean values

can be viewed as string values.

There is no while-loop, since it can be implemented as a recursive function.
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What is an “expression”?

An “expression” is loosely defined as any reasonable “basic” computation:

• Concatenating two strings.

• Shift left/right of a string.

• Change the symbol in a position in a string.

0-1 strings can be used to represent numbers, so “basic” computation includes:

• Adding/subtracting/multiplying/dividing two numbers.

• Enumerating all the numbers between 1 and some number n.

• Measuring the length of a 0-1 string.

• Enumerating all the 0-1 strings with length between 1 and some number n.

(Note) Of course, we can add some other basic instructions/expressions. The

point here is that we want to be convinced that any “algorithm” can be written

in our pseudo-code.
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Our pseudo-code and the Turing machines

1: Boolean main (w)

2: { statement;

.

.

.

.

.

.

20: statement; }
21: string function F1 (x ,y ,z)

22: { statement;

.

.

.

.

.

.

45: statement; }

.

.

.

9536: Boolean function F200 (z)

9537: { statement;

.

.

.

.

.

.

9553: statement; }

This pseudo-code can be translated into a Turing machine:

• The line numbers are the states of the TM.

• The variables are the tapes, i.e., one tape is used to represent one variable.

• When the main function returns True on input w , the TM accepts w .

When the main function returns False on input w , the TM rejects w .
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Our pseudo-code and the Turing machines

That every Turing machine can be translated to some form of algorithm is

pretty obvious.

Theorem

Our C++-like pseudo-codes and Turing machines are equivalent.

(Question) Does the Theorem establish Church-Turing thesis?

Church-Turing thesis

Every “algorithm” is equivalent to a Turing machine.

(Hint) There is nothing wrong with our conversion of pseudo-codes to Turing

machines. To spell it out exactly is not difficult, but it will be long and tedious.
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The convention in this course

When we describe a Turing machine:

• We will describe it in some acceptable algorithm form.

• We will write ACCEPT to mean that the TM enters qacc

and REJECT to mean that the TM enters qrej.

• In some cases when we need to be more precise, we will use our C++-like

pseudo-code as the representation of a TM.
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When do we use the formal definition of Turing machines?

We usually only use the formal definition of Turing machines (as defined in

Lesson 5 and 6) when:

• we want to prove that some languages are undecidable,

• we want to prove that some languages are NP-complete,

• we want to construct a Turing machine that simulates other Turing

machines.

Describing the simulation of a transition function (of a TM) is much easier

than describing the simulation of a C++-like algorithm.
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An example when we use the formal definition of Turing machines

In the proof of Theorem 6.1 we describe M′ as an algorithm:

On input word w ,M′ does the following.

• Let C be the initial configuration ofM on w .

• While (C is not a halting configuration ofM):

C := the next configuration of C .

• If C is an accepting configuration, ACCEPT.

If C is a rejecting configuration, REJECT.

But we use the formal definition of TM for M.
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Recall

(Def.) We say that M recognizes a language L, if for every input word w :

• if w ∈ L, then M accepts w ;

• if w /∈ L, then M does not accept w , i.e., either it does not halt on w or

rejects w .

A language L is recognizable, if there is a TM that recognizes L.

(Def.) We say that M decides a language L, if for every input word w :

• if w ∈ L, then M accepts w ;

• if w /∈ L, then M rejects w .

A language L is decidable, if there is a TM that decides L.

(Note) To prove the existence of M, we usually describe M as an algorithm.
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Example of algorithms that recognize and decide a language

Consider:

L = {w | the number of 1 in w is even}

The following algorithm decides L:
On input word w :

• Count the number of 1 in w .

• If it is even, ACCEPT.

• If it is odd, REJECT.

The following algorithm recognizes L:
On input word w :

• Count the number of 1 in w .

• If it is even, ACCEPT.

• If it is odd, enter an infinite loop.
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Decidable and recognizable languages

Theorem 6.4

• If a language L (over the alphabet Σ) is decidable, so is its

complement Σ∗ − L.

• If both a language L and its complement Σ∗ − L are recognizable,

then L is decidable.

Theorem 6.5

Decidable languages are closed under union, intersection, concatenation and

Kleene star.

Theorem 6.6

Recognizable languages are closed under union and intersection.
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Decidable languages — Proof of Theorem 6.4: The first item

Theorem 6.4 (The first item)

• If a language L (over the alphabet Σ) is decidable, so is its

complement Σ∗ − L.

(Proof) The first item is trivial.

Let M be a TM that decides L. By switching its accept and reject states, we

get a TM that decides its complement.
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Decidable languages — Proof of Theorem 6.4: The second item

Theorem 6.4 (The second item)

• If both a language L and its complement Σ∗ − L are recognizable,

then L is decidable.

(Proof) Let M1 and M2 be 1-tape TM that recognize L and Σ∗ − L,

respectively. We describe 2-tape TM M that decides L. On input w :

• Copy the input word onto the second tape.

• Run M1 on the first tape and M2 on the second tape “simultaneously.”

• If M1 accepts, then ACCEPT. If M2 accepts, then REJECT.

For every input word w ∈ Σ∗, either w ∈ L or w ∈ Σ∗ − L, and hence, w is

accepted either by M1 or by M2.

Therefore, for every input word w , the TM M halts, and accepts if and only if

w ∈ L.

(See Note 6 for more details on running M1 and M2 “simultaneously.”)
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Therefore, for every input word w , the TM M halts, and accepts if and only if

w ∈ L.

(See Note 6 for more details on running M1 and M2 “simultaneously.”)
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Decidable languages — Proof of Theorem 6.4: The second item

Theorem 6.4 (The second item)
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Closure properties of decidable languages — Proof of Theorem 6.5

Theorem 6.5

Decidable languages are closed under union, intersection, concatenation and

Kleene star.

(Proof) Let M1 and M2 be the TM that decide languages L1 and L2,

respectively.

(Closure under union) The TM decides L1 ∪ L2 works as follows. On input

word w , it runs M1 on w and then M2 on w . It accepts if and only if at least

one of M1 or M2 accepts.

(Closure under intersection) Similar to the above.
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Closure properties of decidable languages — Proof of Theorem 6.5

(Closure under concatenation) The TM that decides L1 · L2 works as follows.

On input word w :

• For all possible pairs (v1, v2) such that v1v2 = w :

Check if M1 accepts v1 and M2 accepts v2.

• ACCEPT, if there is a pair (v1, v2) where v1 is accepted by M1 and v2 is

accepted by M2.

REJECT, otherwise.

(Closure under Kleene star) Similar to the above. See Note 6.
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Closure properties of recognizable languages — Proof of Theorem 6.6

Theorem 6.6

Recognizable languages are closed under union and intersection.

(Proof) Let M1 and M2 be 1-tape TM that recognize languages L1 and L2,

respectively.

(Closure under union) The TM that recognizes L1 ∪ L2 works as follows. It

has two tapes. On input word w :

• Copy the input word onto the second tape.

• Run M1 on the first tape and M2 on the second tape “simultaneously.”

• ACCEPT, if at least one of M1 or M2 accepts.

Every word w ∈ L1 ∪ L2 is accepted by at least one of M1 or M2. Thus, the

TM above recognizes the language L1 ∪ L2 correctly.

(What happens to the TM when w /∈ L1 ∪ L2?)

(Closure under intersection) Similar to the above.
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Some properties of decidable and recognizable languages

Theorem 6.4

• If a language L (over the alphabet Σ) is decidable, so is its

complement Σ∗ − L.

• If both a language L and its complement Σ∗ − L are recognizable,

then L is decidable.

Theorem 6.5

Decidable languages are closed under union, intersection, concatenation and

Kleene star.

Theorem 6.6

Recognizable languages are closed under union and intersection.
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Some remarks

(Remark) Recognizable languages are also closed under concatenation and

Kleene star.

We can already prove it in this lesson, but the proof is a bit technical.

So we postpone the proof until Lesson 9, where we will use “non-deterministic”

TM to obtain a neater and clearer proof.

(Remark) Recognizable languages are not! closed under complement. We will

see this in Lesson 7.
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End of Lesson 6
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