Lesson 3. Context-free languages

CSIE 3110 - Formal Languages and Automata Theory

Tony Tan
Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Taiwan University

Table of contents

1. Context-free grammars
2. Derivation trees
3. Pumping lemma for context-free languages

Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

Context-free grammar (CFG)

(Def.) A context-free grammar (CFG) is a system $\mathcal{G}=\langle\Sigma, V, R, S\rangle$, where each component is as follows.

- Σ is a finite set of symbols, called terminals.
- V is a finite set of variables, and $V \cap \Sigma=\emptyset$.
- R is a finite set of rules, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
- S is a special variable from V called the start variable.

Context-free grammar (CFG)

(Def.) A context-free grammar (CFG) is a system $\mathcal{G}=\langle\Sigma, V, R, S\rangle$, where each component is as follows.

- Σ is a finite set of symbols, called terminals.
- V is a finite set of variables, and $V \cap \Sigma=\emptyset$.
- R is a finite set of rules, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
- S is a special variable from V called the start variable.

Note that for every variable $A \in V$, there may be several rules, say

$$
A \rightarrow w_{1}, \quad A \rightarrow w_{2}, \ldots \ldots, \quad A \rightarrow w_{m} \quad \text { in } R
$$

Context-free grammar (CFG)

(Def.) A context-free grammar (CFG) is a system $\mathcal{G}=\langle\Sigma, V, R, S\rangle$, where each component is as follows.

- Σ is a finite set of symbols, called terminals.
- V is a finite set of variables, and $V \cap \Sigma=\emptyset$.
- R is a finite set of rules, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in(V \cup \Sigma)^{*}$.
- S is a special variable from V called the start variable.

Note that for every variable $A \in V$, there may be several rules, say

$$
A \rightarrow w_{1}, \quad A \rightarrow w_{2}, \ldots \ldots, \quad A \rightarrow w_{m} \quad \text { in } R
$$

usually abbreviated as:

$$
A \rightarrow w_{1}\left|w_{2}\right| \cdots \mid w_{m}
$$

Note also that we may have a rule of the form $A \rightarrow \varepsilon$.

Some examples of CFG

(Example 1) $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$ where:

- $\Sigma=\{a, b\}$.
- $V=\{S\}$.
- R contains the rules: $S \rightarrow a S b \mid \varepsilon$.
- S is the start variable.

Some examples of CFG

(Example 2) $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$ where:

- $\Sigma=\{a, b\}$.
- $V=\{S, T\}$.
- R contains the rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.
- T is the start variable.

Some examples of CFG

(Example 3) $\mathcal{G}_{3}=\langle\Sigma, V, R, S\rangle$ where:

- $\Sigma=\{a, b\}$.
- $V=\{S\}$.
- R contains the rules: $S \rightarrow S$.
- S is the start variable.

Some examples of CFG

(Example 4) $\mathcal{G}_{4}=\langle\Sigma, V, R, S\rangle$ where:

- $\Sigma=\{a, b\}$.
- $V=\{S, X, A, B, C\}$.
- R contains the rules:

$$
\begin{aligned}
S & \rightarrow X A X B X C|A A| B B A \mid C C A \\
X & \rightarrow \varepsilon|a X| b X \\
A & \rightarrow a a X \mid b b A \\
B & \rightarrow b a X \mid b b B \\
C & \rightarrow a b X \mid b b C
\end{aligned}
$$

- S is the start variable.

Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG.

Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG.
(Def.) Let $u A v$ be a word in which a variable $A \in V$ appears.
We say that $u A v$ yields $u w v$, denoted by $u A v \Rightarrow u w v$, if there is a rule $A \rightarrow w$ in R.

Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG.
(Def.) Let $u A v$ be a word in which a variable $A \in V$ appears.
We say that $u A v$ yields $u w v$, denoted by $u A v \Rightarrow u w v$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.

Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG.
(Def.) Let $u A v$ be a word in which a variable $A \in V$ appears.
We say that $u A v$ yields $u w v$, denoted by $u A v \Rightarrow u w v$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.
(Def.) For $x, y \in(\Sigma \cup V)^{*}$, we say that x derives y, denoted by $x \Rightarrow^{*} y$, if either $x=y$, or $x \Rightarrow z_{1} \Rightarrow z_{2} \Rightarrow \cdots \Rightarrow y$ (finitely many).

Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG.
(Def.) Let $u A v$ be a word in which a variable $A \in V$ appears.
We say that $u A v$ yields $u w v$, denoted by $u A v \Rightarrow u w v$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.
(Def.) For $x, y \in(\Sigma \cup V)^{*}$, we say that x derives y, denoted by $x \Rightarrow^{*} y$, if either $x=y$, or $x \Rightarrow z_{1} \Rightarrow z_{2} \Rightarrow \cdots \Rightarrow y$ (finitely many).

We will also say " y is derived from x " or "from x we can derive y."

Notations and terminology - continued

(Def.) For a variable $A, L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

$$
L(\mathcal{G}, A)=\left\{w \in \Sigma^{*} \mid A \Rightarrow^{*} w\right\}
$$

Notations and terminology - continued

(Def.) For a variable $A, L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

$$
L(\mathcal{G}, A)=\left\{w \in \Sigma^{*} \mid A \Rightarrow^{*} w\right\}
$$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$
L(\mathcal{G})=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
$$

Notations and terminology - continued

(Def.) For a variable $A, L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

$$
L(\mathcal{G}, A)=\left\{w \in \Sigma^{*} \mid A \Rightarrow^{*} w\right\}
$$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$
L(\mathcal{G})=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
$$

$L(\mathcal{G})$ is called the language generated/defined/derived from/by \mathcal{G}.

Notations and terminology - continued

(Def.) For a variable $A, L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

$$
L(\mathcal{G}, A)=\left\{w \in \Sigma^{*} \mid A \Rightarrow^{*} w\right\}
$$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$
L(\mathcal{G})=\left\{w \in \Sigma^{*} \mid S \Rightarrow^{*} w\right\}
$$

$L(\mathcal{G})$ is called the language generated/defined/derived from/by \mathcal{G}.
(Def.) A language L is called a context-free language (CFL), if there is a CFG \mathcal{G} such that $L(\mathcal{G})=L$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.

- $S \Rightarrow a S b \Rightarrow a b$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.
So, $a a b b \in L\left(\mathcal{G}_{1}\right)$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.
So, $a a b b \in L\left(\mathcal{G}_{1}\right)$.

- In general, for every integer $n \geqslant 0$:

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}
$$

That is, $S \Rightarrow^{*} a^{n} b^{n}$, i.e., $a^{n} b^{n} \in L\left(\mathcal{G}_{1}\right)$, for every integer $n \geqslant 0$.

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.
So, $a a b b \in L\left(\mathcal{G}_{1}\right)$.

- In general, for every integer $n \geqslant 0$:

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}
$$

That is, $S \Rightarrow^{*} a^{n} b^{n}$, i.e., $a^{n} b^{n} \in L\left(\mathcal{G}_{1}\right)$, for every integer $n \geqslant 0$.

- Is $b a \in L\left(\mathcal{G}_{1}\right)$? Is $a a b \in L\left(\mathcal{G}_{1}\right)$?

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.
So, $a a b b \in L\left(\mathcal{G}_{1}\right)$.

- In general, for every integer $n \geqslant 0$:

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}
$$

That is, $S \Rightarrow^{*} a^{n} b^{n}$, i.e., $a^{n} b^{n} \in L\left(\mathcal{G}_{1}\right)$, for every integer $n \geqslant 0$.

- Is $b a \in L\left(\mathcal{G}_{1}\right)$? Is $a a b \in L\left(\mathcal{G}_{1}\right)$?

Example 1: $\mathcal{G}_{1}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rule:

$$
S \rightarrow a S b \mid \varepsilon
$$

- $S \Rightarrow \varepsilon$.
- $S \Rightarrow a S b \Rightarrow a b$.
- $S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b$.

So, $\varepsilon \in L\left(\mathcal{G}_{1}\right)$.
So, $a b \in L\left(\mathcal{G}_{1}\right)$.
So, $a a b b \in L\left(\mathcal{G}_{1}\right)$.

- In general, for every integer $n \geqslant 0$:

$$
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}
$$

That is, $S \Rightarrow^{*} a^{n} b^{n}$, i.e., $a^{n} b^{n} \in L\left(\mathcal{G}_{1}\right)$, for every integer $n \geqslant 0$.

- Is $b a \in L\left(\mathcal{G}_{1}\right)$? Is $a a b \in L\left(\mathcal{G}_{1}\right)$?

In fact,

$$
L\left(\mathcal{G}_{1}\right)=\left\{a^{n} b^{n} \mid n \geqslant 0\right\}
$$

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.

- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow^{*} a b$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow^{*} a b$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.
So, $a b \in L\left(\mathcal{G}_{2}\right)$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow{ }^{*} a b$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.
So, $a b \in L\left(\mathcal{G}_{2}\right)$.

- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow a S b a S b \Rightarrow{ }^{*} a b a b$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow{ }^{*} a b$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow a S b a S b \Rightarrow{ }^{*} a b a b$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.
So, $a b \in L\left(\mathcal{G}_{2}\right)$.
So, $a b a b \in L\left(\mathcal{G}_{2}\right)$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow^{*} a b$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow a S b a S b \Rightarrow{ }^{*} a b a b$.
- In general, for every integer $n, k \geqslant 0$:

$$
T \quad \Rightarrow^{*} \quad a^{n} b^{n} a^{k} b^{k}
$$

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow^{*} a b$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow a S b a S b \Rightarrow{ }^{*} a b a b$.
- In general, for every integer $n, k \geqslant 0$:

$$
T \Rightarrow a^{*} \quad a^{n} b^{n} a^{k} b^{k}
$$

That is, $a^{n} b^{n} a^{k} b^{k} \in L\left(\mathcal{G}_{2}\right)$, for every integer $n, k \geqslant 0$.

Example 2: $\mathcal{G}_{2}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S, T\}, T$ is the start variable and R contains the rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

- $T \Rightarrow S S \Rightarrow \varepsilon S \Rightarrow \varepsilon$.
- $T \Rightarrow S S \Rightarrow a S b S \Rightarrow^{*} a b$.

So, $\varepsilon \in L\left(\mathcal{G}_{2}\right)$.
So, $a b \in L\left(\mathcal{G}_{2}\right)$.
So, $a b a b \in L\left(\mathcal{G}_{2}\right)$.

- In general, for every integer $n, k \geqslant 0$:

$$
T \quad \Rightarrow^{*} \quad a^{n} b^{n} a^{k} b^{k}
$$

That is, $a^{n} b^{n} a^{k} b^{k} \in L\left(\mathcal{G}_{2}\right)$, for every integer $n, k \geqslant 0$.
In fact,

$$
L\left(\mathcal{G}_{2}\right)=\left\{a^{n} b^{n} a^{k} b^{k} \mid n, k \geqslant 0\right\}
$$

Example 3: $\mathcal{G}_{3}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rules:

$$
S \rightarrow S
$$

Example 3: $\mathcal{G}_{3}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rules:

$$
S \rightarrow S
$$

We can only have:

$$
S \Rightarrow S \Rightarrow S \Rightarrow \cdots
$$

Example 3: $\mathcal{G}_{3}=\langle\Sigma, V, R, S\rangle$

$\Sigma=\{a, b\}, V=\{S\}, S$ is the start variable and R contains the rules:

$$
S \rightarrow S
$$

We can only have:

$$
S \Rightarrow S \Rightarrow S \Rightarrow \cdots
$$

Thus,

$$
L\left(\mathcal{G}_{3}\right)=\emptyset
$$

Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct $\mathrm{C}++$ programs.

Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct $\mathrm{C}++$ programs.
The alphabet is the set of symbols in the keyboard.

Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct $\mathrm{C}++$ programs.
The alphabet is the set of symbols in the keyboard.

The variables are $A_{\text {if }}, A_{\text {while }}, A_{1-\text { ins }}, A_{\text {seq }}, \ldots$

Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct $C++$ programs.
The alphabet is the set of symbols in the keyboard.

The variables are $A_{\text {if }}, A_{\text {while }}, A_{1-\text { ins }}, A_{\text {seq }}, \ldots$

Rules such as:

$$
\begin{aligned}
A_{\text {seq }} & \rightarrow A_{1-\text { ins }} \mid A_{1 \text {-ins }} A_{\text {seq }} \\
A_{\text {if }} & \rightarrow \text { if } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\} \mid \text { if } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\} \text { else }\left\{A_{\text {seq }}\right\} \\
A_{\text {while }} & \rightarrow \text { while } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\}
\end{aligned}
$$

Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct $\mathrm{C}++$ programs.
The alphabet is the set of symbols in the keyboard.

The variables are $A_{\text {if }}, A_{\text {while }}, A_{1-\text { ins }}, A_{\text {seq }}, \ldots$
Rules such as:

$$
\begin{aligned}
A_{\text {seq }} & \rightarrow A_{1-\text { ins }} \mid A_{1 \text {-ins }} A_{\text {seq }} \\
A_{\text {if }} & \rightarrow \text { if } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\} \mid \text { if } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\} \text { else }\left\{A_{\text {seq }}\right\} \\
A_{\text {while }} & \rightarrow \text { while } A_{\text {bool-cond }}\left\{A_{\text {seq }}\right\}
\end{aligned}
$$

In fact, any programming language is defined by a CFG.

Closure under union, concatenation and Kleene star

Theorem 3.2
Context-free languages are closed under union, concatenation and Kleene star.
(Proof) Let $\mathcal{G}_{1}=\left\langle\Sigma, V_{1}, R_{1}, S_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle\Sigma, V_{2}, R_{2}, S_{2}\right\rangle$. First, we rename the variables in V_{1} and V_{2} such that $V_{1} \cap V_{2}=\emptyset$.

Closure under union, concatenation and Kleene star

Theorem 3.2

Context-free languages are closed under union, concatenation and Kleene star.
(Proof) Let $\mathcal{G}_{1}=\left\langle\Sigma, V_{1}, R_{1}, S_{1}\right\rangle$ and $\mathcal{G}_{2}=\left\langle\Sigma, V_{2}, R_{2}, S_{2}\right\rangle$. First, we rename the variables in V_{1} and V_{2} such that $V_{1} \cap V_{2}=\emptyset$.
(Closure under union)
Consider the CFG $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ defined as follows.

- $V=V_{1} \cup V_{2} \cup\{S\}$, where S is a "new" variable, i.e., $S \notin V_{1} \cup V_{2}$.
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}$.
- S is the start variable.

It can be verified that $L(\mathcal{G})=L\left(\mathcal{G}_{1}\right) \cup L\left(\mathcal{G}_{2}\right)$.

Closure under union, concatenation and Kleene star

(Proof — continued)

(Closure under concatenation)
Consider the CFG $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ defined as follows.

- $V=V_{1} \cup V_{2} \cup\{S\}$, where S is a "new" variable, i.e., $S \notin V_{1} \cup V_{2}$.
- $R=R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}$.
- S is the start variable.

It can be verified that $L(\mathcal{G})=L\left(\mathcal{G}_{1}\right) L\left(\mathcal{G}_{2}\right)$.

Closure under union, concatenation and Kleene star

(Proof — continued)
(Closure under Kleene star)
Consider the CFG $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ defined as follows.

- $V=V_{1} \cup\{S\}$, where S is a "new" variable, i.e., $S \notin V_{1}$.
- $R=R_{1} \cup\left\{S \rightarrow S_{1} S \mid \varepsilon\right\}$.
- S is the start variable.

It can be verified that $L(\mathcal{G})=L\left(\mathcal{G}_{1}\right)^{*}$. See Note 3 for more details.

Closure under union, concatenation and Kleene star

```
Theorem 3.2
Context-free languages are closed under union, concatenation and Kleene
star.
```


Closure under union, concatenation and Kleene star

Theorem 3.2

Context-free languages are closed under union, concatenation and Kleene star.

Later we will see that context-free languages are not closed under intersection and complement.

Regular languages are CFL

Theorem 3.3
Every regular language is a context-free language.

Regular languages are CFL

Theorem 3.3
Every regular language is a context-free language.

For the proof, use Theorem 3.2. The details are left as homework.

Regular languages are CFL

Theorem 3.3

Every regular language is a context-free language.

For the proof, use Theorem 3.2. The details are left as homework.
(Note:) There is a context-free language that is not regular!

Table of contents

1. Context-free grammars
2. Derivation trees
3. Pumping lemma for context-free languages

Derivation trees as an alternative condition for CFL membership

(Def.) A derivation tree, or a parse tree, of a CFG $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ is a tree T in which:

- every vertex has a label, which is a symbol from $V \cup \Sigma \cup\{\varepsilon\}$;
- the label of an interior vertex is a variable from V;
- the label of a leaf vertex is either ε or a terminal from Σ;
- if an interior vertex has a label $A \in V$ and it has k children n_{1}, \ldots, n_{k} (in the order from left to right) with labels X_{1}, \ldots, X_{k}, respectively, then $A \rightarrow X_{1} \cdots X_{k}$ must be a rule in R.

An example

- Every vertex has a label, which is a symbol from $V \cup \Sigma \cup\{\varepsilon\}$.
- The label of an interior vertex is a variable from V.
- The label of a leaf vertex is either ε or a terminal from Σ.
- If an interior vertex has a label $A \in V$ and it has k children n_{1}, \ldots, n_{k} (in the order from left to right) with labels X_{1}, \ldots, X_{k}, respectively, then $A \rightarrow X_{1} \cdots X_{k}$ must be a rule in R.
(Example) Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

S, T are variables and the alphabet is $\{a, b\}$.

Definition of derivation trees - continued

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_{1}, \ldots, n_{m} (in the order from left to right) with labels u_{1}, \ldots, u_{m}, we say that T is the derivation tree of \mathcal{G} from variable A on word $u_{1} \cdots u_{m}$.

Definition of derivation trees - continued

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_{1}, \ldots, n_{m} (in the order from left to right) with labels u_{1}, \ldots, u_{m}, we say that T is the derivation tree of \mathcal{G} from variable A on word $u_{1} \cdots u_{m}$.
(Def.) When the label of the root is the start variable S, we simply say T is the derivation tree of \mathcal{G} on $u_{1} \cdots u_{m}$.

Definition of derivation trees - continued

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_{1}, \ldots, n_{m} (in the order from left to right) with labels u_{1}, \ldots, u_{m}, we say that T is the derivation tree of \mathcal{G} from variable A on word $u_{1} \cdots u_{m}$.
(Def.) When the label of the root is the start variable S, we simply say T is the derivation tree of \mathcal{G} on $u_{1} \cdots u_{m}$.

Theorem 3.5

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^{*}$, the following holds.
$A \Rightarrow{ }^{*} w \quad$ if and only if there is a derivation tree of \mathcal{G} from A on w.
In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

Definition of derivation trees - continued

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_{1}, \ldots, n_{m} (in the order from left to right) with labels u_{1}, \ldots, u_{m}, we say that T is the derivation tree of \mathcal{G} from variable A on word $u_{1} \cdots u_{m}$.
(Def.) When the label of the root is the start variable S, we simply say T is the derivation tree of \mathcal{G} on $u_{1} \cdots u_{m}$.

Theorem 3.5

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^{*}$, the following holds.
$A \Rightarrow{ }^{*} w \quad$ if and only if there is a derivation tree of \mathcal{G} from A on w.
In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

The proof is straightforward, but the idea is best illustrated by examples.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

An example of derivation tree

Consider a CFG with the following rules:

$$
T \rightarrow S S \quad \text { and } \quad S \rightarrow a S b \mid \varepsilon
$$

T is the start variable and the alphabet is $\{a, b\}$.

This is a derivation tree of the CFG on $a b$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

Another example

The rules: $T \rightarrow S S$ and $S \rightarrow a S b \mid \varepsilon$.

This is a derivation tree of the CFG on $a^{3} b^{3} a^{2} b^{2}$.

Derivation trees as an alternative condition for CFL membership

From the example, it is not difficult to see that derivation trees are just an alternative condition for CFL membership.

Theorem 3.5

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^{*}$, the following holds.
$A \Rightarrow{ }^{*} w \quad$ if and only if there is a derivation tree of \mathcal{G} from A on w.
In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

Table of contents

1. Context-free grammars
2. Derivation trees
3. Pumping lemma for context-free languages

Pumping lemma

Similar to regular languages, CFL also has its own pumping lemma.

Pumping lemma

Similar to regular languages, CFL also has its own pumping lemma.

Lemma 3.6 (pumping lemma)
Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG. Then, there is an integer N such that every $w \in L(\mathcal{G})$ with length $\geqslant N$ can be partitioned into:

$$
w=s \times y z t
$$

such that the following holds.

- $|x|+|z| \geqslant 1$.
- $|x y z| \leqslant N$.
- For every $i \geqslant 0, s x^{i} y z^{i} t \in L(\mathcal{G})$.

Proof of pumping lemma

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG and let $n=|V|$.

Proof of pumping lemma

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG and let $n=|V|$.
Let $m=\max _{A \rightarrow w \in R}|w|$, i.e., the maximum length of the string u over all the rule $A \rightarrow u$ in R.

Proof of pumping lemma

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG and let $n=|V|$.
Let $m=\max _{A \rightarrow w \in R}|w|$, i.e., the maximum length of the string u over all the rule $A \rightarrow u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G}, every node has at most m children.

Proof of pumping lemma

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG and let $n=|V|$.
Let $m=\max _{A \rightarrow w \in R}|w|$, i.e., the maximum length of the string u over all the rule $A \rightarrow u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G}, every node has at most m children.

We define $N=m^{n}+1$.

Proof of pumping lemma

Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG and let $n=|V|$.
Let $m=\max _{A \rightarrow w \in R}|w|$, i.e., the maximum length of the string u over all the rule $A \rightarrow u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G}, every node has at most m children.

We define $N=m^{n}+1$.

Intuitively, this means that for a word of length $\geqslant N$, its derivation tree will have depth $\geqslant n+1$.

Proof of pumping lemma (Continued)

Let $w \in L(\mathcal{G})$ and $|w| \geqslant N$. Recall that $N=m^{n}+1$.

Proof of pumping lemma (Continued)

Let $w \in L(\mathcal{G})$ and $|w| \geqslant N$. Recall that $N=m^{n}+1$.
Consider its derivation tree T and its depth $\geqslant n+1$.

Proof of pumping lemma (Continued)

Let $w \in L(\mathcal{G})$ and $|w| \geqslant N$. Recall that $N=m^{n}+1$.
Consider its derivation tree T and its depth $\geqslant n+1$.

Proof of pumping lemma (Continued)

Let $w \in L(\mathcal{G})$ and $|w| \geqslant N$. Recall that $N=m^{n}+1$.
Consider its derivation tree T and its depth $\geqslant n+1$.

There exists a variable A that appears at least twice in the same path.

Proof of pumping lemma (Continued)

Let $w \in L(\mathcal{G})$ and $|w| \geqslant N$. Recall that $N=m^{n}+1$.
Consider its derivation tree T and its depth $\geqslant n+1$.

Pick the variable A such that in its subtree there is no variable that appears twice.

Proof of pumping lemma (Continued)

Proof of pumping lemma (Continued)

Proof of pumping lemma (Continued)

The three conditions hold.

- $|x|+|z| \geqslant 1$.
- $|x y z| \leqslant N$.
- For every $i \geqslant 0, s x^{i} y z^{i} t \in L(\mathcal{G})$.
\Rightarrow By "pumping" variable A.

Pumping lemma

Lemma 3.6 (pumping lemma)
Let $\mathcal{G}=\langle\Sigma, V, R, S\rangle$ be a CFG. Then, there is an integer N such that every $w \in L(\mathcal{G})$ with length $\geqslant N$ can be partitioned into:

$$
w=s \times y z t
$$

such that the following holds.

- $|x|+|z| \geqslant 1$.
- $|x y z| \leqslant N$.
- For every $i \geqslant 0, s x^{i} y z^{i} t \in L(\mathcal{G})$.

The length N is usually called the pumping length of \mathcal{G}.

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

$$
L:=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}
$$

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

$$
L:=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}
$$

Claim 1

The language L is not CFL.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.
Consider the following string, where n is $\geqslant N$.

By pumping lemma, we can partition it into $s x y z t$ such that $s x^{i} y z^{i} t \in L$, for every $i \geqslant 0$.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.
Consider the following string, where n is $\geqslant N$.

Pumping x and z will increase the number of a and b, but not c

By pumping lemma, we can partition it into $s x y z t$ such that $s x^{i} y z^{i} t \in L$, for every $i \geqslant 0$.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.
Consider the following string, where n is $\geqslant N$.

Pumping x and z will make some a appear after b

By pumping lemma, we can partition it into sxyzt such that $s x^{i} y z^{i} t \in L$, for every $i \geqslant 0$.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.
Consider the following string, where n is $\geqslant N$.

Pumping x and z will increase the number of b and c, but not a

By pumping lemma, we can partition it into sxyzt such that $s x^{i} y z^{i} t \in L$, for every $i \geqslant 0$.

Proof that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ is not CFL

If L is CFL, let N be its pumping length.

Consider the following string, where n is $\geqslant N$.

Pumping x and z will increase the number of b and c, but not a

By pumping lemma, we can partition it into sxyzt such that $s x^{i} y z^{i} t \in L$, for every $i \geqslant 0$.

For any other partition, pumping x and z will result in a word not in L. Thus, contradicting pumping lemma.

CFL are not closed under intersection and complement

CFL are not closed under intersection and complement

Consider the following languages:

$$
\begin{aligned}
& L_{1}:=\left\{a^{n} b^{n} c^{k} \mid n, k \geqslant 0\right\} \\
& L_{2}:=\left\{a^{k} b^{n} c^{n} \mid n, k \geqslant 0\right\}
\end{aligned}
$$

Both L_{1} and L_{2} are CFL.

CFL are not closed under intersection and complement

Consider the following languages:

$$
\begin{aligned}
& L_{1}:=\left\{a^{n} b^{n} c^{k} \mid n, k \geqslant 0\right\} \\
& L_{2}:=\left\{a^{k} b^{n} c^{n} \mid n, k \geqslant 0\right\}
\end{aligned}
$$

Both L_{1} and L_{2} are CFL.

However, $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ which is not CFL.

CFL are not closed under intersection and complement

Consider the following languages:

$$
\begin{aligned}
& L_{1}:=\left\{a^{n} b^{n} c^{k} \mid n, k \geqslant 0\right\} \\
& L_{2}:=\left\{a^{k} b^{n} c^{n} \mid n, k \geqslant 0\right\}
\end{aligned}
$$

Both L_{1} and L_{2} are CFL.

However, $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ which is not CFL.
Note also that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ (de Morgan's law). Thus, CFL are not closed under complement.

CFL are not closed under intersection and complement

Consider the following languages:

$$
\begin{aligned}
& L_{1}:=\left\{a^{n} b^{n} c^{k} \mid n, k \geqslant 0\right\} \\
& L_{2}:=\left\{a^{k} b^{n} c^{n} \mid n, k \geqslant 0\right\}
\end{aligned}
$$

Both L_{1} and L_{2} are CFL.

However, $L_{1} \cap L_{2}=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 0\right\}$ which is not CFL.
Note also that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$ (de Morgan's law). Thus, CFL are not closed under complement.

Note: For a language L over alphabet $\Sigma, \bar{L}=\Sigma^{*}-L$, i.e., the complement of the language L.

End of Lesson 3

