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Context-free grammar (CFG)

(Def.) A context-free grammar (CFG) is a system G = 〈Σ,V ,R, S〉, where

each component is as follows.

• Σ is a finite set of symbols, called terminals.

• V is a finite set of variables, and V ∩ Σ = ∅.

• R is a finite set of rules, where each rule is of the form A→ w , where

A ∈ V and w ∈ (V ∪ Σ)∗.

• S is a special variable from V called the start variable.

Note that for every variable A ∈ V , there may be several rules, say

A→ w1, A→ w2, . . . . . . , A→ wm in R

usually abbreviated as:

A → w1 | w2 | · · · | wm

Note also that we may have a rule of the form A→ ε.
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Some examples of CFG

(Example 1) G1 = 〈Σ,V ,R,S〉 where:

• Σ = {a, b}.

• V = {S}.

• R contains the rules: S → aSb | ε.

• S is the start variable.
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Some examples of CFG

(Example 2) G2 = 〈Σ,V ,R,S〉 where:

• Σ = {a, b}.

• V = {S ,T}.

• R contains the rules: T → SS and S → aSb | ε.

• T is the start variable.
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Some examples of CFG

(Example 3) G3 = 〈Σ,V ,R,S〉 where:

• Σ = {a, b}.

• V = {S}.

• R contains the rules: S → S .

• S is the start variable.

6/34



Some examples of CFG

(Example 4) G4 = 〈Σ,V ,R,S〉 where:

• Σ = {a, b}.

• V = {S ,X ,A,B,C}.

• R contains the rules:

S → XAXBXC | AA | BBA | CCA

X → ε | aX | bX

A → aaX | bbA

B → baX | bbB

C → abX | bbC

• S is the start variable.
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Notations and terminology

Similar to DFA/NFA/regex, a CFG represents a language called context-free

language (CFL).

Let G = 〈Σ,V ,R, S〉 be a CFG.

(Def.) Let uAv be a word in which a variable A ∈ V appears.

We say that uAv yields uwv , denoted by uAv ⇒ uwv , if there is a rule A→ w

in R.

Intuitively, the rule A→ w means variable A can be replaced with w .

(Def.) For x , y ∈ (Σ ∪ V )∗, we say that x derives y , denoted by x ⇒∗ y , if

either x = y , or x ⇒ z1 ⇒ z2 ⇒ · · · ⇒ y (finitely many).

We will also say “y is derived from x” or “from x we can derive y .”
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Notations and terminology — continued

(Def.) For a variable A, L(G,A) denotes the language of all words over Σ that

can be derived from variable A. Formally,

L(G,A) = {w ∈ Σ∗ | A⇒∗ w}

(Def.) L(G) denotes the language L(G, S), i.e., the language of all words over

Σ that can be derived from the start variable S . Formally,

L(G) = {w ∈ Σ∗ | S ⇒∗ w}

L(G) is called the language generated/defined/derived from/by G.

(Def.) A language L is called a context-free language (CFL), if there is a CFG

G such that L(G) = L.
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Example 1: G1 = 〈Σ,V ,R,S〉

Σ = {a, b}, V = {S}, S is the start variable and R contains the rule:

S → aSb | ε

• S ⇒ ε. So, ε ∈ L(G1).

• S ⇒ aSb ⇒ ab. So, ab ∈ L(G1).

• S ⇒ aSb ⇒ aaSbb ⇒ aabb. So, aabb ∈ L(G1).

• In general, for every integer n > 0:

S ⇒ aSb ⇒ aaSbb ⇒ · · · ⇒ a · · · a︸ ︷︷ ︸
n

b · · · b︸ ︷︷ ︸
n

That is, S ⇒∗ anbn, i.e., anbn ∈ L(G1), for every integer n > 0.

• Is ba ∈ L(G1)? Is aab ∈ L(G1)? No!

In fact,

L(G1) = {anbn | n > 0}
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Example 2: G2 = 〈Σ,V ,R,S〉

Σ = {a, b}, V = {S ,T}, T is the start variable and R contains the rules:

T → SS and S → aSb | ε

• T ⇒ SS ⇒ εS ⇒ ε. So, ε ∈ L(G2).

• T ⇒ SS ⇒ aSbS ⇒∗ ab. So, ab ∈ L(G2).

• T ⇒ SS ⇒ aSbS ⇒ aSbaSb ⇒∗ abab. So, abab ∈ L(G2).

• In general, for every integer n, k > 0:

T ⇒∗ anbnakbk

That is, anbnakbk ∈ L(G2), for every integer n, k > 0.

In fact,

L(G2) = {anbnakbk | n, k > 0}
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• T ⇒ SS ⇒ aSbS ⇒ aSbaSb ⇒∗ abab. So, abab ∈ L(G2).

• In general, for every integer n, k > 0:

T ⇒∗ anbnakbk

That is, anbnakbk ∈ L(G2), for every integer n, k > 0.

In fact,

L(G2) = {anbnakbk | n, k > 0}
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Example 3: G3 = 〈Σ,V ,R,S〉

Σ = {a, b}, V = {S}, S is the start variable and R contains the rules:

S → S

We can only have:

S ⇒ S ⇒ S ⇒ · · ·

Thus,

L(G3) = ∅
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Example 4: The C++ programming language

We can define a CFG that consists of all syntactically correct C++ programs.

The alphabet is the set of symbols in the keyboard.

The variables are Aif, Awhile, A1-ins, Aseq, . . . .

Rules such as:

Aseq → A1-ins | A1-insAseq

Aif → if Abool-cond { Aseq } | if Abool-cond { Aseq } else { Aseq }

Awhile → while Abool-cond { Aseq }
...

In fact, any programming language is defined by a CFG.
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Closure under union, concatenation and Kleene star

Theorem 3.2

Context-free languages are closed under union, concatenation and Kleene

star.

(Proof) Let G1 = 〈Σ,V1,R1, S1〉 and G2 = 〈Σ,V2,R2, S2〉. First, we rename

the variables in V1 and V2 such that V1 ∩ V2 = ∅.

(Closure under union)

Consider the CFG G = 〈Σ,V ,R, S〉 defined as follows.

• V = V1 ∪ V2 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1 ∪ V2.

• R = R1 ∪ R2 ∪ {S → S1|S2}.

• S is the start variable.

It can be verified that L(G) = L(G1) ∪ L(G2).
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Closure under union, concatenation and Kleene star

(Proof — continued)

(Closure under concatenation)

Consider the CFG G = 〈Σ,V ,R, S〉 defined as follows.

• V = V1 ∪ V2 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1 ∪ V2.

• R = R1 ∪ R2 ∪ {S → S1S2}.

• S is the start variable.

It can be verified that L(G) = L(G1)L(G2).

15/34



Closure under union, concatenation and Kleene star

(Proof — continued)

(Closure under Kleene star)

Consider the CFG G = 〈Σ,V ,R, S〉 defined as follows.

• V = V1 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1.

• R = R1 ∪ {S → S1S |ε}.

• S is the start variable.

It can be verified that L(G) = L(G1)∗. See Note 3 for more details.
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Closure under union, concatenation and Kleene star

Theorem 3.2

Context-free languages are closed under union, concatenation and Kleene

star.

Later we will see that context-free languages are not closed under intersection

and complement.
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Regular languages are CFL

Theorem 3.3

Every regular language is a context-free language.

For the proof, use Theorem 3.2. The details are left as homework.

(Note:) There is a context-free language that is not regular!
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Derivation trees as an alternative condition for CFL membership

(Def.) A derivation tree, or a parse tree, of a CFG G = 〈Σ,V ,R, S〉 is a tree T

in which:

• every vertex has a label, which is a symbol from V ∪ Σ ∪ {ε};

• the label of an interior vertex is a variable from V ;

• the label of a leaf vertex is either ε or a terminal from Σ;

• if an interior vertex has a label A ∈ V and it has k children n1, . . . , nk (in

the order from left to right) with labels X1, . . . ,Xk , respectively, then

A→ X1 · · ·Xk must be a rule in R.
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An example

• Every vertex has a label, which is a symbol from V ∪ Σ ∪ {ε}.
• The label of an interior vertex is a variable from V .

• The label of a leaf vertex is either ε or a terminal from Σ.

• If an interior vertex has a label A ∈ V and it has k children n1, . . . , nk (in

the order from left to right) with labels X1, . . . ,Xk , respectively, then

A→ X1 · · ·Xk must be a rule in R.

(Example) Consider a CFG with the following rules:

T → SS and S → aSb | ε

S ,T are variables and the alphabet is {a, b}.

S

a S b

ε
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Definition of derivation trees — continued

(Def.) If the label of the root is a variable A, and the leaf vertices of T are

n1, . . . , nm (in the order from left to right) with labels u1, . . . , um, we say that

T is the derivation tree of G from variable A on word u1 · · · um.

(Def.) When the label of the root is the start variable S , we simply say T is

the derivation tree of G on u1 · · · um.

Theorem 3.5

Let G = 〈Σ,V ,R,S〉 be a CFG. For every variable A ∈ V , for every word

w ∈ Σ∗, the following holds.

A⇒∗ w if and only if there is a derivation tree of G from A on w .

In particular, w ∈ L(G) if and only if there is a derivation tree of G on w.

The proof is straightforward, but the idea is best illustrated by examples.
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An example of derivation tree

Consider a CFG with the following rules:

T → SS and S → aSb | ε

T is the start variable and the alphabet is {a, b}.

T

S S

a S b ε

ε

This is a derivation tree of the CFG on ab.
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Another example

The rules: T → SS and S → aSb | ε.

T

S S

a S b a S b

a S b a S b

a S b ε

ε

This is a derivation tree of the CFG on a3b3a2b2.
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Derivation trees as an alternative condition for CFL membership

From the example, it is not difficult to see that derivation trees are just an

alternative condition for CFL membership.

Theorem 3.5

Let G = 〈Σ,V ,R, S〉 be a CFG. For every variable A ∈ V , for every word

w ∈ Σ∗, the following holds.

A⇒∗ w if and only if there is a derivation tree of G from A on w .

In particular, w ∈ L(G) if and only if there is a derivation tree of G on w.

25/34



Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

26/34



Pumping lemma

Similar to regular languages, CFL also has its own pumping lemma.

Lemma 3.6 (pumping lemma)

Let G = 〈Σ,V ,R, S〉 be a CFG. Then, there is an integer N such that every

w ∈ L(G) with length > N can be partitioned into:

w = s x y z t

such that the following holds.

• |x |+ |z | > 1.

• |xyz | 6 N.

• For every i > 0, sx iyz i t ∈ L(G).
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Proof of pumping lemma

Let G = 〈Σ,V ,R, S〉 be a CFG and let n = |V |.

Let m = maxA→w∈R |w |, i.e., the maximum length of the string u over all the

rule A→ u in R.

Intuitively, this means that in every derivation tree of G, every node has at

most m children.

We define N = mn + 1.

Intuitively, this means that for a word of length > N, its derivation tree will

have depth > n + 1.
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Proof of pumping lemma (Continued)

Let w ∈ L(G) and |w | > N. Recall that N = mn + 1.

Consider its derivation tree T and its depth > n + 1.
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There exists a variable A that appears at least twice in the same path.
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Proof of pumping lemma (Continued)

Let w ∈ L(G) and |w | > N. Recall that N = mn + 1.

Consider its derivation tree T and its depth > n + 1.
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Pick the variable A such that in its subtree there is no variable that appears

twice.
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Proof of pumping lemma (Continued)rS
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The three conditions hold.

• |x |+ |z | > 1.

• |xyz | 6 N.

• For every i > 0, sx iyz i t ∈ L(G). ⇒ By “pumping” variable A.
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Pumping lemma

Lemma 3.6 (pumping lemma)

Let G = 〈Σ,V ,R, S〉 be a CFG. Then, there is an integer N such that every

w ∈ L(G) with length > N can be partitioned into:

w = s x y z t

such that the following holds.

• |x |+ |z | > 1.

• |xyz | 6 N.

• For every i > 0, sx iyz i t ∈ L(G).

The length N is usually called the pumping length of G.
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An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a

language is not CFL.

L := {anbncn | n > 0}

Claim 1

The language L is not CFL.
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Proof that L = {anbncn | n > 0} is not CFL

If L is CFL, let N be its pumping length.

Consider the following string, where n is > N.

n times︷ ︸︸ ︷
a · · · · · · · · · · · · · · · a

n times︷ ︸︸ ︷
b · · · · · · · · · · · · · · · b

n times︷ ︸︸ ︷
c · · · · · · · · · · · · · · · c

-�
s

-�
x

-�
y

-�
z

-�
t

Pumping x and z will increase the number of a and b, but not c

-�
s

-�
x

-�
y

-�
z

-�
t

Pumping x and z will make some a appear after b

-�
s

-�
x

-�
y

-�
z

-�
t

Pumping x and z will increase the number of b and c, but not a

By pumping lemma, we can partition it into sxyzt such that sx iyz i t ∈ L, for

every i > 0.

For any other partition, pumping x and z will result in a word not in L. Thus,

contradicting pumping lemma.
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CFL are not closed under intersection and complement

Consider the following languages:

L1 := {anbnck | n, k > 0}

L2 := {akbncn | n, k > 0}

Both L1 and L2 are CFL.

However, L1 ∩ L2 = {anbncn | n > 0} which is not CFL.

Note also that L1 ∩ L2 = L1 ∪ L2 (de Morgan’s law). Thus, CFL are not closed

under complement.

Note: For a language L over alphabet Σ, L = Σ∗ − L, i.e., the complement of

the language L.
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End of Lesson 3


	1. Context-free grammars
	2. Derivation trees
	3. Pumping lemma for context-free languages

