Lesson 3. Context-free languages

CSIE 3110 - Formal Languages and Automata Theory

Tony Tan Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science National Taiwan University

Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

Context-free grammar (CFG)

(Def.) A *context-free grammar* (CFG) is a system $\mathcal{G} = \langle \Sigma, V, R, S \rangle$, where each component is as follows.

- Σ is a finite set of symbols, called *terminals*.
- *V* is a finite set of *variables*, and $V \cap \Sigma = \emptyset$.
- *R* is a finite set of *rules*, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$.
- *S* is a special variable from *V* called the *start variable*.

Context-free grammar (CFG)

(Def.) A *context-free grammar* (CFG) is a system $\mathcal{G} = \langle \Sigma, V, R, S \rangle$, where each component is as follows.

- Σ is a finite set of symbols, called *terminals*.
- *V* is a finite set of *variables*, and $V \cap \Sigma = \emptyset$.
- *R* is a finite set of *rules*, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$.
- S is a special variable from V called the *start variable*.

Note that for every variable $A \in V$, there may be several rules, say

Context-free grammar (CFG)

(Def.) A context-free grammar (CFG) is a system $\mathcal{G} = \langle \Sigma, V, R, S \rangle$, where each component is as follows.

- Σ is a finite set of symbols, called *terminals*.
- V is a finite set of *variables*, and $V \cap \Sigma = \emptyset$.
- *R* is a finite set of *rules*, where each rule is of the form $A \rightarrow w$, where $A \in V$ and $w \in (V \cup \Sigma)^*$.
- S is a special variable from V called the *start variable*.

Note that for every variable $A \in V$, there may be several rules, say

usually abbreviated as:

$$A \rightarrow w_1 \mid w_2 \mid \cdots \mid w_m$$

Note also that we may have a rule of the form $A \rightarrow \varepsilon$.

(Example 1) $\mathcal{G}_1 = \langle \Sigma, V, R, S \rangle$ where:

- $\Sigma = \{a, b\}.$
- $V = \{S\}.$
- *R* contains the rules: $S \rightarrow aSb \mid \epsilon$.
- *S* is the start variable.

(Example 2) $\mathcal{G}_2 = \langle \Sigma, V, R, S \rangle$ where:

- $\Sigma = \{a, b\}.$
- $V = \{S, T\}.$
- *R* contains the rules: $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$.
- T is the start variable.

(Example 3) $\mathcal{G}_3 = \langle \Sigma, V, R, S \rangle$ where:

- $\Sigma = \{a, b\}.$
- $V = \{S\}.$
- *R* contains the rules: $S \rightarrow S$.
- *S* is the start variable.

(Example 4) $\mathcal{G}_4 = \langle \Sigma, V, R, S \rangle$ where:

- $\Sigma = \{a, b\}.$
- $V = \{S, X, A, B, C\}.$
- *R* contains the rules:

S	\rightarrow	XAXBXC AA BBA CCA
Χ	\rightarrow	$\varepsilon \mid aX \mid bX$
Α	\rightarrow	aaX bbA
В	\rightarrow	baX bbB
С	\rightarrow	abX bbC

• *S* is the start variable.

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG.

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG.

(Def.) Let uAv be a word in which a variable $A \in V$ appears.

We say that *uAv yields uwv*, denoted by $uAv \Rightarrow uwv$, if there is a rule $A \rightarrow w$ in *R*.

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG.

(Def.) Let uAv be a word in which a variable $A \in V$ appears.

We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG.

(Def.) Let uAv be a word in which a variable $A \in V$ appears.

We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.

(Def.) For $x, y \in (\Sigma \cup V)^*$, we say that x *derives* y, denoted by $x \Rightarrow^* y$, if either x = y, or $x \Rightarrow z_1 \Rightarrow z_2 \Rightarrow \cdots \Rightarrow y$ (finitely many).

Similar to DFA/NFA/regex, a CFG represents a language called context-free language (CFL).

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG.

(Def.) Let uAv be a word in which a variable $A \in V$ appears.

We say that uAv yields uwv, denoted by $uAv \Rightarrow uwv$, if there is a rule $A \rightarrow w$ in R.

Intuitively, the rule $A \rightarrow w$ means variable A can be replaced with w.

(Def.) For $x, y \in (\Sigma \cup V)^*$, we say that x *derives* y, denoted by $x \Rightarrow^* y$, if either x = y, or $x \Rightarrow z_1 \Rightarrow z_2 \Rightarrow \cdots \Rightarrow y$ (finitely many).

We will also say "y is derived from x" or "from x we can derive y."

(Def.) For a variable A, $L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

 $L(\mathcal{G}, A) = \{ w \in \Sigma^* \mid A \Rightarrow^* w \}$

(Def.) For a variable A, $L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

 $L(\mathcal{G}, A) = \{ w \in \Sigma^* \mid A \Rightarrow^* w \}$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$L(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

(Def.) For a variable A, $L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

 $L(\mathcal{G}, A) = \{ w \in \Sigma^* \mid A \Rightarrow^* w \}$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$L(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

 $L(\mathcal{G})$ is called the language generated/defined/derived from/by \mathcal{G} .

(Def.) For a variable A, $L(\mathcal{G}, A)$ denotes the language of all words over Σ that can be derived from variable A. Formally,

 $L(\mathcal{G}, A) = \{ w \in \Sigma^* \mid A \Rightarrow^* w \}$

(Def.) $L(\mathcal{G})$ denotes the language $L(\mathcal{G}, S)$, i.e., the language of all words over Σ that can be derived from the start variable S. Formally,

$$L(\mathcal{G}) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$$

 $L(\mathcal{G})$ is called the language generated/defined/derived from/by \mathcal{G} .

(Def.) A language L is called a *context-free language* (CFL), if there is a CFG \mathcal{G} such that $L(\mathcal{G}) = L$.

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

 $S \rightarrow aSb \mid \varepsilon$

•
$$S \Rightarrow \varepsilon$$
.

• $S \Rightarrow aSb \Rightarrow ab$.

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

$$S \rightarrow aSb \mid \varepsilon$$

• $S \Rightarrow \varepsilon$. • $S \Rightarrow aSb \Rightarrow ab$. • $S \Rightarrow aSb \Rightarrow ab$. • $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$. So, $ab \in L(\mathcal{G}_1)$. • $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$. So, $aabb \in L(\mathcal{G}_1)$.

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

$$S \rightarrow aSb \mid \varepsilon$$

- $S \Rightarrow \varepsilon$. So, $\varepsilon \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow ab$. So, $ab \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb.$ So, $aabb \in L(\mathcal{G}_1)$.

• In general, for every integer $n \ge 0$:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}$$

That is, $S \Rightarrow^* a^n b^n$, i.e., $a^n b^n \in L(\mathcal{G}_1)$, for every integer $n \ge 0$.

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

$$S \rightarrow aSb \mid \varepsilon$$

- $S \Rightarrow \varepsilon$. So, $\varepsilon \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow ab$. So, $ab \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb.$ So, $aabb \in L(\mathcal{G}_1)$.

• In general, for every integer $n \ge 0$:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}$$

That is, $S \Rightarrow^* a^n b^n$, i.e., $a^n b^n \in L(\mathcal{G}_1)$, for every integer $n \ge 0$.

• Is $ba \in L(\mathcal{G}_1)$? Is $aab \in L(\mathcal{G}_1)$?

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

$$S \rightarrow aSb \mid \varepsilon$$

- $S \Rightarrow \varepsilon$. So, $\varepsilon \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow ab$. So, $ab \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb.$ So, $aabb \in L(\mathcal{G}_1)$.

• In general, for every integer $n \ge 0$:

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}$$

That is, $S \Rightarrow^* a^n b^n$, i.e., $a^n b^n \in L(\mathcal{G}_1)$, for every integer $n \ge 0$.

• Is $ba \in L(\mathcal{G}_1)$? Is $aab \in L(\mathcal{G}_1)$? No!

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rule:

$$S \rightarrow aSb \mid \varepsilon$$

- $S \Rightarrow \varepsilon$. So, $\varepsilon \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow ab$. So, $ab \in L(\mathcal{G}_1)$.
- $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb.$ So, $aabb \in L(\mathcal{G}_1)$.

• In general, for every integer $n \ge 0$: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow \cdots \Rightarrow \underbrace{a \cdots a}_{n} \underbrace{b \cdots b}_{n}$

That is, $S \Rightarrow^* a^n b^n$, i.e., $a^n b^n \in L(\mathcal{G}_1)$, for every integer $n \ge 0$.

• Is
$$ba \in L(\mathcal{G}_1)$$
? Is $aab \in L(\mathcal{G}_1)$? No!

In fact,

$$L(\mathcal{G}_1) = \{a^n b^n \mid n \ge 0\}$$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
.

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
.

So,
$$\varepsilon \in L(\mathcal{G}_2)$$
.

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
. So, $\varepsilon \in L(\mathcal{G}_2)$.

• $T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab.$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

• $T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$. • $T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab$. So, $\varepsilon \in L(\mathcal{G}_2)$. So, $ab \in L(\mathcal{G}_2)$.

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

- $T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$. So, $\varepsilon \in L(\mathcal{G}_2)$.
- $T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab.$

So, $ab \in L(\mathcal{G}_2)$.

• $T \Rightarrow SS \Rightarrow aSbS \Rightarrow aSbaSb \Rightarrow^* abab.$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
.
• $T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab$.
So, $\varepsilon \in L(\mathcal{G}_2)$.
So, $ab \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow aSbaSb \Rightarrow^* abab.$$

So, abab $\in L(\mathcal{G}_2)$.
Example 2: $\mathcal{G}_2 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
. So, $\varepsilon \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab.$$
 So, $ab \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow aSbaSb \Rightarrow^* abab.$$

So, abab $\in L(\mathcal{G}_2)$.

• In general, for every integer $n, k \ge 0$:

$$T \Rightarrow^* a^n b^n a^k b^k$$

Example 2: $\mathcal{G}_2 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
. So, $\varepsilon \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab.$$
 So, $ab \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow aSbaSb \Rightarrow^* abab.$$

• In general, for every integer $n, k \ge 0$:

$$T \Rightarrow^* a^n b^n a^k b^k$$

That is, $a^n b^n a^k b^k \in L(\mathcal{G}_2)$, for every integer $n, k \ge 0$.

So, $abab \in L(\mathcal{G}_2)$.

Example 2: $\mathcal{G}_2 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S, T\}, T$ is the start variable and R contains the rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

•
$$T \Rightarrow SS \Rightarrow \varepsilon S \Rightarrow \varepsilon$$
. So, $\varepsilon \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow^* ab.$$
 So, $ab \in L(\mathcal{G}_2)$.

•
$$T \Rightarrow SS \Rightarrow aSbS \Rightarrow aSbaSb \Rightarrow^* abab.$$

• In general, for every integer
$$n, k \ge 0$$
:

$$T \Rightarrow^* a^n b^n a^k b^k$$

That is, $a^n b^n a^k b^k \in L(\mathcal{G}_2)$, for every integer $n, k \ge 0$.

In fact,

$$L(\mathcal{G}_2) = \{a^n b^n a^k b^k \mid n, k \ge 0\}$$

So, $abab \in L(\mathcal{G}_2)$.

Example 3: $\mathcal{G}_3 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rules:

$$S \rightarrow S$$

Example 3: $\mathcal{G}_3 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rules:

$$S \rightarrow S$$

We can only have:

$$S \Rightarrow S \Rightarrow S \Rightarrow \cdots$$

Example 3: $\mathcal{G}_3 = \langle \Sigma, V, R, S \rangle$

 $\Sigma = \{a, b\}, V = \{S\}, S$ is the start variable and R contains the rules:

$$S \rightarrow S$$

We can only have:

 $S \Rightarrow S \Rightarrow S \Rightarrow \cdots$

Thus,

 $L(\mathcal{G}_3) = \emptyset$

We can define a CFG that consists of all syntactically correct C++ programs.

We can define a CFG that consists of all syntactically correct C++ programs.

The alphabet is the set of symbols in the keyboard.

We can define a CFG that consists of all syntactically correct C++ programs.

The alphabet is the set of symbols in the keyboard.

The variables are A_{if} , A_{while} , A_{1-ins} , A_{seq} ,

We can define a CFG that consists of all syntactically correct C++ programs.

The alphabet is the set of symbols in the keyboard.

The variables are A_{if} , A_{while} , A_{1-ins} , A_{seq} ,

Rules such as:

We can define a CFG that consists of all syntactically correct C++ programs.

The alphabet is the set of symbols in the keyboard.

The variables are A_{if} , A_{while} , A_{1-ins} , A_{seq} ,

Rules such as:

In fact, any programming language is defined by a CFG.

Theorem 3.2 Context-free languages are closed under union, concatenation and Kleene star.

(Proof) Let $\mathcal{G}_1 = \langle \Sigma, V_1, R_1, S_1 \rangle$ and $\mathcal{G}_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$. First, we rename the variables in V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$.

Theorem 3.2 Context-free languages are closed under union, concatenation and Kleene star.

(Proof) Let $\mathcal{G}_1 = \langle \Sigma, V_1, R_1, S_1 \rangle$ and $\mathcal{G}_2 = \langle \Sigma, V_2, R_2, S_2 \rangle$. First, we rename the variables in V_1 and V_2 such that $V_1 \cap V_2 = \emptyset$.

(Closure under union)

Consider the CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ defined as follows.

- $V = V_1 \cup V_2 \cup \{S\}$, where S is a "new" variable, i.e., $S \notin V_1 \cup V_2$.
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1 | S_2\}.$
- S is the start variable.

It can be verified that $L(\mathcal{G}) = L(\mathcal{G}_1) \cup L(\mathcal{G}_2)$.

(Proof — continued)

(Closure under concatenation)

Consider the CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ defined as follows.

- $V = V_1 \cup V_2 \cup \{S\}$, where S is a "new" variable, i.e., $S \notin V_1 \cup V_2$.
- $R = R_1 \cup R_2 \cup \{S \rightarrow S_1S_2\}.$
- S is the start variable.

It can be verified that $L(\mathcal{G}) = L(\mathcal{G}_1)L(\mathcal{G}_2)$.

(Proof — continued)

(Closure under Kleene star)

Consider the CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ defined as follows.

- $V = V_1 \cup \{S\}$, where S is a "new" variable, i.e., $S \notin V_1$.
- $R = R_1 \cup \{S \to S_1 S | \varepsilon\}.$
- *S* is the start variable.

It can be verified that $L(\mathcal{G}) = L(\mathcal{G}_1)^*$. See Note 3 for more details.

Theorem 3.2 Context-free languages are closed under union, concatenation and Kleene star.

Theorem 3.2 Context-free languages are closed under union, concatenation and Kleene star.

Later we will see that context-free languages are \underline{not} closed under intersection and complement.

Regular languages are CFL

Theorem 3.3

Every regular language is a context-free language.

Regular languages are CFL

Theorem 3.3

Every regular language is a context-free language.

For the proof, use Theorem 3.2. The details are left as homework.

Regular languages are CFL

Theorem 3.3

Every regular language is a context-free language.

For the proof, use Theorem 3.2. The details are left as homework.

(Note:) There is a context-free language that is not regular!

Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

Derivation trees as an alternative condition for CFL membership

(Def.) A *derivation tree*, or a *parse tree*, of a CFG $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ is a tree T in which:

- every vertex has a *label*, which is a symbol from $V \cup \Sigma \cup \{\varepsilon\}$;
- the label of an interior vertex is a variable from V;
- the label of a leaf vertex is either ε or a terminal from Σ;
- if an interior vertex has a label A ∈ V and it has k children n₁,..., n_k (in the order from left to right) with labels X₁,..., X_k, respectively, then A → X₁...X_k must be a rule in R.

An example

- Every vertex has a *label*, which is a symbol from V ∪ Σ ∪ {ε}.
- The label of an interior vertex is a variable from V.
- The label of a leaf vertex is either ε or a terminal from Σ .
- If an interior vertex has a label A ∈ V and it has k children n₁,..., n_k (in the order from left to right) with labels X₁,..., X_k, respectively, then A → X₁...X_k must be a rule in R.

(Example) Consider a CFG with the following rules:

T
ightarrow SS and $S
ightarrow aSb \mid arepsilon$

S, T are variables and the alphabet is $\{a, b\}$.

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_1, \ldots, n_m (in the order from left to right) with labels u_1, \ldots, u_m , we say that T is the derivation tree of \mathcal{G} from variable A on word $u_1 \cdots u_m$.

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_1, \ldots, n_m (in the order from left to right) with labels u_1, \ldots, u_m , we say that T is the *derivation tree of* \mathcal{G} from variable A on word $u_1 \cdots u_m$.

(Def.) When the label of the root is the start variable S, we simply say T is the *derivation tree of* G *on* $u_1 \cdots u_m$.

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_1, \ldots, n_m (in the order from left to right) with labels u_1, \ldots, u_m , we say that T is the *derivation tree of* \mathcal{G} from variable A on word $u_1 \cdots u_m$.

(Def.) When the label of the root is the start variable S, we simply say T is the *derivation tree of* G *on* $u_1 \cdots u_m$.

Theorem 3.5 Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^*$, the following holds.

 $A \Rightarrow^* w$ if and only if there is a derivation tree of \mathcal{G} from A on w.

In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

(Def.) If the label of the root is a variable A, and the leaf vertices of T are n_1, \ldots, n_m (in the order from left to right) with labels u_1, \ldots, u_m , we say that T is the *derivation tree of* \mathcal{G} from variable A on word $u_1 \cdots u_m$.

(Def.) When the label of the root is the start variable S, we simply say T is the *derivation tree of* G *on* $u_1 \cdots u_m$.

Theorem 3.5 Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^*$, the following holds.

 $A \Rightarrow^* w$ if and only if there is a derivation tree of \mathcal{G} from A on w.

In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

The proof is straightforward, but the idea is best illustrated by examples.

Consider a CFG with the following rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

Consider a CFG with the following rules:

T
ightarrow SS and $S
ightarrow aSb \mid arepsilon$

Consider a CFG with the following rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

Consider a CFG with the following rules:

T
ightarrow SS and $S
ightarrow aSb \mid arepsilon$

Consider a CFG with the following rules:

T
ightarrow SS and $S
ightarrow aSb \mid arepsilon$

Consider a CFG with the following rules:

T
ightarrow SS and $S
ightarrow aSb \mid arepsilon$

Consider a CFG with the following rules:

 $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$

T is the start variable and the alphabet is $\{a, b\}$.

This is a derivation tree of the CFG on ab.

Another example

The rules: $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$.

Another example

The rules: $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$.

The rules: $T \rightarrow SS$ and $S \rightarrow aSb \mid \varepsilon$.

This is a derivation tree of the CFG on $a^3b^3a^2b^2$.

Derivation trees as an alternative condition for CFL membership

From the example, it is not difficult to see that derivation trees are just an alternative condition for CFL membership.

Theorem 3.5 Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG. For every variable $A \in V$, for every word $w \in \Sigma^*$, the following holds.

 $A \Rightarrow^* w$ if and only if there is a derivation tree of \mathcal{G} from A on w.

In particular, $w \in L(\mathcal{G})$ if and only if there is a derivation tree of \mathcal{G} on w.

Table of contents

1. Context-free grammars

2. Derivation trees

3. Pumping lemma for context-free languages

Pumping lemma

Similar to regular languages, CFL also has its own pumping lemma.

Pumping lemma

Similar to regular languages, CFL also has its own pumping lemma.

Lemma 3.6 (pumping lemma) Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG. Then, there is an integer N such that every $w \in L(\mathcal{G})$ with length $\geq N$ can be partitioned into:

 $w = s \times y z t$

such that the following holds.

- $|x| + |z| \ge 1$.
- $|xyz| \leq N$.
- For every $i \ge 0$, $sx^i yz^i t \in L(\mathcal{G})$.

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG and let n = |V|.

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG and let n = |V|.

Let $m = \max_{A \to w \in R} |w|$, i.e., the maximum length of the string u over all the rule $A \to u$ in R.

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG and let n = |V|.

Let $m = \max_{A \to w \in R} |w|$, i.e., the maximum length of the string u over all the rule $A \to u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G} , every node has at most m children.

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG and let n = |V|.

Let $m = \max_{A \to w \in R} |w|$, i.e., the maximum length of the string u over all the rule $A \to u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G} , every node has at most m children.

We define $N = m^n + 1$.

Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG and let n = |V|.

Let $m = \max_{A \to w \in R} |w|$, i.e., the maximum length of the string u over all the rule $A \to u$ in R.

Intuitively, this means that in every derivation tree of \mathcal{G} , every node has at most m children.

We define $N = m^n + 1$.

Intuitively, this means that for a word of length $\ge N$, its derivation tree will have depth $\ge n + 1$.

Let $w \in L(\mathcal{G})$ and $|w| \ge N$. Recall that $N = m^n + 1$.

Let $w \in L(\mathcal{G})$ and $|w| \ge N$. Recall that $N = m^n + 1$.

Consider its derivation tree T and its depth $\ge n + 1$.

Let $w \in L(\mathcal{G})$ and $|w| \ge N$. Recall that $N = m^n + 1$.

Consider its derivation tree T and its depth $\ge n + 1$.

Let $w \in L(\mathcal{G})$ and $|w| \ge N$. Recall that $N = m^n + 1$.

Consider its derivation tree T and its depth $\ge n + 1$.

There exists a variable A that appears at least twice in the same path.

Let $w \in L(\mathcal{G})$ and $|w| \ge N$. Recall that $N = m^n + 1$.

Consider its derivation tree T and its depth $\ge n + 1$.

Pick the variable A such that in its subtree there is no variable that appears twice.

W

The three conditions hold.

- $|x| + |z| \ge 1$.
- $|xyz| \leq N$.
- For every $i \ge 0$, $sx^iyz^it \in L(\mathcal{G})$.

 \Rightarrow By "pumping" variable A.

Pumping lemma

Lemma 3.6 (pumping lemma) Let $\mathcal{G} = \langle \Sigma, V, R, S \rangle$ be a CFG. Then, there is an integer N such that every $w \in L(\mathcal{G})$ with length $\geq N$ can be partitioned into:

 $w = s \times y z t$

such that the following holds.

- $|x| + |z| \ge 1$.
- $|xyz| \leq N$.
- For every $i \ge 0$, $sx^i yz^i t \in L(\mathcal{G})$.

The length N is usually called the pumping length of \mathcal{G} .

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

 $L := \{a^n b^n c^n \mid n \ge 0\}$

An example of a non CFL language

Similar to regular language, we can use pumping lemma to show that a language is not CFL.

 $L := \{a^n b^n c^n \mid n \ge 0\}$

Claim 1

The language L is not CFL.

Proof that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not CFL

Proof that $L = \{a^n b^n c^n \mid n \ge 0\}$ is not CFL

If L is CFL, let N be its pumping length.
If L is CFL, let N be its pumping length.

Consider the following string, where n is $\ge N$.

By pumping lemma, we can partition it into *sxyzt* such that $sx^iyz^it \in L$, for every $i \ge 0$.

If L is CFL, let N be its pumping length.

Consider the following string, where n is $\ge N$.

Pumping x and z will increase the number of a and b, but not c

By pumping lemma, we can partition it into *sxyzt* such that $sx^iyz^it \in L$, for every $i \ge 0$.

If L is CFL, let N be its pumping length.

Consider the following string, where n is $\ge N$.

Pumping x and z will make some a appear after b

By pumping lemma, we can partition it into *sxyzt* such that $sx^iyz^it \in L$, for every $i \ge 0$.

If L is CFL, let N be its pumping length.

Consider the following string, where n is $\ge N$.

Pumping x and z will increase the number of b and c, but not a

By pumping lemma, we can partition it into *sxyzt* such that $sx^iyz^it \in L$, for every $i \ge 0$.

If L is CFL, let N be its pumping length.

Consider the following string, where n is $\ge N$.

Pumping x and z will increase the number of b and c, but not a

By pumping lemma, we can partition it into *sxyzt* such that $sx^iyz^it \in L$, for every $i \ge 0$.

For any other partition, pumping x and z will result in a word not in L. Thus, contradicting pumping lemma.

Consider the following languages:

$$L_1 := \{a^n b^n c^k \mid n, k \ge 0\}$$
$$L_2 := \{a^k b^n c^n \mid n, k \ge 0\}$$

Both L_1 and L_2 are CFL.

Consider the following languages:

$$L_1 := \{a^n b^n c^k \mid n, k \ge 0\}$$
$$L_2 := \{a^k b^n c^n \mid n, k \ge 0\}$$

Both L_1 and L_2 are CFL.

However, $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ which is not CFL.

Consider the following languages:

$$L_1 := \{a^n b^n c^k \mid n, k \ge 0\}$$
$$L_2 := \{a^k b^n c^n \mid n, k \ge 0\}$$

Both L_1 and L_2 are CFL.

However, $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ which is not CFL.

Note also that $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ (de Morgan's law). Thus, CFL are not closed under complement.

Consider the following languages:

$$L_1 := \{a^n b^n c^k \mid n, k \ge 0\}$$
$$L_2 := \{a^k b^n c^n \mid n, k \ge 0\}$$

Both L_1 and L_2 are CFL.

However, $L_1 \cap L_2 = \{a^n b^n c^n \mid n \ge 0\}$ which is not CFL.

Note also that $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ (de Morgan's law). Thus, CFL are not closed under complement.

Note: For a language L over alphabet Σ , $\overline{L} = \Sigma^* - L$, i.e., the complement of the language L.

End of Lesson 3