
Lesson 2. Regular expressions
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University



Table of contents

1. Regular expressions

2. The equivalence between regular expressions and NFA

1/19



Table of contents

1. Regular expressions

2. The equivalence between regular expressions and NFA

2/19



Regular expressions

(Def.) Let Σ be an alphabet.

Regular expressions (over Σ) are expressions built inductively as follows.

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Regular expression is usually abbreviated as regex.

3/19



Regular expressions

(Def.) Let Σ be an alphabet.

Regular expressions (over Σ) are expressions built inductively as follows.

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Regular expression is usually abbreviated as regex.

3/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression.

=⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression.

=⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression.

=⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression.

=⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression.

=⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression. =⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression. =⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression. =⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression. =⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Some examples of regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• ∅ is a regular expression.

• ∅ · ∅ is a regular expression. =⇒ usually written as ∅∅

• ∅a is a regular expression.

• (ab)a is a regular expression. =⇒ usually written as aba

• (ab)∗ is a regular expression.

• ((ab)∗)∗ is a regular expression.

• ab∗ is a regular expression.

• (ab)∗ ∪ ab∗ is a regular expression.

4/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



Examples that are not regular expressions

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, so are (e1 · e2) and (e1 ∪ e2).

• If e is a regular expression, so is (e)∗.

Let Σ = {a, b}.

• a ∩ b is not a regular expression, because ∩ is not allowed.

• c is not a regular expression over Σ, because c /∈ Σ.

• ∗ is not a regular expression.

• (NOT a) is not a regular expression.

5/19



The meaning of a regular expression

Each regular expression e represents/defines a language L(e).

As analogy, a C++ program:

Boolean myprog(String w)

We can view myprog as defining the language:

L(myprog) := {w | myprog outputs true on w}

So we can say that myprog is a finite representation of a (possibly infinite)

language L(myprog).

Similarly, we can say that a regular expression e is a finite representation of the

language L(e).

6/19



The meaning of a regular expression

Each regular expression e represents/defines a language L(e).

As analogy, a C++ program:

Boolean myprog(String w)

We can view myprog as defining the language:

L(myprog) := {w | myprog outputs true on w}

So we can say that myprog is a finite representation of a (possibly infinite)

language L(myprog).

Similarly, we can say that a regular expression e is a finite representation of the

language L(e).

6/19



The meaning of a regular expression

Each regular expression e represents/defines a language L(e).

As analogy, a C++ program:

Boolean myprog(String w)

We can view myprog as defining the language:

L(myprog) := {w | myprog outputs true on w}

So we can say that myprog is a finite representation of a (possibly infinite)

language L(myprog).

Similarly, we can say that a regular expression e is a finite representation of the

language L(e).

6/19



The meaning of a regular expression

Each regular expression e represents/defines a language L(e).

As analogy, a C++ program:

Boolean myprog(String w)

We can view myprog as defining the language:

L(myprog) := {w | myprog outputs true on w}

So we can say that myprog is a finite representation of a (possibly infinite)

language L(myprog).

Similarly, we can say that a regular expression e is a finite representation of the

language L(e).

6/19



The meaning of a regular expression

Each regular expression e represents/defines a language L(e).

As analogy, a C++ program:

Boolean myprog(String w)

We can view myprog as defining the language:

L(myprog) := {w | myprog outputs true on w}

So we can say that myprog is a finite representation of a (possibly infinite)

language L(myprog).

Similarly, we can say that a regular expression e is a finite representation of the

language L(e).

6/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



The formal definition of the language L(e)

(Def.) A regular expression e over Σ defines the language L(e) over the same

alphabet Σ as follows.

• If e is ∅, then L(e) = ∅.

• If e is a, where a is a symbol in Σ, then L(e) = {a}.

• If e is of the form e1e2, then L(e) = L(e1) · L(e2).

• If e is of the form e1 ∪ e2, then L(e) = L(e1) ∪ L(e2).

• If e is of the form (e1)∗, then L(e) = L(e1)∗.

7/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



Some examples

• L(∅) = ∅.

• L(a) = {a}.

• L(ab) = L(a)L(b) = {a} · {b} = {ab}.

• L((a ∪ b)∗) = (L(a ∪ b))∗ = (L(a) ∪ L(b))∗ = ({a} ∪ {b})∗ = ({a, b})∗ =

{a, b}∗.

• L(a∅) = L(a)L(∅) = {a} · ∅ = ∅.

• L(∅∗) = L(∅)∗ = ∅∗ = {ε}.

• L((a ∪ b)∗a) = (L(a ∪ b)∗ · L(a) = {a, b}∗ · {a}.
That is, the language {w | w is a word that ends with a}.

8/19



The main theorem in this lesson

Theorem 2.1

Regular expressions define precisely the class of regular languages.

More formally:

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

9/19



Table of contents

1. Regular expressions

2. The equivalence between regular expressions and NFA

10/19



The main theorem in this lesson

Theorem 2.1

Regular expressions define precisely the class of regular languages.

More formally:

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

11/19



We will first prove the first item:

Theorem (The first item of Theorem 2.1)

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

(Proof) By induction on the regex e. The base case is when e is either ∅ or a

symbol a ∈ Σ.

• When e is ∅, then L(e) = ∅.

The NFA that accepts ∅ is:

q

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.

The NFA that accepts {a} is:

p qa

12/19



We will first prove the first item:

Theorem (The first item of Theorem 2.1)

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

(Proof) By induction on the regex e. The base case is when e is either ∅ or a

symbol a ∈ Σ.

• When e is ∅, then L(e) = ∅.

The NFA that accepts ∅ is:

q

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.

The NFA that accepts {a} is:

p qa

12/19



We will first prove the first item:

Theorem (The first item of Theorem 2.1)

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

(Proof) By induction on the regex e. The base case is when e is either ∅ or a

symbol a ∈ Σ.

• When e is ∅, then L(e) = ∅.

The NFA that accepts ∅ is:

q

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.

The NFA that accepts {a} is:

p qa

12/19



We will first prove the first item:

Theorem (The first item of Theorem 2.1)

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

(Proof) By induction on the regex e. The base case is when e is either ∅ or a

symbol a ∈ Σ.

• When e is ∅, then L(e) = ∅.

The NFA that accepts ∅ is:

q

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.

The NFA that accepts {a} is:

p qa

12/19



We will first prove the first item:

Theorem (The first item of Theorem 2.1)

• For every regular expression e over Σ, L(e) is a regular language, i.e.,

there is an NFA A such that L(A) = L(e).

(Proof) By induction on the regex e. The base case is when e is either ∅ or a

symbol a ∈ Σ.

• When e is ∅, then L(e) = ∅.

The NFA that accepts ∅ is:

q

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.

The NFA that accepts {a} is:

p qa

12/19



(Proof continued)

For the induction step, suppose e is either of the form α · β, α ∪ β or α∗.

By the induction hypothesis, there are NFA A1 and A2 that accept the

languages L(α) and L(β), respectively.

Since regular languages are closed under concatenation, union and Kleene star,

(See Remark 1.4 and Theorem 1.8 in Lesson 1), there are NFAs for all the

languages L(α · β), L(α ∪ β) and L(α∗).

Recall that:

• L(α · β) = L(α) · L(β).

• L(α ∪ β) = L(α) ∪ L(β).

• L(α∗) = L(α)∗.

13/19



(Proof continued)

For the induction step, suppose e is either of the form α · β, α ∪ β or α∗.

By the induction hypothesis, there are NFA A1 and A2 that accept the

languages L(α) and L(β), respectively.

Since regular languages are closed under concatenation, union and Kleene star,

(See Remark 1.4 and Theorem 1.8 in Lesson 1), there are NFAs for all the

languages L(α · β), L(α ∪ β) and L(α∗).

Recall that:

• L(α · β) = L(α) · L(β).

• L(α ∪ β) = L(α) ∪ L(β).

• L(α∗) = L(α)∗.

13/19



(Proof continued)

For the induction step, suppose e is either of the form α · β, α ∪ β or α∗.

By the induction hypothesis, there are NFA A1 and A2 that accept the

languages L(α) and L(β), respectively.

Since regular languages are closed under concatenation, union and Kleene star,

(See Remark 1.4 and Theorem 1.8 in Lesson 1), there are NFAs for all the

languages L(α · β), L(α ∪ β) and L(α∗).

Recall that:

• L(α · β) = L(α) · L(β).

• L(α ∪ β) = L(α) ∪ L(β).

• L(α∗) = L(α)∗.

13/19



(Proof continued)

For the induction step, suppose e is either of the form α · β, α ∪ β or α∗.

By the induction hypothesis, there are NFA A1 and A2 that accept the

languages L(α) and L(β), respectively.

Since regular languages are closed under concatenation, union and Kleene star,

(See Remark 1.4 and Theorem 1.8 in Lesson 1), there are NFAs for all the

languages L(α · β), L(α ∪ β) and L(α∗).

Recall that:

• L(α · β) = L(α) · L(β).

• L(α ∪ β) = L(α) ∪ L(β).

• L(α∗) = L(α)∗.

13/19



We now prove the second item:

Theorem (The second item of Theorem 2.1)

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA, where Q = {1, . . . , n}.

For every 1 6 i , j 6 n and 0 6 k 6 n, define the language L(i , j , k):

L(i , j , k) :=

{
w ∈ Σ∗

there is a run of A on w from state i to state j

without passing any states > k + 1

}

That is, if w ∈ L(i , j , k), there is a run of A on w from state i to j without

passing through the states k + 1, . . . , n.

14/19



We now prove the second item:

Theorem (The second item of Theorem 2.1)

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA, where Q = {1, . . . , n}.

For every 1 6 i , j 6 n and 0 6 k 6 n, define the language L(i , j , k):

L(i , j , k) :=

{
w ∈ Σ∗

there is a run of A on w from state i to state j

without passing any states > k + 1

}

That is, if w ∈ L(i , j , k), there is a run of A on w from state i to j without

passing through the states k + 1, . . . , n.

14/19



We now prove the second item:

Theorem (The second item of Theorem 2.1)

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA, where Q = {1, . . . , n}.

For every 1 6 i , j 6 n and 0 6 k 6 n, define the language L(i , j , k):

L(i , j , k) :=

{
w ∈ Σ∗

there is a run of A on w from state i to state j

without passing any states > k + 1

}

That is, if w ∈ L(i , j , k), there is a run of A on w from state i to j without

passing through the states k + 1, . . . , n.

14/19



We now prove the second item:

Theorem (The second item of Theorem 2.1)

• For every NFA A, there is a regular expression e such that

L(e) = L(A).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA, where Q = {1, . . . , n}.

For every 1 6 i , j 6 n and 0 6 k 6 n, define the language L(i , j , k):

L(i , j , k) :=

{
w ∈ Σ∗

there is a run of A on w from state i to state j

without passing any states > k + 1

}

That is, if w ∈ L(i , j , k), there is a run of A on w from state i to j without

passing through the states k + 1, . . . , n.

14/19



Claim 1

For every 1 6 i , j 6 n and 0 6 k 6 n, there is a regex e such that

L(e) = L(i , j , k).

(Proof of Claim 1: By induction on k)

(Base case k = 0) For every 1 6 i , j 6 n, we consider L(i , j , 0):

• If i 6= j and there is no transition from i to j :

i j

The language L(i , j , 0) = ∅, so the regex e is ∅.

• If i 6= j and there are some transitions from i to j :

i j
...

a1

at

The language L(i , j , 0) = {a1, . . . , at}, so the regex e is a1 ∪ · · · ∪ at .

15/19



Claim 1

For every 1 6 i , j 6 n and 0 6 k 6 n, there is a regex e such that

L(e) = L(i , j , k).

(Proof of Claim 1: By induction on k)

(Base case k = 0) For every 1 6 i , j 6 n, we consider L(i , j , 0):

• If i 6= j and there is no transition from i to j :

i j

The language L(i , j , 0) = ∅, so the regex e is ∅.

• If i 6= j and there are some transitions from i to j :

i j
...

a1

at

The language L(i , j , 0) = {a1, . . . , at}, so the regex e is a1 ∪ · · · ∪ at .

15/19



Claim 1

For every 1 6 i , j 6 n and 0 6 k 6 n, there is a regex e such that

L(e) = L(i , j , k).

(Proof of Claim 1: By induction on k)

(Base case k = 0) For every 1 6 i , j 6 n, we consider L(i , j , 0):

• If i 6= j and there is no transition from i to j :

i j

The language L(i , j , 0) = ∅, so the regex e is ∅.

• If i 6= j and there are some transitions from i to j :

i j
...

a1

at

The language L(i , j , 0) = {a1, . . . , at}, so the regex e is a1 ∪ · · · ∪ at .

15/19



Claim 1

For every 1 6 i , j 6 n and 0 6 k 6 n, there is a regex e such that

L(e) = L(i , j , k).

(Proof of Claim 1: By induction on k)

(Base case k = 0) For every 1 6 i , j 6 n, we consider L(i , j , 0):

• If i 6= j and there is no transition from i to j :

i j

The language L(i , j , 0) = ∅, so the regex e is ∅.

• If i 6= j and there are some transitions from i to j :

i j
...

a1

at

The language L(i , j , 0) = {a1, . . . , at}, so the regex e is a1 ∪ · · · ∪ at .

15/19



(Base case k = 0 – continued)

• If i = j and there is no transition from i to i :

i

The language L(i , j , 0) = {ε}, so the regex e is ∅∗.

• If i = j and there are some transitions from i to j :

i

a1, . . . , at

The language L(i , j , 0) = {a1, . . . , at , ε}, so the regex e is a1 ∪ · · · ∪ at ∪∅∗.

16/19



(Base case k = 0 – continued)

• If i = j and there is no transition from i to i :

i

The language L(i , j , 0) = {ε}, so the regex e is ∅∗.

• If i = j and there are some transitions from i to j :

i

a1, . . . , at

The language L(i , j , 0) = {a1, . . . , at , ε}, so the regex e is a1 ∪ · · · ∪ at ∪∅∗.

16/19



(Base case k = 0 – continued)

• If i = j and there is no transition from i to i :

i

The language L(i , j , 0) = {ε}, so the regex e is ∅∗.

• If i = j and there are some transitions from i to j :

i

a1, . . . , at

The language L(i , j , 0) = {a1, . . . , at , ε}, so the regex e is a1 ∪ · · · ∪ at ∪∅∗.

16/19



(Induction step – proof of Claim 1)

We have the identity:

L(i , j , k + 1) = L(i , j , k) ∪
(
L(i , k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j , k)

)

By induction hypothesis, there is regex for each of L(i , j , k), L(i , k + 1, k),

L(k + 1, k + 1, k), and L(k + 1, j , k).

Thus, there is regex for L(i , j , k + 1).

17/19



(Induction step – proof of Claim 1) We have the identity:

L(i , j , k + 1) = L(i , j , k) ∪
(
L(i , k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j , k)

)

By induction hypothesis, there is regex for each of L(i , j , k), L(i , k + 1, k),

L(k + 1, k + 1, k), and L(k + 1, j , k).

Thus, there is regex for L(i , j , k + 1).

17/19



(Induction step – proof of Claim 1) We have the identity:

L(i , j , k + 1) = L(i , j , k) ∪
(
L(i , k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j , k)

)

By induction hypothesis, there is regex for each of L(i , j , k), L(i , k + 1, k),

L(k + 1, k + 1, k), and L(k + 1, j , k).

Thus, there is regex for L(i , j , k + 1).

17/19



(Induction step – proof of Claim 1) We have the identity:

L(i , j , k + 1) = L(i , j , k) ∪
(
L(i , k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j , k)

)

By induction hypothesis, there is regex for each of L(i , j , k), L(i , k + 1, k),

L(k + 1, k + 1, k), and L(k + 1, j , k).

Thus, there is regex for L(i , j , k + 1).

17/19



(Induction step – proof of Claim 1) We have the identity:

L(i , j , k + 1) = L(i , j , k) ∪
(
L(i , k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j , k)

)

By induction hypothesis, there is regex for each of L(i , j , k), L(i , k + 1, k),

L(k + 1, k + 1, k), and L(k + 1, j , k).

Thus, there is regex for L(i , j , k + 1).

17/19



(Finishing the proof of Claim 1)

The language L(A) can be defined as:

L(A) =
⋃
qf ∈F

L(q0, qf , n)

By Claim 1, there is a regex that defines each L(q0, qf , n).

Taking the union over all qf ∈ F , we have a regex for L(A).

18/19



(Finishing the proof of Claim 1)

The language L(A) can be defined as:

L(A) =
⋃
qf ∈F

L(q0, qf , n)

By Claim 1, there is a regex that defines each L(q0, qf , n).

Taking the union over all qf ∈ F , we have a regex for L(A).

18/19



(Finishing the proof of Claim 1)

The language L(A) can be defined as:

L(A) =
⋃
qf ∈F

L(q0, qf , n)

By Claim 1, there is a regex that defines each L(q0, qf , n).

Taking the union over all qf ∈ F , we have a regex for L(A).

18/19



To conclude:

Corollary 2.2

Let L be a language. The following are equivalent.

• L is accepted by a DFA.

• L is accepted by an NFA.

• L is defined by a regular expression.

One nice implication of this corollary is that languages defined by regular

expression are also closed under intersection and complement.

This is despite the fact that we are not allowed to use intersection or negation

in regular expressions.

19/19



To conclude:

Corollary 2.2

Let L be a language. The following are equivalent.

• L is accepted by a DFA.

• L is accepted by an NFA.

• L is defined by a regular expression.

One nice implication of this corollary is that languages defined by regular

expression are also closed under intersection and complement.

This is despite the fact that we are not allowed to use intersection or negation

in regular expressions.

19/19



To conclude:

Corollary 2.2

Let L be a language. The following are equivalent.

• L is accepted by a DFA.

• L is accepted by an NFA.

• L is defined by a regular expression.

One nice implication of this corollary is that languages defined by regular

expression are also closed under intersection and complement.

This is despite the fact that we are not allowed to use intersection or negation

in regular expressions.

19/19



End of Lesson 2


	1. Regular expressions
	2. The equivalence between regular expressions and NFA

