
Lesson 1. Finite state automata
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

1. Deterministic finite state automata

2. Non-deterministic finite state automata

3. Pumping lemma

1/45

Table of contents

1. Deterministic finite state automata

2. Non-deterministic finite state automata

3. Pumping lemma

2/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Deterministic finite state automata (DFA)

(Def.) A deterministic finite state automaton (DFA) is a system

A = 〈Σ,Q, q0,F , δ〉, where each component is as follows.

• Σ is an alphabet.

• Q is a finite (non-empty) set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is a set of accepting states.

• δ : Q × Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the

alphabet of A is Σ.”

3/45

Example 1

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q} is the set of accepting states.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is a valid DFA.

4/45

Example 1

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q} is the set of accepting states.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is a valid DFA.

4/45

Example 2

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is also a valid DFA.

5/45

Example 2

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is also a valid DFA.

5/45

Example 3

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition function δ is defined as:

δ(p, a) = p

δ(q, a) = p

δ(r , a) = q

This is also a valid DFA.

6/45

Example 3

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition function δ is defined as:

δ(p, a) = p

δ(q, a) = p

δ(r , a) = q

This is also a valid DFA.

6/45

Example 4

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = ∅, i.e., the alphabet does not contain any symbol.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}, i.e., it does not have any accepting state.

• The transition function δ is not defined since Σ = ∅.

This is not a valid DFA, since the alphabet Σ must contain at least one symbol.

7/45

Example 4

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = ∅, i.e., the alphabet does not contain any symbol.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}, i.e., it does not have any accepting state.

• The transition function δ is not defined since Σ = ∅.

This is not a valid DFA, since the alphabet Σ must contain at least one symbol.

7/45

Example 5

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is not a valid DFA, since the transition function δ is defined on

Q × {a, b}, but the alphabet should be {0, 1}.

8/45

Example 5

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is not a valid DFA, since the transition function δ is defined on

Q × {a, b}, but the alphabet should be {0, 1}.

8/45

Example 6

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q

This is not a valid DFA, since δ is not defined on (r , 1).

9/45

Example 6

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q

This is not a valid DFA, since δ is not defined on (r , 1).

9/45

Example 7

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• There is no initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q δ(r , 1) = q

This is not a valid DFA, because DFA must have the initial state.

10/45

Example 7

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• There is no initial state.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q δ(r , 1) = q

This is not a valid DFA, because DFA must have the initial state.

10/45

Example 8

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• p and r are the initial states.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q δ(r , 1) = q

This is not a valid DFA, because DFA must have exactly one initial state.

11/45

Example 8

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {0, 1}.

• Q = {q, p, r} is the set of states.

• p and r are the initial states.

• F = {p, q}.

• The transition function δ is defined as:

δ(p, 0) = p δ(p, 1) = r

δ(q, 0) = p δ(q, 1) = p

δ(r , 0) = q δ(r , 1) = q

This is not a valid DFA, because DFA must have exactly one initial state.

11/45

Visualizing DFA

Consider the following DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where

Q = {q, p, r}, r is the initial state, F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

We can visualize it as a directed graph:

The initial state has incoming arrow

p q

r

The accepting state has double circle

a

b

a

b

a

b

12/45

Visualizing DFA

Consider the following DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where

Q = {q, p, r}, r is the initial state, F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

We can visualize it as a directed graph:

The initial state has incoming arrow

p q

r

The accepting state has double circle

a

b

a

b

a

b

12/45

Visualizing DFA

Consider the following DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where

Q = {q, p, r}, r is the initial state, F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

We can visualize it as a directed graph:

The initial state has incoming arrow

p q

r

The accepting state has double circle

a

b

a

b

a

b

12/45

Visualizing DFA

Consider the following DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where

Q = {q, p, r}, r is the initial state, F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

We can visualize it as a directed graph:

The initial state has incoming arrow

p q

r

The accepting state has double circle

a

b

a

b

a

b

12/45

Visualizing DFA

Consider the following DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where

Q = {q, p, r}, r is the initial state, F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

We can visualize it as a directed graph:

The initial state has incoming arrow

p q

r

The accepting state has double circle

a

b

a

b

a

b

12/45

Important note!

In your solution for homework and exams, don’t write DFA like this:

A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r is the initial state,

F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

But draw the graph representation of DFA like this:

p q

r

a

b

a

b

a

b

13/45

Important note!

In your solution for homework and exams, don’t write DFA like this:

A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r is the initial state,

F = {p} and δ is defined as:

δ(p, a) = p δ(p, b) = r δ(q, a) = p δ(q, b) = p δ(r , a) = q δ(r , b) = r

But draw the graph representation of DFA like this:

p q

r

a

b

a

b

a

b

13/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

What does DFA do?

A DFA can be viewed as a special kind of computer program/algorithm.

Its input is always a finite string over its alphabet.

It moves from state to state depending on the input symbol that it reads.

It starts from the initial state.

A DFA either accepts/rejects its input.

We can view “accept” as returning True and “reject” as returning False.

14/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba:

r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

br

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r

a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q

b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p

a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

p

p

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p

(accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

p

p

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab:

r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r

a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q

a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p

b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

r

rr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r

(not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

r

r

r

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rrr

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε:

r (not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rr

r

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r

(not accepted by DFA)

15/45

Example

p q

r

a

b

a

b

a

b

r

a

q

b

p

a

pp

r

a

q

a

p

b

rr

r

On input string aba: r a q b p a p (accepted by DFA)

On input string aab: r a q a p b r (not accepted by DFA)

On input string ε: r (not accepted by DFA)

15/45

The formal definition of acceptance/rejection of words by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) On input word w = a1 · · · an, the run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and δ(pi , ai+1) = pi+1, for each i = 0, . . . , n − 1.

(Def.) The run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

16/45

The formal definition of acceptance/rejection of words by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) On input word w = a1 · · · an, the run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and δ(pi , ai+1) = pi+1, for each i = 0, . . . , n − 1.

(Def.) The run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

16/45

The formal definition of acceptance/rejection of words by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) On input word w = a1 · · · an, the run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and δ(pi , ai+1) = pi+1, for each i = 0, . . . , n − 1.

(Def.) The run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

16/45

The language accepted by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called a regular language, if there is a DFA A such that

L(A) = L.

17/45

The language accepted by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called a regular language, if there is a DFA A such that

L(A) = L.

17/45

The language accepted by DFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called a regular language, if there is a DFA A such that

L(A) = L.

17/45

Some observations on DFA

(Rem. 1.2) Let A = 〈Σ,Q, q0,F , δ〉 be a DFA.

• For every word w , there is exactly one run of A on w .

• The empty string ε is accepted by A if and only if q0 ∈ F .

18/45

Some observations on DFA

(Rem. 1.2) Let A = 〈Σ,Q, q0,F , δ〉 be a DFA.

• For every word w , there is exactly one run of A on w .

• The empty string ε is accepted by A if and only if q0 ∈ F .

18/45

Some observations on DFA

(Rem. 1.2) Let A = 〈Σ,Q, q0,F , δ〉 be a DFA.

• For every word w , there is exactly one run of A on w .

• The empty string ε is accepted by A if and only if q0 ∈ F .

18/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Another example: The language of the binary representations of 0 mod 3

A word w ∈ {0, 1}∗ can be viewed as a non-negative integer, denoted by JwK.

• J0K = J000K = 0.

• J1K = J01K = J00001K = 1.

• J11001K = J0000011001K = 25.

• We define JεK = 0.

Define the following language L0:

L0 := {w | JwK ≡ 0 (mod 3)}

We will show that L0 is a regular language.

19/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

For a word w ∈ {0, 1}∗ and a symbol z ∈ {0, 1}, we have the following identity:

JwzK = JwK× 2 + z

JwzK ≡ JwK× 2 + z (mod 3)

0 ≡ 0 × 2 + 0 (mod 3)

1 ≡ 0 × 2 + 1 (mod 3)

2 ≡ 1 × 2 + 0 (mod 3)

0 ≡ 1 × 2 + 1 (mod 3)

1 ≡ 2 × 2 + 0 (mod 3)

2 ≡ 2 × 2 + 1 (mod 3)

A: 0 1 2

0

1 0

1

1

0

20/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

A: 0 1 2

0

1 0

1

1

0

For every word w ∈ {0, 1}∗:

A accepts w if and only if JwK ≡ 0 (mod 3).

So L(A) = L0.

21/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

A: 0 1 2

0

1 0

1

1

0

For every word w ∈ {0, 1}∗:

A accepts w if and only if JwK ≡ 0 (mod 3).

So L(A) = L0.

21/45

Constructing a DFA for L0 := {w | JwK ≡ 0 (mod 3)}

A: 0 1 2

0

1 0

1

1

0

For every word w ∈ {0, 1}∗:

A accepts w if and only if JwK ≡ 0 (mod 3).

So L(A) = L0.

21/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Important property of regular languages

Theorem 1.3

Regular languages are closed under boolean operations, i.e., complement,

intersection and union.

More formally, Theorem 1.3 can be stated as follows.

Closure under complement: For every DFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Closure under intersection: For every two DFA A1 and A2, there is a DFA A′

such that L(A′) = L(A1) ∩ L(A2).

Closure under union: For every two DFA A1 and A2, there is a DFA A′ such

that L(A′) = L(A1) ∪ L(A2).

See Note 1 for the formal proof of Theorem 1.3.

22/45

Table of contents

1. Deterministic finite state automata

2. Non-deterministic finite state automata

3. Pumping lemma

23/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Non-deterministic finite state automata (NFA)

(Def.) A non-deterministic finite state automaton (NFA) is a system

A = 〈Σ,Q, q0,F , δ〉 where:

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q × Σ× Q is the transition relation.

Note: In DFA, δ is a function δ : Q × Σ→ Q.

In NFA, δ is any subset of Q × Σ× Q.

24/45

Example 1

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

25/45

Example 1

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

25/45

Example 1

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

25/45

Example 2

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r), (p, a, p)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

26/45

Example 2

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r), (p, a, p)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

26/45

Example 2

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is {(p, a, q), (r , a, r), (p, a, p)}.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

26/45

Example 3

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is ∅.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

27/45

Example 3

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is ∅.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

27/45

Example 3

Consider the following A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = ∅, i.e., it does not have any accepting state.

• The transition relation δ is ∅.

This is a valid NFA.

The transition relation δ ⊆ Q × Σ× Q.

27/45

Example 4

Consider A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q} is the set of accepting states.

• The transition relation δ is a function defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is also a valid NFA.

A DFA is a special case of NFA, because function is a special case of relation.

(See Note 0.)

28/45

Example 4

Consider A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q} is the set of accepting states.

• The transition relation δ is a function defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is also a valid NFA.

A DFA is a special case of NFA, because function is a special case of relation.

(See Note 0.)

28/45

Example 4

Consider A = 〈Σ,Q, q0,F , δ〉:

• Σ = {a, b}

• Q = {q, p, r} is the set of states.

• r is the initial state.

• F = {p, q} is the set of accepting states.

• The transition relation δ is a function defined as:

δ(p, a) = p δ(p, b) = r

δ(q, a) = p δ(q, b) = p

δ(r , a) = q δ(r , b) = r

This is also a valid NFA.

A DFA is a special case of NFA, because function is a special case of relation.

(See Note 0.)

28/45

Visualizing NFA

Consider an DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r
is the initial state, F = {p} and δ is as follows.

δ = {(p, a, p), (p, a, q), (p, b, q), (q, b, r), (r , a, q), (r , b, r)}

We can visualize it as a directed graph:

p q

r

a

a

b

b
a

b

29/45

Visualizing NFA

Consider an DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r
is the initial state, F = {p} and δ is as follows.

δ = {(p, a, p), (p, a, q), (p, b, q), (q, b, r), (r , a, q), (r , b, r)}

We can visualize it as a directed graph:

p q

r

a

a

b

b
a

b

29/45

Visualizing NFA

Consider an DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r
is the initial state, F = {p} and δ is as follows.

δ = {(p, a, p), (p, a, q), (p, b, q), (q, b, r), (r , a, q), (r , b, r)}

We can visualize it as a directed graph:

p q

r

a

a

b

b
a

b

29/45

Visualizing NFA

Consider an DFA A = 〈Σ,Q, q0,F , δ〉 over Σ = {a, b}, where Q = {q, p, r}, r
is the initial state, F = {p} and δ is as follows.

δ = {(p, a, p), (p, a, q), (p, b, q), (q, b, r), (r , a, q), (r , b, r)}

We can visualize it as a directed graph:

p q

r

a

a

b

b
a

b

29/45

Acceptance/rejection of words by NFA

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

(Def.) On input word w = a1 · · · an, a run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and (pi , ai+1, pi+1) ∈ δ, for each i = 0, . . . , n − 1.

(Def.) A run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

30/45

Acceptance/rejection of words by NFA

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

(Def.) On input word w = a1 · · · an, a run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and (pi , ai+1, pi+1) ∈ δ, for each i = 0, . . . , n − 1.

(Def.) A run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

30/45

Acceptance/rejection of words by NFA

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

(Def.) On input word w = a1 · · · an, a run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and (pi , ai+1, pi+1) ∈ δ, for each i = 0, . . . , n − 1.

(Def.) A run of A on w starting from state q is defined as the sequence

above, but with condition p0 = q.

(Def.) A run is called an accepting run, if p0 = q0 and qn ∈ F .

30/45

The language accepted by NFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called an NFA language, if there is a NFA A such that

L(A) = L.

31/45

The language accepted by NFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called an NFA language, if there is a NFA A such that

L(A) = L.

31/45

The language accepted by NFA

Let A = 〈Σ,Q, q0,F , δ〉.

(Def.) We say that A accepts w , if there is an accepting run of A on w .

(Def.) The language of all words accepted by A is denoted by L(A).

(Def.) A language L is called an NFA language, if there is a NFA A such that

L(A) = L.

31/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On input string 10110, there are many possible runs:

• p 1 p 0 p 1 p 1 p 0 p. (not an accepting run).

• p 1 p 0 p 1 p 1 q. (stuck in q, not an accepting run).

• p 1 p 0 p 1 q 1 r 0 r . (an accepting run).

• . . . (there are many other runs)

There is an accepting run so A accepts 10110.

32/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110

(accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Example 5

p q r

0, 1

1 1

0, 1

On Input word: 10110 (accepted)

p

p q

1 1

p

0

p q

1 1

p q r

1 1 1

p rr

0 0

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

33/45

Closure under union and intersection

(Remark 1.4) NFA languages are closed under intersection and union.

More formally, it can be stated as follows.

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∩ L(A2).

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∪ L(A2).

The proof is the same as the one for DFA.

34/45

Closure under union and intersection

(Remark 1.4) NFA languages are closed under intersection and union.

More formally, it can be stated as follows.

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∩ L(A2).

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∪ L(A2).

The proof is the same as the one for DFA.

34/45

Closure under union and intersection

(Remark 1.4) NFA languages are closed under intersection and union.

More formally, it can be stated as follows.

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∩ L(A2).

• For every two NFA A1 and A2, there is an NFA A′ such that

L(A′) = L(A1) ∪ L(A2).

The proof is the same as the one for DFA.

34/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

NFA can be converted to DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

(Proof) Let A = 〈Σ,Q, q0,F , δ〉 be an NFA.

Consider the following DFA A′ = 〈Σ,Q ′, q′0,F ′, δ′〉.

• Q ′ = 2Q , i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state is {q0}.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.

• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S , a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

It can be shown that L(A′) = L(A). See Note 1 for more details.

35/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0

1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

The intuitive idea

p q r

0, 1

1 1

0, 1

On input 10110:

p

p, q

1

p

0

p, q

1

p, q, r

1

p, r

0

On input w , the set of states it can get to

is a subset of {p, q, r}

The DFA is:

p p, q p, q, r p, r

∅ q r q, r

0

1

0

1

0

1

0

1

0, 1

0 1

0, 1

0

1

36/45

NFA and DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

From this theorem, we can say that a language is regular if and only if it is

accepted by an NFA.

Corollary 1.6

NFA languages are closed under complement.

More precisely, we can say that for every NFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

37/45

NFA and DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

From this theorem, we can say that a language is regular if and only if it is

accepted by an NFA.

Corollary 1.6

NFA languages are closed under complement.

More precisely, we can say that for every NFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

37/45

NFA and DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

From this theorem, we can say that a language is regular if and only if it is

accepted by an NFA.

Corollary 1.6

NFA languages are closed under complement.

More precisely, we can say that for every NFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

37/45

NFA and DFA

Theorem 1.5

For every NFA A, there is a DFA A′ such that L(A) = L(A′).

From this theorem, we can say that a language is regular if and only if it is

accepted by an NFA.

Corollary 1.6

NFA languages are closed under complement.

More precisely, we can say that for every NFA A over alphabet Σ, there is a

DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

37/45

Concatenation and Kleene star

(Def.) For two words u and v , u · v denotes the word obtained by

concatenating v at the end of u.

(u · v reads: u concatenates with v .)

For languages L1, L2 and L:

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)

Ln := {u1 · · · un | each ui ∈ L}

L∗ :=
⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 · L2.

L1L2 reads as L1 concatenates with L2.

By default, for any set X ⊆ Σ∗, X 0 = {ε}.

Thus, ∅∗ = {ε}.

38/45

Concatenation and Kleene star

(Def.) For two words u and v , u · v denotes the word obtained by

concatenating v at the end of u.

(u · v reads: u concatenates with v .)

For languages L1, L2 and L:

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)

Ln := {u1 · · · un | each ui ∈ L}

L∗ :=
⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 · L2.

L1L2 reads as L1 concatenates with L2.

By default, for any set X ⊆ Σ∗, X 0 = {ε}.

Thus, ∅∗ = {ε}.

38/45

Concatenation and Kleene star

(Def.) For two words u and v , u · v denotes the word obtained by

concatenating v at the end of u.

(u · v reads: u concatenates with v .)

For languages L1, L2 and L:

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)

Ln := {u1 · · · un | each ui ∈ L}

L∗ :=
⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 · L2.

L1L2 reads as L1 concatenates with L2.

By default, for any set X ⊆ Σ∗, X 0 = {ε}.

Thus, ∅∗ = {ε}.

38/45

Concatenation and Kleene star

(Def.) For two words u and v , u · v denotes the word obtained by

concatenating v at the end of u.

(u · v reads: u concatenates with v .)

For languages L1, L2 and L:

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)

Ln := {u1 · · · un | each ui ∈ L}

L∗ :=
⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 · L2.

L1L2 reads as L1 concatenates with L2.

By default, for any set X ⊆ Σ∗, X 0 = {ε}.

Thus, ∅∗ = {ε}.

38/45

Concatenation and Kleene star

(Def.) For two words u and v , u · v denotes the word obtained by

concatenating v at the end of u.

(u · v reads: u concatenates with v .)

For languages L1, L2 and L:

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)

Ln := {u1 · · · un | each ui ∈ L}

L∗ :=
⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 · L2.

L1L2 reads as L1 concatenates with L2.

By default, for any set X ⊆ Σ∗, X 0 = {ε}.

Thus, ∅∗ = {ε}.
38/45

Closure under concatenation and Kleene star

Theorem 1.8

Regular languages (NFA languages) are closed under concatenation and

Kleene star.

More formally, it can be stated as follows.

• If L1 and L2 are regular languages, so is L1L2.

• If L is a regular language, so is L∗.

The proof can be found in Note 1.

39/45

Closure under concatenation and Kleene star

Theorem 1.8

Regular languages (NFA languages) are closed under concatenation and

Kleene star.

More formally, it can be stated as follows.

• If L1 and L2 are regular languages, so is L1L2.

• If L is a regular language, so is L∗.

The proof can be found in Note 1.

39/45

Closure under concatenation and Kleene star

Theorem 1.8

Regular languages (NFA languages) are closed under concatenation and

Kleene star.

More formally, it can be stated as follows.

• If L1 and L2 are regular languages, so is L1L2.

• If L is a regular language, so is L∗.

The proof can be found in Note 1.

39/45

Table of contents

1. Deterministic finite state automata

2. Non-deterministic finite state automata

3. Pumping lemma

40/45

Pumping lemma – A tool for showing non-regularity of a language

(Def.) For a word w and an integer n > 0, wn is a word where w is repeated n

number of times, i.e.,

w · · ·w︸ ︷︷ ︸
n times

By default, we define w 0 = ε.

Lemma 1.9 (pumping lemma)

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA. Let x ∈ L(A) be a word such that

|x | > |Q|. Then, the word x can be divided into three parts u, v ,w , i.e.,

x = uvw , such that |v | > 1 and for every integer k > 0, uv kw ∈ L(A).

41/45

Pumping lemma – A tool for showing non-regularity of a language

(Def.) For a word w and an integer n > 0, wn is a word where w is repeated n

number of times, i.e.,

w · · ·w︸ ︷︷ ︸
n times

By default, we define w 0 = ε.

Lemma 1.9 (pumping lemma)

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA. Let x ∈ L(A) be a word such that

|x | > |Q|. Then, the word x can be divided into three parts u, v ,w , i.e.,

x = uvw , such that |v | > 1 and for every integer k > 0, uv kw ∈ L(A).

41/45

Proof of pumping lemma

Let x = a1 · · · an and x ∈ L(A), where n > |Q|.

Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .

Let u = a1 · · · ai , v = ai+1 · · · aj and w = aj+1 · · · an.

Then, for every integer k > 0, the following is an accepting run of A on uv kw :

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

42/45

Proof of pumping lemma

Let x = a1 · · · an and x ∈ L(A), where n > |Q|.

Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .

Let u = a1 · · · ai , v = ai+1 · · · aj and w = aj+1 · · · an.

Then, for every integer k > 0, the following is an accepting run of A on uv kw :

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

42/45

Proof of pumping lemma

Let x = a1 · · · an and x ∈ L(A), where n > |Q|.

Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .

Let u = a1 · · · ai , v = ai+1 · · · aj and w = aj+1 · · · an.

Then, for every integer k > 0, the following is an accepting run of A on uv kw :

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

42/45

Proof of pumping lemma

Let x = a1 · · · an and x ∈ L(A), where n > |Q|.

Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .

Let u = a1 · · · ai , v = ai+1 · · · aj and w = aj+1 · · · an.

Then, for every integer k > 0, the following is an accepting run of A on uv kw :

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

42/45

Proof of pumping lemma

Let x = a1 · · · an and x ∈ L(A), where n > |Q|.

Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .

Let u = a1 · · · ai , v = ai+1 · · · aj and w = aj+1 · · · an.

Then, for every integer k > 0, the following is an accepting run of A on uv kw :

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

42/45

Variations of pumping lemma

Lemma 1.11 (more refined pumping lemma)

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA. Let x ∈ L(A) be a word and x = szt,

where |z | > |Q|. Then, the word z can be divided into three parts u, v ,w

such that |v | > 1 and for every positive integer k > 0, suv kwt ∈ L(A).

Pumping lemma can also be stated more elegantly as follows.

Lemma 1.10 (pumping lemma)

For every regular language L, there is an integer n > 1 such that for every

word x ∈ L with length |x | > n, there are u, v ,w where x = uvw and

|v | > 1 and for every integer k > 0, uv kw ∈ L.

43/45

Variations of pumping lemma

Lemma 1.11 (more refined pumping lemma)

Let A = 〈Σ,Q, q0,F , δ〉 be an NFA. Let x ∈ L(A) be a word and x = szt,

where |z | > |Q|. Then, the word z can be divided into three parts u, v ,w

such that |v | > 1 and for every positive integer k > 0, suv kwt ∈ L(A).

Pumping lemma can also be stated more elegantly as follows.

Lemma 1.10 (pumping lemma)

For every regular language L, there is an integer n > 1 such that for every

word x ∈ L with length |x | > n, there are u, v ,w where x = uvw and

|v | > 1 and for every integer k > 0, uv kw ∈ L.

43/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L1 = {akbk | k > 0} is not regular.

In other words, there is no NFA that accepts L1.

Suppose there is an NFA A that accepts L1 where Q is the set of states.

Consider the following word: akbk where k > |Q|.

By (more refined) pumping lemma, we can divide ak into three parts u, v ,w

such that:

u v ` w︸ ︷︷ ︸
all are a’s here

bk ∈ L(A) for every ` > 0

This means that the number of a’s becomes different from the number of b’s,

which contradicts the assumption that A accepts L1.

Therefore, there is no NFA that accepts L1 and L1 is not regular.

44/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

Using pumping lemma to prove non-regularity

We would like to show that L2 = {w | |w | is a prime number} is not regular,

i.e., there is no NFA that accepts L2.

Suppose there is an NFA A that accepts L2 where Q is the set of states.

Consider the following word: ak where k > |Q|.

By pumping lemma, we can divide ak into three parts u, v ,w such that:

u v ` w ∈ L(A) for every ` > 0

The length |u v ` w | = |u|+ `|v |+ |w |.

If we put ` = |u|+ |w |, we have:

|u v ` w | = (|u|+ |w |)(|v |+ 1) which is not prime

So this contradicts the assumption that A accepts L2.

Therefore, there is no NFA that accepts L1, i.e., L1 is not regular.

45/45

End of Lesson 1

	1. Deterministic finite state automata
	2. Non-deterministic finite state automata
	3. Pumping lemma

