
Lesson 0. Preliminary
CSIE 3110 – Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

1/35

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

2/35

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

The most important information!

Official course website:

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

• All information about this course can be found in the website.

• Lecture notes, slides and homework will be posted there.

• Information about the midterm and final exams will be posted there.

• Videos of lectures will be posted in NTU COOL.

Pay special attention to the “Announcement” part:

3/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

Staff

Instructor:

• Tony Tan (陳偉松)

tonytan@csie.ntu.edu.tw

TA:

• Lu Chia-Hsuan (呂佳軒)

r09922064@csie.ntu.edu.tw

• Lu Yu-Cheng (呂侑承)

r109220304@csie.ntu.edu.tw

• Mailing list: automata@csie.ntu.edu.tw.

4/35

Syllabus and schedule (can be found in the course website)

5/35

How this course will be conducted

• The note for a lesson in a particular week will be posted in the course

website a week before.

For example, for lesson 1 it will be posted 1 week before 4 October.

• Weekly online discussion on Monday, starting at 10:30 am.

For now, we use Google meet.

Check the announcement “Our Google meet link” in NTU COOL for the

link.

• Depending on the situation, we may be able to conduct the lesson in the

physical class, but nothing is certain yet.

It all depends on the future instruction from the university.

6/35

How this course will be conducted

• The note for a lesson in a particular week will be posted in the course

website a week before.

For example, for lesson 1 it will be posted 1 week before 4 October.

• Weekly online discussion on Monday, starting at 10:30 am.

For now, we use Google meet.

Check the announcement “Our Google meet link” in NTU COOL for the

link.

• Depending on the situation, we may be able to conduct the lesson in the

physical class, but nothing is certain yet.

It all depends on the future instruction from the university.

6/35

How this course will be conducted

• The note for a lesson in a particular week will be posted in the course

website a week before.

For example, for lesson 1 it will be posted 1 week before 4 October.

• Weekly online discussion on Monday, starting at 10:30 am.

For now, we use Google meet.

Check the announcement “Our Google meet link” in NTU COOL for the

link.

• Depending on the situation, we may be able to conduct the lesson in the

physical class, but nothing is certain yet.

It all depends on the future instruction from the university.

6/35

About the weekly discussion

• The purpose of the online discussion is for you to ask questions.

• You can ask any questions, and I will try my best to answer.

• Depending on the questions, I will even explain materials already covered

in the video.

I will not repeat the whole lecture during the discussion.

• Since this course is supposed to be in English, the discussion is also in

English.

7/35

About the weekly discussion

• The purpose of the online discussion is for you to ask questions.

• You can ask any questions, and I will try my best to answer.

• Depending on the questions, I will even explain materials already covered

in the video.

I will not repeat the whole lecture during the discussion.

• Since this course is supposed to be in English, the discussion is also in

English.

7/35

About the weekly discussion

• The purpose of the online discussion is for you to ask questions.

• You can ask any questions, and I will try my best to answer.

• Depending on the questions, I will even explain materials already covered

in the video.

I will not repeat the whole lecture during the discussion.

• Since this course is supposed to be in English, the discussion is also in

English.

7/35

About the weekly discussion

• The purpose of the online discussion is for you to ask questions.

• You can ask any questions, and I will try my best to answer.

• Depending on the questions, I will even explain materials already covered

in the video.

I will not repeat the whole lecture during the discussion.

• Since this course is supposed to be in English, the discussion is also in

English.

7/35

About the weekly discussion

• The purpose of the online discussion is for you to ask questions.

• You can ask any questions, and I will try my best to answer.

• Depending on the questions, I will even explain materials already covered

in the video.

I will not repeat the whole lecture during the discussion.

• Since this course is supposed to be in English, the discussion is also in

English.

7/35

Some details about videos

Usually each lesson will be divided into a few videos.

For example, for lesson 1:

There will be three videos, one video for each of the following topics.

• Deterministic finite state automata.

• Non-deterministic finite state automata.

• Pumping lemma.

8/35

Some details about videos

Usually each lesson will be divided into a few videos.

For example, for lesson 1:

There will be three videos, one video for each of the following topics.

• Deterministic finite state automata.

• Non-deterministic finite state automata.

• Pumping lemma.

8/35

Some details about videos

Usually each lesson will be divided into a few videos.

For example, for lesson 1:

There will be three videos, one video for each of the following topics.

• Deterministic finite state automata.

• Non-deterministic finite state automata.

• Pumping lemma.

8/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Textbook, homework and exams

• Textbook: Introduction to the Theory of Computation by M. Sipser.

But we will not follow the book strictly.

• There will be two homework.

Each weighs 20%.

• There will be one midterm exam and one final exam.

Each weighs 30%.

• The instruction on how to submit your homework will be provided in due

time.

• We are still deciding how to conduct the exams.

9/35

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

10/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Definitions, theorems, proofs1

Definitions describe the objects and notions that we use.

Precision is essential to any mathematical definition.

When defining some object, we must make clear what constitutes that object

and what does not.

A theorem is a mathematical statement proved true.

Generally we reserve the use of that word for statements of special interest.

A lemma is a statement that we prove to assist in the proof of a theorem or

another lemma.

A corollary (of a theorem) is a statement that follows easily from a theorem or

its proof.

1Adopted from Chapter 0 in Sipser’s textbook

11/35

Mathematical proofs

A mathematical proof (or, in short proof) is a “convincing” logical argument

that a statement is true.

Formally we can view a proof as a (finite) sequence of statements:

statement1

statement2

...

statementn

such that each statement si is either an assumption or it can be trivially

deduced from earlier statements s1, . . . , si−1.

statementn is the theorem/lemma that we want to prove.

12/35

Mathematical proofs

A mathematical proof (or, in short proof) is a “convincing” logical argument

that a statement is true.

Formally we can view a proof as a (finite) sequence of statements:

statement1

statement2

...

statementn

such that each statement si is either an assumption or it can be trivially

deduced from earlier statements s1, . . . , si−1.

statementn is the theorem/lemma that we want to prove.

12/35

Mathematical proofs

A mathematical proof (or, in short proof) is a “convincing” logical argument

that a statement is true.

Formally we can view a proof as a (finite) sequence of statements:

statement1

statement2

...

statementn

such that each statement si is either an assumption or it can be trivially

deduced from earlier statements s1, . . . , si−1.

statementn is the theorem/lemma that we want to prove.

12/35

Mathematical proofs

A mathematical proof (or, in short proof) is a “convincing” logical argument

that a statement is true.

Formally we can view a proof as a (finite) sequence of statements:

statement1

statement2

...

statementn

such that each statement si is either an assumption or it can be trivially

deduced from earlier statements s1, . . . , si−1.

statementn is the theorem/lemma that we want to prove.

12/35

Some examples of simple deductions

Example 1:

If it is raining, John stays at home.

John is not at home today.

∴ It is not raining today.

Example 2:

If it is sunny, John goes to the beach.

When John is at the beach, he swims in the sea.

It is sunny today.

∴ Today John swims in the sea.

See Appendix B for some other examples of deductions.

13/35

Some examples of simple deductions

Example 1:

If it is raining, John stays at home.

John is not at home today.

∴ It is not raining today.

Example 2:

If it is sunny, John goes to the beach.

When John is at the beach, he swims in the sea.

It is sunny today.

∴ Today John swims in the sea.

See Appendix B for some other examples of deductions.

13/35

Some examples of simple deductions

Example 1:

If it is raining, John stays at home.

John is not at home today.

∴ It is not raining today.

Example 2:

If it is sunny, John goes to the beach.

When John is at the beach, he swims in the sea.

It is sunny today.

∴ Today John swims in the sea.

See Appendix B for some other examples of deductions.

13/35

Types of proofs

Types of proofs that normally occur in this course.2

• Proofs by construction.

• Proofs by contradiction.

• Proofs by induction.

2For more details and examples, see Chapter 0 in Sipser’s textbook.

14/35

Types of proofs

Types of proofs that normally occur in this course.2

• Proofs by construction.

• Proofs by contradiction.

• Proofs by induction.

2For more details and examples, see Chapter 0 in Sipser’s textbook.

14/35

Tips to write proofs3

Be patient. If you don’t see how to do it right away, don’t worry. Researchers

sometimes work for weeks or even years to find a single proof.

Genius is the patience of thoughts, concentrated in a certain direction.

— Isaac Newton

Come back to it. Look over the statement you want to prove, think about it a

bit, leave it, and then return a few minutes or hours later. Let the unconscious,

intuitive part of your mind have a chance to work.

3Taken from Chapter 0 in Sipser’s textbook.

15/35

Tips to write proofs3

Be patient. If you don’t see how to do it right away, don’t worry. Researchers

sometimes work for weeks or even years to find a single proof.

Genius is the patience of thoughts, concentrated in a certain direction.

— Isaac Newton

Come back to it. Look over the statement you want to prove, think about it a

bit, leave it, and then return a few minutes or hours later. Let the unconscious,

intuitive part of your mind have a chance to work.

3Taken from Chapter 0 in Sipser’s textbook.

15/35

Tips to write proofs3

Be patient. If you don’t see how to do it right away, don’t worry. Researchers

sometimes work for weeks or even years to find a single proof.

Genius is the patience of thoughts, concentrated in a certain direction.

— Isaac Newton

Come back to it. Look over the statement you want to prove, think about it a

bit, leave it, and then return a few minutes or hours later. Let the unconscious,

intuitive part of your mind have a chance to work.

3Taken from Chapter 0 in Sipser’s textbook.

15/35

Tips to write proofs3

Be patient. If you don’t see how to do it right away, don’t worry. Researchers

sometimes work for weeks or even years to find a single proof.

Genius is the patience of thoughts, concentrated in a certain direction.

— Isaac Newton

Come back to it. Look over the statement you want to prove, think about it a

bit, leave it, and then return a few minutes or hours later. Let the unconscious,

intuitive part of your mind have a chance to work.

3Taken from Chapter 0 in Sipser’s textbook.

15/35

Tips to write proofs4

Be neat! When you are building your intuition for the statement you are trying

to prove, use simple, clear pictures and/or text. You are trying to develop your

insight into the statement, and sloppiness gets in the way of insight.

Furthermore, when you are writing a solution for another person to read,

neatness will help that person understand it.

Be concise. Brevity helps you express high-level ideas without getting lost in

details. Good mathematical notation is useful for expressing ideas concisely.

But be sure to include enough of your reasoning when writing up a proof so

that the reader can easily understand what you are trying to say

4Taken from Chapter 0 in Sipser’s textbook.

16/35

Tips to write proofs4

Be neat! When you are building your intuition for the statement you are trying

to prove, use simple, clear pictures and/or text. You are trying to develop your

insight into the statement, and sloppiness gets in the way of insight.

Furthermore, when you are writing a solution for another person to read,

neatness will help that person understand it.

Be concise. Brevity helps you express high-level ideas without getting lost in

details. Good mathematical notation is useful for expressing ideas concisely.

But be sure to include enough of your reasoning when writing up a proof so

that the reader can easily understand what you are trying to say

4Taken from Chapter 0 in Sipser’s textbook.

16/35

Tips to write proofs5

Be patient.

Come back to it.

Be neat!

Be concise.

5Taken from Chapter 0 in Sipser’s textbook.

17/35

After you have written down your proof....6

Reread, reconsider and reexamine your proof, even after you are convinced that

your proof is correct.

Doing so could consolidate your knowledge and develop your problem solving

skill.

Ask the following questions.

• What is the main idea of the proof?

• Can the proof be simplified?

• Can the result be derived differently?

• Can the result/method be used for some other problem?

• How does it relate to other results that you know?

All these obviously take time and energy, but worth the effort.

6Adopted from the book How to solve it by George Pólya.

18/35

After you have written down your proof....6

Reread, reconsider and reexamine your proof, even after you are convinced that

your proof is correct.

Doing so could consolidate your knowledge and develop your problem solving

skill.

Ask the following questions.

• What is the main idea of the proof?

• Can the proof be simplified?

• Can the result be derived differently?

• Can the result/method be used for some other problem?

• How does it relate to other results that you know?

All these obviously take time and energy, but worth the effort.

6Adopted from the book How to solve it by George Pólya.

18/35

After you have written down your proof....6

Reread, reconsider and reexamine your proof, even after you are convinced that

your proof is correct.

Doing so could consolidate your knowledge and develop your problem solving

skill.

Ask the following questions.

• What is the main idea of the proof?

• Can the proof be simplified?

• Can the result be derived differently?

• Can the result/method be used for some other problem?

• How does it relate to other results that you know?

All these obviously take time and energy, but worth the effort.

6Adopted from the book How to solve it by George Pólya.

18/35

Some references

On general problem solving skill:

• How to Solve it by George Pólya.

• Princeton Companion to Mathematics, part VIII. Final Perspectives,

Timothy Gowers, editor.

On the more technical side:

• Mathematical discovery on understanding, learning, and teaching problem

solving (volumes I and II) by George Pólya.

• Solving mathematical problems: A personal perspective by Terrence Tao.

19/35

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

20/35

An example of impossible problem for computer

Consider the following problem denoted by Problem-A.

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

(Important!) Notice how we define Problem-A.

It is clear what the input and output should be!

This is not acceptable:

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

21/35

An example of impossible problem for computer

Consider the following problem denoted by Problem-A.

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

(Important!) Notice how we define Problem-A.

It is clear what the input and output should be!

This is not acceptable:

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

21/35

An example of impossible problem for computer

Consider the following problem denoted by Problem-A.

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

(Important!) Notice how we define Problem-A.

It is clear what the input and output should be!

This is not acceptable:

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

21/35

An example of impossible problem for computer

Consider the following problem denoted by Problem-A.

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

(Important!) Notice how we define Problem-A.

It is clear what the input and output should be!

This is not acceptable:

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

21/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.

22/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.

22/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.

22/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.

22/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.

22/35

A little analysis: What’s wrong with these specifications?

• We want to decide if a C++ program output True on an input.

• We want to decide the outcome of a C++ program on an input.

• Problem-A is to determine the outcome of a C++ program on an input.

It is not clear if the C++ program or the input is fixed or both are fixed.

Problem-X(P.cpp)

Input: A file denoted by input-file.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Y(input-file)

Input: A C++ program denoted by P.cpp.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

Problem-Z(P.cpp, input-file)

Input: Nothing.

Task: Output True, if the C++ program P.cpp returns True on input input-file.

Otherwise, output False.

All of them are very different from our original Problem-A.
22/35

First principle

To define a problem, write down precisely what the input and output should be.

Before we start designing an algorithm/program/Turing machines, write down

precisely what the input and output should be.

For example, we can use this format:

Problem XYZ

Input: . . .

Task: . . .

and
Algorithm XYZ

Input: . . .

Task: . . .

Other format is also acceptable as long as the input and output is clear.

23/35

First principle

To define a problem, write down precisely what the input and output should be.

Before we start designing an algorithm/program/Turing machines, write down

precisely what the input and output should be.

For example, we can use this format:

Problem XYZ

Input: . . .

Task: . . .

and
Algorithm XYZ

Input: . . .

Task: . . .

Other format is also acceptable as long as the input and output is clear.

23/35

First principle

To define a problem, write down precisely what the input and output should be.

Before we start designing an algorithm/program/Turing machines, write down

precisely what the input and output should be.

For example, we can use this format:

Problem XYZ

Input: . . .

Task: . . .

and
Algorithm XYZ

Input: . . .

Task: . . .

Other format is also acceptable as long as the input and output is clear.

23/35

Coming back to Problem-A

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

Note that it requires that on every input file-1.cpp and file-2, it should

output True or False.

We would like to show:

Theorem 0.1

There is no C++ program for Problem-A.

In other words, it is impossible to write a C++ program for Problem-A.

24/35

Coming back to Problem-A

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

Note that it requires that on every input file-1.cpp and file-2, it should

output True or False.

We would like to show:

Theorem 0.1

There is no C++ program for Problem-A.

In other words, it is impossible to write a C++ program for Problem-A.

24/35

Coming back to Problem-A

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

Note that it requires that on every input file-1.cpp and file-2, it should

output True or False.

We would like to show:

Theorem 0.1

There is no C++ program for Problem-A.

In other words, it is impossible to write a C++ program for Problem-A.

24/35

Reductions....

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

We would like to show that there is no C++ program for Problem-A, but we

don’t know how to show it.

So, we reduce it to:

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Note that if there is a C++ program for Problem-A, then there is a C++

program for Problem-B.

In some sense, Problem-A is more “general” than Problem-B.

25/35

Reductions....

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

We would like to show that there is no C++ program for Problem-A, but we

don’t know how to show it.

So, we reduce it to:

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Note that if there is a C++ program for Problem-A, then there is a C++

program for Problem-B.

In some sense, Problem-A is more “general” than Problem-B.

25/35

Reductions....

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

We would like to show that there is no C++ program for Problem-A, but we

don’t know how to show it.

So, we reduce it to:

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Note that if there is a C++ program for Problem-A, then there is a C++

program for Problem-B.

In some sense, Problem-A is more “general” than Problem-B.

25/35

Reductions....

Problem-A

Input: Two files:

The first file is a C++ program, denoted by file-1.cpp.

The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True

when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

We would like to show that there is no C++ program for Problem-A, but we

don’t know how to show it.

So, we reduce it to:

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Note that if there is a C++ program for Problem-A, then there is a C++

program for Problem-B.

In some sense, Problem-A is more “general” than Problem-B.
25/35

Reductions....

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Still we don’t know how to show that there is no C++ program for Problem-B.

So, we consider the following problem:
Problem-C

Input: One files: A C++ program, denoted by file.cpp.

Task: Output False, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output True.

Note that the output of Problem-B is just the complement of the output of

Problem-C.

There is a C++ program for Problem-B, if and only if there is a C++

program for Problem-C.

26/35

Reductions....

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Still we don’t know how to show that there is no C++ program for Problem-B.

So, we consider the following problem:
Problem-C

Input: One files: A C++ program, denoted by file.cpp.

Task: Output False, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output True.

Note that the output of Problem-B is just the complement of the output of

Problem-C.

There is a C++ program for Problem-B, if and only if there is a C++

program for Problem-C.

26/35

Reductions....

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Still we don’t know how to show that there is no C++ program for Problem-B.

So, we consider the following problem:
Problem-C

Input: One files: A C++ program, denoted by file.cpp.

Task: Output False, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output True.

Note that the output of Problem-B is just the complement of the output of

Problem-C.

There is a C++ program for Problem-B, if and only if there is a C++

program for Problem-C.

26/35

Reductions....

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Still we don’t know how to show that there is no C++ program for Problem-B.

So, we consider the following problem:
Problem-C

Input: One files: A C++ program, denoted by file.cpp.

Task: Output False, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output True.

Note that the output of Problem-B is just the complement of the output of

Problem-C.

There is a C++ program for Problem-B, if and only if there is a C++

program for Problem-C.

26/35

Reductions....

Problem-B

Input: One files: A C++ program, denoted by file.cpp.

Task: Output True, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output False.

Still we don’t know how to show that there is no C++ program for Problem-B.

So, we consider the following problem:
Problem-C

Input: One files: A C++ program, denoted by file.cpp.

Task: Output False, if the C++ program file.cpp returns True

when its input is the content of file.cpp itself.

Otherwise, output True.

Note that the output of Problem-B is just the complement of the output of

Problem-C.

There is a C++ program for Problem-B, if and only if there is a C++

program for Problem-C.

26/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Mathematical proof that there is no C++ program for Problem-C

Problem-C

Input: One files: A C++ program, denoted by input.cpp.

Task: Output False, if the C++ program input.cpp returns True

when its input is the content of input.cpp itself.

Otherwise, output True.

The proof is by contradiction. Suppose there is a C++ program for

Problem-C, which we denote by myprog.cpp.

Now we run myprog.cpp with input myprog.cpp itself. There are two cases.

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp does not return True on myprog.cpp itself. A

contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of

Problem-C, myprog.cpp returns True on myprog.cpp itself. A

contradiction.

Therefore, there is no such C++ program myprog.cpp for Problem-C.

27/35

Proof of Theorem 0.1

Since there is no C++ program for Problem-C, there is no C++ program for

Problem-B.

Since there is no C++ program for Problem-B, there is no C++ program for

Problem-A.

Thus, we complete the proof of Theorem 0.1.

Theorem 0.1

There is no C++ program for Problem-A.

Problem-A is usually known as the “Halting” problem.

We will come back to it again when we discuss Turing machines in the next few

months.

28/35

Proof of Theorem 0.1

Since there is no C++ program for Problem-C, there is no C++ program for

Problem-B.

Since there is no C++ program for Problem-B, there is no C++ program for

Problem-A.

Thus, we complete the proof of Theorem 0.1.

Theorem 0.1

There is no C++ program for Problem-A.

Problem-A is usually known as the “Halting” problem.

We will come back to it again when we discuss Turing machines in the next few

months.

28/35

Proof of Theorem 0.1

Since there is no C++ program for Problem-C, there is no C++ program for

Problem-B.

Since there is no C++ program for Problem-B, there is no C++ program for

Problem-A.

Thus, we complete the proof of Theorem 0.1.

Theorem 0.1

There is no C++ program for Problem-A.

Problem-A is usually known as the “Halting” problem.

We will come back to it again when we discuss Turing machines in the next few

months.

28/35

Proof of Theorem 0.1

Since there is no C++ program for Problem-C, there is no C++ program for

Problem-B.

Since there is no C++ program for Problem-B, there is no C++ program for

Problem-A.

Thus, we complete the proof of Theorem 0.1.

Theorem 0.1

There is no C++ program for Problem-A.

Problem-A is usually known as the “Halting” problem.

We will come back to it again when we discuss Turing machines in the next few

months.

28/35

Proof of Theorem 0.1

Since there is no C++ program for Problem-C, there is no C++ program for

Problem-B.

Since there is no C++ program for Problem-B, there is no C++ program for

Problem-A.

Thus, we complete the proof of Theorem 0.1.

Theorem 0.1

There is no C++ program for Problem-A.

Problem-A is usually known as the “Halting” problem.

We will come back to it again when we discuss Turing machines in the next few

months.

28/35

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

29/35

Language theoretic terminology

In this course we assume familiarity with basic terminology from discrete

mathematics, especially set-theoretic terminology.

See Appendix A in Note 0 for some that we will often use.

In addition, we will use the following terminology.

(Def.) An alphabet is a finite set of symbols.

We usually use the symbol Σ to denote an alphabet.

Often, Σ = {0, 1} or Σ = {a, b}.

In standard computers, the alphabet is the set of all ASCII codes.

In memory level, the alphabet is {0, 1}.

30/35

Language theoretic terminology

In this course we assume familiarity with basic terminology from discrete

mathematics, especially set-theoretic terminology.

See Appendix A in Note 0 for some that we will often use.

In addition, we will use the following terminology.

(Def.) An alphabet is a finite set of symbols.

We usually use the symbol Σ to denote an alphabet.

Often, Σ = {0, 1} or Σ = {a, b}.

In standard computers, the alphabet is the set of all ASCII codes.

In memory level, the alphabet is {0, 1}.

30/35

Language theoretic terminology

In this course we assume familiarity with basic terminology from discrete

mathematics, especially set-theoretic terminology.

See Appendix A in Note 0 for some that we will often use.

In addition, we will use the following terminology.

(Def.) An alphabet is a finite set of symbols.

We usually use the symbol Σ to denote an alphabet.

Often, Σ = {0, 1} or Σ = {a, b}.

In standard computers, the alphabet is the set of all ASCII codes.

In memory level, the alphabet is {0, 1}.

30/35

Language theoretic terminology

In this course we assume familiarity with basic terminology from discrete

mathematics, especially set-theoretic terminology.

See Appendix A in Note 0 for some that we will often use.

In addition, we will use the following terminology.

(Def.) An alphabet is a finite set of symbols.

We usually use the symbol Σ to denote an alphabet.

Often, Σ = {0, 1} or Σ = {a, b}.

In standard computers, the alphabet is the set of all ASCII codes.

In memory level, the alphabet is {0, 1}.

30/35

Language theoretic terminology

In this course we assume familiarity with basic terminology from discrete

mathematics, especially set-theoretic terminology.

See Appendix A in Note 0 for some that we will often use.

In addition, we will use the following terminology.

(Def.) An alphabet is a finite set of symbols.

We usually use the symbol Σ to denote an alphabet.

Often, Σ = {0, 1} or Σ = {a, b}.

In standard computers, the alphabet is the set of all ASCII codes.

In memory level, the alphabet is {0, 1}.

30/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

(Finite) string/word

(Def.) A (finite) string/word over Σ is a finite sequence of symbols from Σ.

For example, aaa, 0010, 0, 1111 are (finite) string

00000 . . . (of infinite length) is not a string.

We usually write w = a1 . . . an to denote a string whose symbol in position i is

ai .

(Def.) The length of w is denoted by |w |.

For example, |aaa| = 3 and |0| = 1.

(Def.) We write ε to denote the empty string/word, i.e., the word of length 0.

31/35

Languages

Let Σ be an alphabet.

(Def.) For an integer n > 0, Σn denotes the set of all the words over Σ of

length n.

(Def.) Σ∗ denotes the set of all finite words over Σ, i.e., Σ∗ =
⋃

n>0 Σn.

(Def.) A language L over Σ is a subset of Σ∗.

32/35

Languages

Let Σ be an alphabet.

(Def.) For an integer n > 0, Σn denotes the set of all the words over Σ of

length n.

(Def.) Σ∗ denotes the set of all finite words over Σ, i.e., Σ∗ =
⋃

n>0 Σn.

(Def.) A language L over Σ is a subset of Σ∗.

32/35

Languages

Let Σ be an alphabet.

(Def.) For an integer n > 0, Σn denotes the set of all the words over Σ of

length n.

(Def.) Σ∗ denotes the set of all finite words over Σ, i.e., Σ∗ =
⋃

n>0 Σn.

(Def.) A language L over Σ is a subset of Σ∗.

32/35

Languages

Let Σ be an alphabet.

(Def.) For an integer n > 0, Σn denotes the set of all the words over Σ of

length n.

(Def.) Σ∗ denotes the set of all finite words over Σ, i.e., Σ∗ =
⋃

n>0 Σn.

(Def.) A language L over Σ is a subset of Σ∗.

32/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Some examples of languages over Σ = {0, 1}

• ∅ is a language over Σ.

• Σ∗ is a language over Σ.

• {w ∈ Σ∗|the length of w is 6 4} is a language over Σ.

• {w ∈ Σ∗|w does not contain 0} is a language over Σ.

• {w ∈ Σ∗|the length of w is a prime number} is a language over Σ.

33/35

Table of contents

1. Introduction

2. Some words about mathematical proofs

3. The halting problem in C++

4. The notion of alphabets and languages

5. Concluding remarks

34/35

Concluding remarks

1. Introduction.

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

2. Some words about mathematical proofs.

See Appendix A and B in Note 0 for standard terminology that we will use.

3. Halting problem for C++ (or any programming language).

4. The notion of alphabets and languages.

It will be used throughout the course.

35/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

Concluding remarks

1. Introduction.

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

2. Some words about mathematical proofs.

See Appendix A and B in Note 0 for standard terminology that we will use.

3. Halting problem for C++ (or any programming language).

4. The notion of alphabets and languages.

It will be used throughout the course.

35/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

Concluding remarks

1. Introduction.

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

2. Some words about mathematical proofs.

See Appendix A and B in Note 0 for standard terminology that we will use.

3. Halting problem for C++ (or any programming language).

4. The notion of alphabets and languages.

It will be used throughout the course.

35/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

Concluding remarks

1. Introduction.

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

2. Some words about mathematical proofs.

See Appendix A and B in Note 0 for standard terminology that we will use.

3. Halting problem for C++ (or any programming language).

4. The notion of alphabets and languages.

It will be used throughout the course.

35/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

Concluding remarks

1. Introduction.

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

2. Some words about mathematical proofs.

See Appendix A and B in Note 0 for standard terminology that we will use.

3. Halting problem for C++ (or any programming language).

4. The notion of alphabets and languages.

It will be used throughout the course.

35/35

https://www.csie.ntu.edu.tw/~tonytan/teaching/2021a-aut/2021a-aut.html

End of Lesson 0

	1. Introduction
	2. Some words about mathematical proofs
	3. The halting problem in C++
	4. The notion of alphabets and languages
	5. Concluding remarks

