CSIE 5111: Introduction to Mathematical Logic

Website

http://www.csie.ntu.edu.tw/~tonytan/teaching/2015a-logic/2015a-logic.html

Instructor

Name : Tony Tan

Room : CSIE building no. 516
Office hour : By appointment via email
Email : tonytan@csie.ntu.edu.tw

Venue and time

Prerequisite

Discrete mathematics and mathematical maturity. Familiarity with theory of computation will be helpful, but not necessary.

Syllabus

Week	Topic	Important dates
1	Preliminaries	HW 1 out (after the tutorial)
2	Propositional calculus part. I	HW 1 due (before the lecture)
3	Propositional calculus part. II	_
4	Proof system in propositional calculus	HW 2 out
5	First-order logic part. I	_
6	First-order logic part. II	HW 2 due
7	First-order logic part. III	HW 3 out
8	Proof system in first-order logic	_
9	_	HW 3 due, Midterm exam
10	Gödel's completeness theorem	HW 4 out
11	Compactness and Löwenheim-Skolem theorem	_
12	Elementary classes and categorical sets	HW 4 due, HW 5 out
13	Peano arithmetic and number theory	_
14	Gödel's incompleteness theorem part. I	HW 5 due
15	Gödel's incompleteness theorem part. II	HW 6 out
16	Logic, set theory and mathematics	_
17	First-order logic in computer science	HW 6 due
18	_	Final exam

Textbook

We will not follow one particular textbook. All the materials that we will cover can be found in the following textbooks:

- A Mathematical Introduction to Logic by H. Enderton.
- A Concise Introduction to Mathematical Logic by W. Rautenberg.
- Mathematical logic by H.-D. Ebbinghaus, J. Flum and W. Thomas.

You can find informal treatment of logic in the following books:

- Gödel, Escher, Bach: An Eternal Golden Braid by D. Hofstadter.
- Gödel's Theorem: An Incomplete Guide to its Use and Abuse by T. Franzén.
- A Tour through Mathematical Logic by W. Rautenberg.

Grading

- Six assignments weigh 10% each.
- The midterm exam on topics covered up to week 8 weighs 20%.
- The final exam on topics covered up to week 17 weighs 20%.