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Lesson 0: Preliminaries

Theme: Review of some essential mathematical backgrounds.

1 Useful notations and facts from discrete mathematics

1.1 Equivalence relations

A binary relation R over X is called an equivalence relation, if it satisfies the following conditions.

• Reflexive: (x, x) ∈ R, for every x ∈ X.

• Symmetric: (x, y) ∈ R if and only if (y, x), for every x, y ∈ X.

• Transitive: for every x, y, z ∈ X, if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

For x ∈ X, the equivalence class of x in R is defined as:

[x]R := {y | (x, y) ∈ R}

Lemma 0.1 Let R be an equivalence relation over X. Then, the following holds:

• [x]R = [y]R if and only if (x, y) ∈ R.
• If [x]R 6= [y]R, then [x]R ∩ [y]R = ∅.

Theorem 0.2 Let R be an equivalence relation over X. Then, the equivalence classes of R
partition X, i.e., every member of X belongs to exactly one equivalence class of R.

1.2 Countable and uncountable sets

Let N be the set of natural numbers {0, 1, 2, . . .}. A set X is countable, if there is an injective
function from X to N. Otherwise, it is called an uncountable set.

Theorem 0.3 The following sets are all countable.

(1) The set Z = {. . . ,−2,−1, 0, 1, 2, . . .} of integers.
(2) The set Nk, for every integer k > 1.

(3) The set N∗ :=
⋃
k>1Nk.

Theorem 0.4 The set 2N is uncountable.

1.3 Poset (partially ordered set)

Let X be a set and R be a binary relation on X. The set X is a poset (w.r.t. R), if R is reflexive,
anti-symmetric∗ and transitive.

Definition 0.5 An element m ∈ X is a maximal element in a poset X (w.r.t. R), if for every
x ∈ X and x 6= m, (m,x) /∈ R.

∗A binary relation R on X is anti-symmetric, if the following holds: for every a, b ∈ X, if both (a, b) and (b, a)
are in R, then a = b.
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Definition 0.6 A subset C of X is a chain in X (w.r.t. R), if for every x, y ∈ C, either
(x, y) ∈ R, or (y, x) ∈ R. A chain C is bounded, if there is z ∈ X such that for every x ∈ C,
(x, z) ∈ R.

The three statements below are equivalent and they are usually taken as “axioms” in mathe-
matics.

Axiom of choice: Let I be a set such that each i ∈ I is associated with a set Ai. There is a
function f : I →

⋃
Ai such that for every i ∈ I, f(i) ∈ Ai.

Zorn’s lemma: Let (A,R) be a poset such that every chain in A is bounded. There is an
element m ∈ A such that for every x ∈ A and x 6= m, (m,x) /∈ R.

Well-ordering theorem: Every set can be well-ordered. That is, for every set A, there is a
total order relation R on A, that is, it satisfies the following conditions:

• Antisymmetry: for every a, b ∈ A, if (a, b), (b, a) ∈ R, then a = b;
• Transitive: if (a, b), (b, c) ∈ R, then (a, c) ∈ R;
• Totality: for every a, b ∈ A, either (a, b) ∈ R or (b, a) ∈ R,

such that for every nonempty subset B ⊆ A has a minimal element (w.r.t. R).

There is a kind of contradiction here: the axiom of choice is viewed as obviously “correct,” while
the well-ordering theorem is obviously “false,” and there are mixed opinions about Zorn’s lemma.

2 Basic propositional calculus (Boolean logic)

Throughout this class, T and F are special symbols denoting true and false, respectively. The
symbols ¬, ∧, ∨, → and ↔ denote the negation, and, or, implication and iff operators on {T, F},
respectively, which are defined as follows.

p q p ∧ q
T T T

T F F

F T F

F F F

p q p ∨ q
T T T

T F T

F T T

F F F

p ¬p
T F

F T

p q p→ q

T T T

T F F

F T T

F F T

p q p↔ q

T T T

T F F

F T F

F F T

Let PV = {p1, p2, . . .} to be a countable set of propositional variables.† Sometimes we also
write p, q, or q1, q2, . . . to denotes propositional variables. Elements in PV are also called atomic
formulas.

Definition 0.7 A well formed formula (wff) is a formula built up inductively as follows.

• Every propositional variable p ∈ PV is a wff.
†For simplicity, we only consider PV a countable set. Although in general such assumption is not necessary, it

will simplify our discussions a lot.



CSIE 5111: Intro. to Math. Logic Lesson 0: Preliminaries

• If α and β are wffs, so are (¬α), (α ∧ β), (α ∨ β), (α→ β) and (α↔ β).

Usually we will use the term formula to mean wff.

The negation of a propositional variable p is ¬p. A literal is either a propositional variable or
its negation. A formula is in conjunctive normal form (CNF), if it is of the form:

(`0,0 ∨ · · · ∨ `0,n0) ∧ (`1,0 ∨ · · · ∨ `1,n1) ∧ · · · ∧ (`k,0 ∨ · · · ∨ `k,nk
),

where each `i,j is a literal.
A formula is in disjunctive normal form (DNF), if it is of the form:

(`0,0 ∧ · · · ∧ `0,n0) ∨ (`1,0 ∧ · · · ∧ `1,n1) ∨ · · · ∨ (`k,0 ∧ · · · ∧ `k,nk
).

An assignment is a function that maps each propositional variable in PV to either T or F.
The value of a formula α under an assignment w is defined inductively as follows.

• w(α) = w(p), if α is propositional variable p.

• w(¬α) = ¬w(α).

• w(α ∧ β) = w(α) ∧ w(β).

• w(α ∨ β) = w(α) ∨ w(β).

• w(α→ β) = w(α)→ w(β).

• w(α↔ β) = w(α)↔ w(β).

Definition 0.8

• An assignment w is a satisfying assignment for a formula α, denoted by w |= α, if w(α) = T.
We also say that w is a model of α.

• Likewise, w is a satisfying assignment (or, a model) for a set X of formulas, denoted by
w |= X, if w |= α, for every α ∈ X.

• A formula α is satisfiable, if it has a satisfying assignment, and accordingly, a set X of
formulas is satisfiable, if it has a satisfying assignment.

• Two formulas α and β are equivalent, if for every assignment w, w(α) = w(β).

Sometimes we omit the brackets, when they are irrelevant. For example, α ∧ (β ∧ γ) and
(α ∧ β) ∧ γ are equivalent, so the brackets can be omitted, and written simply as α ∧ β ∧ γ.

Theorem 0.9 (Distributivity law for ∧ and ∨) For every formulas α, β, γ, the following
holds.

• α ∧ (β ∨ γ) and (α ∧ β) ∨ (α ∧ γ) are equivalent.

• α ∨ (β ∧ γ) and (α ∨ β) ∧ (α ∨ γ) are equivalent.

A formula α using only atomic formulas p1, . . . , pn defines a function fα : {T, F}n → {T, F},
where for every (v1, . . . , vn) ∈ {T, F}n

fα(v1, . . . , vn) = v if and only if


under the assignment w
where w(pi) = vi, for each i = 1, . . . , n,
w(α) = v.
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Definition 0.10 A set Γ of operators is complete, if for every integer n > 1, for every function
g : {T, F}n → {T, F}, there is a formula α using only operators from Γ such that fα = g.

Theorem 0.11

(a) For every function g : {T, F}n → {T, F}, there is a formula α in DNF such that fα = g.

(b) Similarly, for every function g : {T, F}n → {T, F}, there is a formula α in CNF such that
fα = g.

Corollary 0.12 The set {¬,∧,∨} is complete.

Exercises

(1) Let R be the set of real numbers. Define a relation R, where (x, y) ∈ R if and only if x < y.
Prove that R is a poset w.r.t. R.‡

(2) Give an example of a bounded chain in the poset (R,6) as defined in question 4.

(3) Give an example of an unbounded chain in the poset (R,6).

(4) Let A be a set and F be a collection of subsets of A. Define a relation R on elements of F :

(x, y) ∈ R if and only if x ⊆ y

Prove that F is a poset w.r.t. R.§

(5) Give an example of a poset (F ,⊆) in which every chain is bounded.

(6) Give an example of a poset (F ,⊆) in which there is an unbounded chain.

(7) Consider a poset (F ,⊆) where F is a collection of subsets of a set A. Suppose that for every
chain C in F , the set

⋃
C is in F .

Assuming Zorn’s lemma, prove that there is an element M ∈ F such that there is no X ∈ F
where M ( X.

(8) Write down the equivalent formulas for x↔ y in DNF and CNF.

(9) Write down the formulas in DNF and CNF for the following function f(p, q, r):

p q r f(p, q, r)

F F F F

T F F F

F T F F

T T F T

F F T F

T F T T

F T T T

T T T F

(10) Prove that {¬,∧} and {¬,∨} are complete.
‡The poset R w.r.t. the relation 6 is usually written as (R,6).
§The poset F w.r.t. the relation ⊆ is usually written as (F ,⊆).
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(11) Define the operators NAND and NOR, denoted by p Z q and p Y q, respectively, as follows.

p q p Z q
T T F

T F T

F T T

F F T

p q p Y q
T T F

T F F

F T F

F F T

That is, p Z q is equivalent to ¬(p ∧ q) and p Y q is equivalent to ¬(p ∨ q). Prove that {Z}
and {Y} are complete.

(12) Prove part (b) of Theorem 0.11.
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Appendix: Basic set theoretic notations

Sets:

• A set is a collection of things, which are called its members or elements.

a ∈ X (read: a is in X, or a belongs to X) means a is a member or an element of X. a /∈ X
means that a is not a member of X.

• An empty set is denoted by ∅.
• X is a subset of Y , denoted by X ⊆ Y , if every element of X is also an element of Y .

X is a proper subset of Y , denoted by X ( Y , if X 6= Y and X ⊆ Y .

• For two sets X and Y , we write X ∩ Y and X ∪ Y to denote their intersection and union,
respectively.

• Let X be a set whose elements are also sets. Then,
⋃
X and

⋂
X denote the following.⋃

X := {a | a belongs to an element in X}⋂
X := {a | a belongs to every element in X}

• The cartesian product between two sets X and Y is the following.

X × Y := {(a, b) | a ∈ X and b ∈ Y }.

We write Xn to denote X × · · · ×X (X appears n times).

Relations:

• A relation R over two sets X,Y is a subset of X × Y .

• A binary relation R over X is a subset of X ×X.

• An n-ary relation R over X is a subset of Xn.

Functions:

• A relation R over X,Y is a function or a mapping, if for every x ∈ X, there is exactly one
y ∈ Y such that (x, y) ∈ R.
In this case, we will say R is a function from X to Y , or R maps X to Y . We denote it by
R : X → Y .

• We will usually use the letters f, g, h, . . . to represent functions. As usual, we write f(x) to
denote the element y in which (x, y) ∈ f .

• A function f : X → Y is an injective function, if for every y ∈ Y , there is at most one
x ∈ X such that f(x) = y. An injective functions is also called an injection.

• A function f : X → Y is a surjective function, if for every y ∈ Y , there is at least one
x ∈ X such that f(x) = y.

• A function f : X → Y is a bijection, if it is both injective and surjective.
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Lesson 1: Compactness theorem for propositional calculus

Theme: Logical consequences, compactness theorem and its applications.

1 Logical consequences

Definition 1.1 A formula α is a logical consequence of a formula β, denoted by β |= α, if every
satisfying assignment of β is also a satisfying assignment of α. If α |= β and β |= α, we write
α |= |=β.

Definition 1.2 We say that α is a logical consequence of a set X of formulas, denoted by X |= α,
if every satisfying assignment of X is also a satisfying assignment of α.

We write X 6|= α, if it is not the case that X |= α.

Theorem 1.3 X |= α if and only if X ∪ {¬α} is not satisfiable.

2 Compactness theorem

We say that a set X is finitely satisfiable, if every finite subset of X is satisfiable.

Lemma 1.4 Suppose X is finitely satisfiable. Then, for every formula α, at least one of X∪{α}
or X ∪ {¬α} is finitely satisfiable.

Theorem 1.5 (Compactness theorem for countable set) A set X is satisfiable if and only
if it is finitely satisfiable.

Proof. The “only if” direction is trivial. We show the “if” direction. Suppose X is finitely
satisfiable. Let α1, α2, . . . be an enumeration of all possible formulas. For every integer i > 0, we
define a set ∆i as follows.

∆0 := X

∆i :=

{
∆i−1 ∪ {αi}, if ∆i−1 ∪ {αi} is finitely satisfiable
∆i−1 ∪ {¬αi}, otherwise

Let ∆ :=
⋃

i>0 ∆i.

Claim 1 The set ∆ is finitely satisfiable.

Consider the following assignment w, where for each atomic formula p,

w(p) :=

{
T, if p ∈ ∆
F, if ¬p ∈ ∆

Claim 2 The assignment w is a satisfying assignment for ∆. That is, w |= ∆.

Since X ⊆ ∆, w is also a satisfying assignment of X. Hence, X is satisfiable. This completes
our proof. �
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3 Two applications of compactness theorem

3.1 Four-colorability of (infinite) planar graphs

An (undirected) graph G is a pair (V,E) with E being a symmetrical binary relation on V . That
is, E ⊆ V × V , where (u, v) ∈ E if and only if (v, u) ∈ E. The elements of V are called vertices,
and the elements of E are called edges. A subgraph G′ of G is a graph (V ′, E′), where V ⊆ V ′

and E ⊆ E′.
A graph G = (V,E) is 4-colorable, if there is a function ξ : V → {1, 2, 3, 4} such that whenever

(u, v) ∈ E, ξ(u) 6= ξ(v).

Lemma 1.6 Let G be a graph. Then, G is 4-colorable, if and only if every finite subgraph of G
is 4-colorable.

Proof. (Sketch) The “only if” direction is trivial. The proof of the “if” direction is as follows.
Let G = (V,E).

For each a ∈ V , we have four atomic formulas pa,1, pa,2, pa,3, pa,4. Define the set XG that
contains the following formulas for each a ∈ V :

pa,1 ∨ pa,2 ∨ pa,3 ∨ pa,4∧
16i<j64

¬(pa,i ∧ pa,j)∧
16i64

¬(pa,i ∧ pb,i) where (a, b) ∈ E

Then, G is 4-colorable if and only if XG is satisfiable. Since every finite subgraph G′ of G is
4-colorable, XG′ is satisfiable, for every finite subgraph G′ of G. This means XG is finitely
satisfiable (why?). By Theorem 1.5, G is 4-colorable. �

Theorem 1.7 below is a well known result whose proof we will not discuss in the class.

Theorem 1.7 (Four color theorem) Every finite planar graph is 4-colorable.∗

Corollary 1.8 Every (finite or infinite) planar graph is 4-colorable.

3.2 The marriage problem

Let R be a relation over X,Y . For an element a ∈ X, we define R(a) = {b ∈ Y | (a, b) ∈ R}.
Likewise, for a subset X0 ⊆ X, R(X0) = {b ∈ Y | there is a ∈ X0 such that (a, b) ∈ R}.

Theorem 1.9 below is a standard result in discrete mathematics, and we will not discuss its
proof in the class.

Theorem 1.9 (Hall’s marriage theorem) For a relation R over X,Y , where X is finite, the
following are equivalent.

• R contains an injective function f , i.e., there is a function f ⊆ R such that f is injective.

• For every subset X0 ⊆ X, |X0| 6 |R(X0)|.

Theorem 1.10 For a relation R over X,Y , where X is infinite and for every a ∈ X, |R(a)| is
finite, the following are equivalent.

∗A graph G = (V,E) is planar, if there is a function f : V → R2, and there is curve between every two points
f(u) and f(v), whenever (u, v) ∈ E, such that no two curves “cross” each other.
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• R contains an injective function f , i.e., there is a function f ⊆ R such that f is injective.

• For every finite subset X0 ⊆ X, |X0| 6 |R(X0)|.

Proof. (Sketch) The implication from the first to the second item is immediate. The proof for
the other direction is almost the same as in Lemma 1.6. Let R be a relation over X,Y , where
for every a ∈ X, |R(a)| is finite.

For each a ∈ X, we have atomic formulas pa,b1 , pa,b2 , . . . , pa,bn , where R(a) = {b1, . . . , bn}.
Define the set XR that contains the following formulas for each a ∈ X:∨

b∈R(a)

pa,b

¬(pa,b ∧ pa,c), where b 6= c

R has the desired injection if and only if XR is satisfiable. Using Theorems 1.9 and 1.5, the proof
can proceed in a similar manner as in Lemma 1.6. �

Exercises

(0) Is Lemma 1.4 still correct if we allow the set PV of propositional variables to be uncountable?

Our proof for the compactness theorem in the lecture depends on the fact that there are
only countably many formulas. If there are uncountably many propositional variables, there are
uncountably many formulas, and our proof is no longer valid. Here we are going to present a
proof that still holds for uncountably many formulas, i.e., X is satisfiable if and only if X is
finitely satisfiable, where PV can be an uncountable set.

As usual, the “only if” part is trivial. The proof for the “if” part is as follows. Let X be
finitely satisfiable. Define the collection F of sets of formulas as follows.

Y ∈ F if and only if X ⊆ Y and Y is finitely satisfiable.

(1) Prove that (F ,⊆) is a poset.

(2) Let K be a chain in (F ,⊆). Prove that
⋃
K is finitely satisfiable.

(3) Prove that there is a maximal set M ∈ F , i.e., M is a set in F such that there is no Y ∈ F
where M ( Y .

Hint: Use Zorn’s lemma stated in Lesson 1.

(4) Prove that for every p ∈ PV , either p or ¬p is in M .

(5) Prove that M is satisfiable, and hence, so is X.
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Lesson 2: Proof system in propositional calculus

Theme: The notion of provability in propositional calculus.

1 Proofs in propositional calculus

Let X be a set of formulas and α be a formula. We say that α is provable/derivable from X,
denoted by X ` α, if it can be obtained inductively according to the following rules.

Initial Segment (IS): α ` α

Monotonicity Rule (MR):
X ` α
Y ` α for every Y ⊇ X

And Combine Rule (ACR):
X ` α and X ` β

X ` α ∧ β

And Split Rule (ASR):
X ` α ∧ β

X ` α and X ` β

Contradiction Rule (CR):
X ` α and X ` ¬α

X ` β for every formula β

Negation Rule (NR):
X,α ` β and X,¬α ` β

X ` β

Sometimes we will also say “α can be proved from X” when X ` α. We write X 0 α, if it is not
the case that X ` α.

Remark 2.1 To avoid clutter, we write α ` α to denote {α} ` α, whereas X,α ` β means
X ∪{α} ` β. We also write {α1, . . . , αn} ` α to denote α1, . . . , αn ` α and ` α to denote ∅ ` α.

Remark 2.2 Note that in the proof system above, we only use the operators ¬ and ∧. In the
following a formula α → β is to be interpreted as an abbreviation for ¬(α ∧ ¬β), and likewise,
α ∨ β for ¬(¬α ∧ ¬β).

Example 2.3 (Elimination of Negation)
X,¬α ` α
X ` α

1. X,¬α ` α. (Supposition)

2. X,α ` α. (Initial Segment and Monotonicity Rule)

3. X ` α. (Negation Rule on 1 and 2)
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Example 2.4 (Reductio ad Absurdum)
X,¬α ` β and X,¬α ` ¬β

X ` α
1. X,¬α ` β. (Supposition)

2. X,¬α ` ¬β. (Supposition)

3. X,¬α ` α. (Contradiction Rule on 1 and 2)

4. X,α ` α. (Initial Segment and Monotonicity Rule)

5. X ` α. (Negation Rule on 3 and 4)

Example 2.5 (Cut Rule)
X ` α and X,α ` β

X ` β
1. X ` α. (Supposition)

2. X,α ` β. (Supposition)

3. X,¬α ` ¬α. (Initial Segment and Monotonicity Rule)

4. X,¬α ` α. (Monotonicity Rule on 1)

5. X,¬α ` β. (Contradiction Rule on 3 and 4)

6. X ` β. (Negation Rule on 2 and 5)

Example 2.6 (Elimination of →)
X ` α→ β

X,α ` β
1. X ` α→ β. (Supposition)

2. X,α,¬β ` α. (Initial Segment and Monotonicity Rule)

3. X,α,¬β ` ¬β. (Initial Segment and Monotonicity Rule)

4. X,α,¬β ` α ∧ ¬β. (And Combine Rule on 2 and 3)

5. X,α,¬β ` ¬(α ∧ ¬β). (Monotonicity Rule on 1)

6. X,α,¬β ` β. (Contradiction Rule on 4 and 5)

7. X,α, β ` β. (Initial Segment and Monotonicity Rule)

8. X,α ` β. (Negation Rule on 6 and 7)

Example 2.7 (Introduction of →)
X,α ` β
X ` α→ β

1. X,α ` β. (Supposition)

2. X,α, α ∧ ¬β ` β. (Monotonicity Rule on 1)

3. X,α ∧ ¬β ` α ∧ ¬β. (Initial Segment and Monotonicity Rule)

4. X,α ∧ ¬β ` α. (And Split Rule on 3)

5. X,α ∧ ¬β ` β. (Cut rule on 4 and 2)

6. X,α ∧ ¬β ` ¬β. (And Split Rule on 3)

7. X ` α→ β. (Reductio ad Absurdum on 5 and 6)

Theorem 2.8 (Finiteness theorem for `) If X ` α, then there is a finite set X0 ⊆ X such
that X0 ` α.
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Exercises

(1) Prove that
X,α ` ¬α
X ` ¬α .

(2) Prove that
X ` α and X ` α→ β

X ` β .

(3) Prove that
X ` α→ β and X ` β → γ

X ` α→ γ
.

(4) Prove that
X ` ¬¬α
X ` α .

(5) Prove that
X ` α

X ` ¬¬α .

(6) Prove that
X,α ` β

X,¬¬α ` β .

(7) Prove that
X ` α→ β

X ` ¬β → ¬α .

Note that α→ β is an abbreviation for ¬(α ∧ ¬β), whereas ¬β → ¬α for ¬(¬β ∧ ¬¬α).
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Lesson 3: Completeness of propositional calculus

Theme: The equivalence between provability and logical consequences (completeness of propo-
sitional calculus).

Definition 3.1 A set X is inconsistent, if there is α such that X ` α and X ` ¬α. Otherwise,
we say that X is consistent.

Lemma 3.2 For every set X of formulas and for every formula α, the following holds.

(a) X ` α if and only if X ∪ {¬α} is inconsistent.

(b) X ` ¬α if and only if X ∪ {α} is inconsistent.

Definition 3.3 A set X is maximally consistent, if it is consistent and for every Y ) X, Y is
inconsistent.

Lemma 3.4 Every consistent set X can be extended to a maximally consistent set. That is, for
every consistent set X, there is a maximally consistent set Y such that Y ⊇ X.

Lemma 3.5 A maximally consistent set X has the following property: For every α,

X ` ¬α if and only if X 0 α.

Lemma 3.6 A maximally consistent set X is satisfiable.

Proof. (Sketch) Define the following assignment w, where for every atomic proposition p:

w(p) :=

{
T, if X ` p
F, if X ` ¬p

We have to show that for every α ∈ X, w(α) = T. It is sufficient to show the following.

X ` α if and only if w(α) = T.

The proof is by induction on α. �

Theorem 3.7 (Completeness of propositional calculus) X ` α if and only if X |= α.

Proof. The “only if” direction is straightforward. We prove the “if” direction by showing that
X 0 α implies X 6|= α.

Suppose X 0 α. This means that X ∪ {¬α} is consistent. By Lemma 3.4, we can extend it
to a maximally consistent set Y . Lemma 3.6 implies Y is satisfiable, and hence, X ∪{¬α} is also
satisfiable, which further implies that X 6|= α (why?). This completes our proof. �

There are six rules in our proof system. Where do we use each of them in our proof of
completeness theorem?
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Lesson 4: First-order logic, part 1

Theme: Mathematical structures and the syntax of first-order logic.

For the rest of this course, we fix three pairwise disjoint sets Lr, Lf , Lc of symbols.

• Elements in Lr are called relational symbols. Each symbol R ∈ Lr is associated with a
positive integer, which is called its arity and denoted by ar(R).

• Elements in Lf are called operation/function symbols. Each symbol f ∈ Lf is associated
with a positive integer, which is called its arity and denoted by ar(f).

• Elements in Lc are called constant symbols.

We usually write R1, R2, . . . for the elements of Lr; f1, f2, . . . for the elements of Lf ; and c1, c2, . . .
for the elements of Lc.

1 Mathematical structures

Definition 4.1 Let L = {R1, . . . , Rm, f1, . . . , fn, c1, . . . , ck} be a finite subset of Lr ∪ Lf ∪ Lc.
An L-structure is A = (A,RA1 , . . . , R

A
m, f

A
1 , . . . , f

A
n , c

A
1 , . . . , c

A
k ), where

• A is a set of elements, called the domain, or the universe of A;
• each RAi is a relation over A of arity ar(Ri), i.e., RAi ⊆ Aar(Ri);

• each fAi is a function over A of arity ar(fi), i.e., f : Aar(fi) → A;

• each cAi is an element of A.

The set L is called the signature/vocabulary of A. If A is finite, then A is called a finite structure.
Otherwise, it is an infinite structure.

The superscripts A in RAi , f
A
i , c

A
i are to indicate that we are talking about Ri, fi, ci in the

structure A. When A is clear from the context, we will usually omit the superscript, and write
onlyA = (A,R1, . . . , Rm, f1, . . . , fn, c1, . . . , ck). We will usually write ā to denote ā = (a1, . . . , an)
for some appropriate n. For example, we will simply write ā ∈ R, where we assume that
ā = (a1, . . . , al) and l is the arity of R. Likewise, we write f(ā) assuming that ā is of length
ar(f). We will also write R(ā) to mean ā ∈ R.

Remark 4.2 Usually structures are denoted by calligraphic fonts A,B, . . ., and their domains
by the standard Roman letters A,B, . . ..

Remark 4.3 In definition 4.1 above, a structure is defined over a finite vocabulary, and that is
usually the case. Sometimes though a structure can be defined over an infinite vocabulary, or
even uncountably infinite vocabulary.

Definition 4.4 Let A and B be two structures over the same vocabulary L. The structure A is
called a substructure of B, if the following holds.

• A ⊆ B.

• cA = cB, for every constant symbol c ∈ L.
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• RA = Aar(R) ∩ RB, for every relation symbol R ∈ L.
• fA = Aar(f)+1 ∩ fB, for every function symbol f ∈ L.

The structure B is called an extension of A.

Definition 4.5

• A relational structure is an L-structure, where L ⊆ Lr, i.e., without any function or con-
stant.

• An algebraic structure, or in short, an algebra, is an L-structure, where L ⊆ Lf ∪ Lc, i.e.,
without any relation.

Example 4.6 Some instances of infinite structures.

• N0 = (N,6). • R0 = (R,6).
• N1 = (N, 0,+). • R1 = (R, 0,+).
• N2 = (N, 0, 1,+,×). • R2 = (R, 0, 1,+,×).
• N3 = (N, 0, 1,+,×,6). • R3 = (R, 0, 1,+,×,6).

Example 4.7 Some instances of finite structures.

• Zm = (Zm, 0,+ mod m), where + mod m is addition modulo m.

• Z∗p = (Zp, 0, 1,+ mod p,× mod p), for a prime number p, where × mod p is multiplication
modulo p.

• B = ({T, F},∧,∨,→,↔,¬).

Example 4.8 A graph is a structure A = (A,E), where E ⊆ A × A. It is usually written as
G = (V,E).

Definition 4.9 Let A,B be L-structures. A homomorphism h from A to B, denoted by h : A →
B, is a function h : A→ B such that for every R, f, c ∈ L,

• h(fA(ā)) = fB(h(ā)), for every ā ∈ Aar(f),

• h(cA) = cB,

• for every ā ∈ Aar(R), if RA(ā), then RB(h(ā)).

Here, h(ā) = (h(a1), . . . , h(al)), where ā = (a1, . . . , al).

Definition 4.10 Let h : A → B be a homomorphism.

• h is a strong homomorphism, if h is a homomorphism and in addition, for every relation
R ∈ L, for every ā ∈ Aar(R),

if RB(h(ā)), then there is ā′ ∈ Aar(R) such that h(ā) = h(ā′) and RA(ā′).

• h is an embedding, if it is an injective and strong homomorphism.

• h is an isomorphism, if it is a strong and bijective homomorphism.

• h is called automorphism, if h is an isomorphism and B = A, i.e., h is a bijection from A
to A itself.
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2 The syntax of first-order logic

2.1 Variables and terms

We reserve a set VAR of first-order variables. We usually write x1, x2, . . . , y1, y2, . . . , z1, z2, . . . to
denote elements in VAR. When it is clear from the context, we will simply say variables, instead
of first-order variables.

In the following let L be a finite subset of Lr ∪ Lf ∪ Lc. Terms over L, or, L-terms, are
defined inductively as follows.

• A variable x ∈ VAR is an L-term.

• A constant symbol c ∈ L is an L-term.

• If f ∈ L is a function symbol of arity n, and t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an
L-term.

The variable x and the constant c are called atomic L-terms. The set of all L-terms is denoted
by Term(L). When there is no confusion, we will omit L, and simply write terms, instead of
L-terms.

The set of variables used in a term t is the set var(t) defined as follows.

• For a constant symbol c ∈ L, var(c) = ∅.
• For a variable x ∈ VAR, var(x) = {x}.
• For a term of the form f(t1, . . . , tn), var(f(t1, . . . , tn)) = var(t1) ∪ · · · ∪ var(tn).

2.2 First-order formulas

First-order (FO) formulas over the signature/vocabulary L are defined inductively as follows.

• If s and t are terms over L, then (s ≈ t) is an FO formula over L.

• If t1, . . . , tn are terms over L, and R ∈ L is a relation symbol of arity n, then R(t1, . . . , tn)
is an FO formula over L.

• If α and β are FO formulas over L, then so are ¬α, α ∧ β and α ∨ β.
• If α is an FO formula over L, and x ∈ VAR, then ∀x(α) is also an FO formula over L.

• If α is an FO formula over L, and x ∈ VAR, then ∃x(α) is also an FO formula over L.

FO formulas of the form s ≈ t and R(t1, . . . , tn) are called atomic FO formulas. The set of all
FO formulas over L is denoted by FO[L]. We will write s 6≈ t as an abbreviation for ¬(s ≈ t).

To avoid clutter, we will usually write only formulas to mean FO formulas. When the
signature L is clear, we will also omit mentioning it. So the word formula means an FO formula
over some signature L which can be derived from the context.

The quantifier rank of a formula α, denoted by qr(α), is defined inductively as follows.

• The quantifier rank of an atomic formula is zero.

• qr(¬β) = qr(β).

• qr(β ∧ γ) = qr(β ∨ γ) = max(qr(β), qr(γ)).

• qr(∀x β) = qr(∃x β) = qr(β) + 1.

The set of free variables of a formula α, denoted by free(α), is defined inductively as follows.

• If α is an atomic formula s ≈ t, then free(α) = var(s) ∪ var(t).
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• If α is an atomic formula R(t1, . . . , tn), then free(α) = var(t1) ∪ · · · ∪ var(tn).

• free(¬β) = free(β).

• free(β ∧ γ) = free(β ∨ γ) = free(β) ∪ free(γ).

• free(∀x β) = free(∃x β) = free(β)− {x}.

Formulas without free variables are called sentences, or closed formulas. Otherwise, they are
called open formulas. A formula without any quantifier is called a quantifier free formula.

Sometimes, we will write ϕ(x1, . . . , xn) to indicate that the free variables in ϕ are x1, . . . , xn.
When n is unspecified, we write ϕ(x̄). For formula of the form ∀x β, we say that x is a bound
variable in ∀x β. Likewise, we say that x is a bound variable in ∃x β. In both cases, we say that
β is the scope of x, and that x is bounded by a quantifier.

2.3 Substitutions

Simple substitutions. Let t be a term and x a variable. Let s be a term. The term t[s/x] is
the term obtained by substituting s to the variable x in t. Formally, it is defined inductively as
follows.

• x[s/x] = s and y[s/x] = y, if y 6= x.

• c[s/x] = c, where c is a constant symbol.

• f(t1, . . . , tn)[s/x] = f(t1[s/x], . . . , tn[s/x]), where f is a function symbol of arity n.

The formula α[s/x] is the formula obtained by substituting the free variable x in α with the term
s. Formally, it is defined inductively as follows.

•
(
t1 ≈ t2

)
[s/x] =

(
t1[s/x] ≈ t2[s/x]

)
.

• R(t1, . . . , tn)[s/x] = R(t1[s/x], . . . , tn[s/x]).

• (¬α)[s/x] = ¬(α[s/x]).

•
(
α ∧ β

)
[s/x] = α[s/x] ∧ β[s/x].

•
(
α ∨ β

)
[s/x] = α[s/x] ∨ β[s/x].

•
(
∀y α

)
[s/x] =

{
∀y α[s/x] if y 6= x
∀y α if y = x

.

•
(
∃y α

)
[s/x] =

{
∃y α[s/x] if y 6= x
∃y α if y = x

.

Collision-free substitution. A substitution s/x is collision-free in a formula α, if the following
holds.

• s/x is collision-free in the atomic formulas t1 ≈ t2 and R(t1, . . . , tn).

• s/x is collision-free in ¬α if and only if it is collision-free in α.

• s/x is collision-free in α ∧ β if and only if it is collision-free in both α and β. Likewise, it
is collision free in α ∨ β if and only if it is collision-free in both α and β.

• s/x is collision-free in ∀y α if and only if y /∈ var(s) and it is collision-free in α.

Likewise, s/x is collision-free in ∃y α if and only if y /∈ var(s) and it is collision-free in α.

Simultaneous substitutions. For a formula α(x1, . . . , xn) and terms t̄ = (t1, . . . , tn), α[t̄/x̄]
denotes a substitution in which each xi is substituted with ti. Such a substitution α[t̄/x̄] is called
a simultaneous substitution. It is collision-free, if each ti/xi is collision-free.
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Lesson 5: First-order logic, part 2

Theme: The semantics of first-order logic.

1 Valuations

Recall that VAR is a set of variables. Let A be a structure.

• A valuation in a structure A is a function val : VAR→ A.
• For ā = (a1, . . . , an), where each ai ∈ A, and x̄ = (x1, . . . , xn), where x1, . . . , xn are

all different variables, we write val[x̄ 7→ ā] to denote the valuation val′, where for every
y ∈ VAR,

val′(y) =

{
val(y), if y /∈ {x1, . . . , xn}
ai, if y = xi

Sometimes we write [x̄ 7→ ā] to denote a valuation val such that val(xi) = ai.

2 Interpretations/models

An interpretation is a pair (A, val), where A is a structure and val is a valuation. Quite often,
interpretations are also called models.

In an interpretation (A, val), each term t is associated with an element tA[val] defined induc-
tively as follows.

• xA[val] = val(x), where x ∈ VAR.
• cA[val] = cA, where c is a constant symbol.
• f(t1, . . . , tn)A[val] = fA(tA1 [val], . . . , tAn [val]).

tA[val] reads the term t in structure A according to valuation val.
As usual, when the structure A is clear from the context, we will simply write t[val], instead

of tA[val].
Given an FO formula ϕ, and an interpretation (A, val), we define (A, val) |= ϕ (read: (A, val)

is an interpretation/a model of ϕ, or that ϕ holds in (A, val)) inductively as follows.

• (A, val) |= s ≈ t, if and only if sA[val] = tA[val].
• (A, val) |= R(t1, . . . , tn), if and only if (tA1 [val], . . . , tAn [val]) ∈ RA.
• (A, val) |= ¬α, if and only if it is not true that (A, val) |= α.
• (A, val) |= α ∧ β, if and only if (A, val) |= α and (A, val) |= β.
• (A, val) |= α ∨ β, if and only if (A, val) |= α or (A, val) |= β.
• (A, val) |= ∃x α, if and only if there is a ∈ A such that (A, val[x 7→ a]) |= α.
• (A, val) |= ∀x α, if and only if for every a ∈ A, (A, val[x 7→ a]) |= α.

We write (A, val) 6|= ϕ, when it is not true that (A, val) |= ϕ.
Note that whether (A, val) |= ϕ(x1, . . . , xn) depends only on A (obviously!) and the images of

x1, . . . , xn under val. In other words, the value val(y) does not matter for every y /∈ {x1, . . . , xn}.
To avoid clutter, we write (A, a1, . . . , an) |= ϕ(x1, . . . , xn), to mean that (A, val) |= ϕ, where val
is a valuation function that maps each xi to ai. In particular, if α is a sentence, the valuation val
is dispensable in the determination of (A, val) |= α. So, for a sentence α, we simply write A |= α.

A formula ϕ is satisfiable, if ϕ has an interpretation/model.
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3 Some examples

Example 5.1 LetA = (A, plusA, 0A) be the structure with signature {plus, 0} defined as follows.

• A = {0, 1, 2, . . . , 8},
• plus is a binary function/operator, where plusA(x, y) = x+ y mod 9,

• 0A = 0.

Here are some formulas that hold/not hold in A.

• A, (x, y, z) 7→ (3, 5, 8) |= plus(x, y) ≈ z. Can I say that A |= plus(3, 5) ≈ 8?

• A, (x, y) 7→ (1, 2) 6|= plus(x, y) ≈ 0.

This is equivalent to say that A, (x, y) 7→ (1, 2) |= ¬(plus(x, y) ≈ 0), or, A, (x, y) 7→ (1, 2) |=
plus(x, y) 6≈ 0.

• A, z 7→ 0 |= ∀x plus(x, z) ≈ x.
• A, z 7→ 1 |= ∀x plus(x, z) 6≈ x. Can I say that A |= ∀x plus(x, 1) 6≈ x?
• A |= ∀x plus(x, 0) ≈ x.
• A |= ∀x∃y plus(x, y) ≈ 0.

• A |= ∀x
(
x 6≈ 0 →

(
∃y x 6≈ y ∧ plus(x, y) ≈ 0

))
.

Example 5.2 Let B = (B,EB) be the following structure, where ar(E) = 2:

• B = {a1, b1, . . . , an, bn},
• EB = {(a1, b1), (a2, b2), . . . , (an, bn)}.

The relation EB can be illustrated as follows.

ra1 rb1-

ra2 rb2-

......ran rbn-

Here are some examples of formulas that hold/not hold in B.

• B, (x, y) 7→ (a1, b1) |= E(x, y). Can I say B |= E(a1, b1)?

• B, (x, y) 7→ (a1, b3) 6|= E(x, y).

• B |= ∃x∃y E(x, y).

• B 6|= ∃xE(x, x), which can be rewritten as B |= ¬∃xE(x, x)

• B |= ∀x∃y
(
E(x, y) ∧ ∀z

(
E(x, z)→ y ≈ z

))
.
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Example 5.3 Let Z = (Z, succZ , plusZ , 0Z) be the structure with signature {plus, succ, 0} de-
fined as follows.

• Z = {. . . ,−2,−1, 0, 1, 2, . . .},
• succZ is a binary relation, where (x, y) ∈ succZ if and only if y = x+ 1,

• plusZ is a binary operator, where plusZ(x, y) = x+ y,

• 0Z = 0.

Here are some formulas that hold/not hold in Z.

• Z, (x, y, z) 7→ (3, 5, 8) |= plus(x, y) ≈ z.
• Z, (x, y) 7→ (1, 2) 6|= plus(x, y) ≈ 0.

• Z, z 7→ 0 |= ∀x plus(x, z) ≈ x.
• Z, z 7→ 1 |= ∀x plus(x, z) 6≈ x.
• Z |= ∀x plus(x, 0) ≈ x.
• Z |= ∀x∃y plus(x, y) ≈ 0.

• Z |= ∀x∃y succ(x, y) ∧ x 6≈ y.

• Z |= ∀x∃y succ(x, y) ∧
(
∀z

(
succ(x, z) → y ≈ z

))
.

• Z |= ∀x∀y∀z∀w
((

succ(x, z) ∧ succ(w, y)
)
→ plus(x, y) ≈ plus(z, w)

)
.

4 Two little theorems

Theorem 5.4 Let h : A → B be an isomorphism. Then, for every formula ϕ(x̄),

(A, ā) |= ϕ(x̄) if and only if (B, h(ā)) |= ϕ(x̄)

(Recall that x̄ and ā stands for a vector of variables and elements, respectively, which we tacitly
assume to be of the same length.)

A ∀-sentence (read: a universal sentence) is a sentence of the form:

∀x1 · · · ∀xn ϕ, (1)

where ϕ is quantifier free. Likewise, an ∃-sentence (read: an existential sentence) is a sentence
of the form:

∃x1 · · · ∃xn ϕ, (2)

where ϕ is quantifier free. As usual, we will simply write ∀x̄ ϕ or ∃x̄ ϕ, instead of Eq. (1) and (2),
respectively.

Theorem 5.5 Let A ⊆ B.

• For every ∀-sentence ψ, if B |= ψ, then A |= ψ.

• For every ∃-sentence ψ, if A |= ψ, then B |= ψ.
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Exercise set 1

In the following E,R, T, S are relational symbols, f, g are function symbols and c, c1, c2, . . . are
constant symbols.

(1) Determine the quantifier rank of each of the following formulas.

β1 := ∀x∃y
(
z 6≈ y ∧ R(x, y)

)
β2 := ∀x

(
x 6≈ y ∧ ∃y R(x, y)

)
β3 :=

(
∀z

(
∃z z 6≈ y

))
∧ f(z) ≈ z

β4 := ∀z
(
z ≈ y ∧ ∃z

(
f(z) ≈ g(z)

))
β5 := ∃y∀x

(
R(z, g(z, y)) ∧ T (y) → ∃z∀y x ≈ f(x, g(y, z))

)
β6 := x 6≈ f(c, z) ∧ ∀z∀x

(
R(x, c, c, y) ∧ f(x, z) ≈ c ∧ ∃y

(
f(x, y) ∧ g(z, y)

))
(2) Determine the free variables of each of the formulas above.

(3) Determine the result of each of the following substitutions.

• z/f(z, z, x) in β1.
• y/g(c, c) in β2.
• z/f(x, y, z) in β3.
• y/z in β4.
• z/f(c, z, x) in β5.
• (x, y, z)/(x, x, x) in β6.

Which substitutions are collision-free?

Exercise set 2: The notion of congruence

In this exercise, we will study the notion of congruence on structures. Let Z be set, and ∼ be an
equivalence relation on Z. For a positive integer n, define a binary relation ∼n on Zn as follows.

(a1, . . . , an) ∼n (b1, . . . , bn) if and only if ai ∼ bi, for each i ∈ {1, . . . , n}.

(4) Prove that ∼n is an equivalence relation.

The relation ∼n is called the extension of ∼ to Zn.

(5) Prove that [ā]∼n = [a1]∼ × [a2]∼ × · · · × [an]∼, where ā = (a1, . . . , an).

When it is clear from the context, we will simply use the same symbol ∼, instead of ∼n. That
is, we will write ā ∼ b̄ to mean the extension of ∼ to Zn, instead of ā ∼n b̄.

Let A be an L-structure. A congruence in A is an equivalence relation ∼ on A such that for
every function symbol f ∈ L, the following holds.

If ā ∼ b̄, then f(ā) ∼ f(b̄).

(6) Let ∼ be a congruence in an L-structure A. The factor of A modulo ∼ is a structure B such
that

• B = A/∼= {[a]∼ | a ∈ A},
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• ([a1]∼, . . . , [al]∼) ∈ RB if and only if RA ∩ [ā]∼l 6= ∅, for every relation symbol R ∈ L of
arity l,

• cBi = [cAi ]∼,
• fB([a1]∼, . . . , [al]∼) = [fA(a1, . . . , al)]∼, for every function symbol f ∈ L of arity l.

Prove that this definition is sound. That is, show that

(i) if [(a1, . . . , al)]∼l = [(b1, . . . , bl)]∼l , then ([a1]∼, . . . , [al]∼) = ([b1]∼, . . . , [bl]∼),
(ii) if ([a1]∼, . . . , [al]∼) = ([b1]∼, . . . , [bl]∼), then fB([a1]∼, . . . , [al]∼) = fB([b1]∼, . . . , [bl]∼).

The factor of A modulo ∼ is denoted by A/∼.
(7) For a congruence ∼ in A, the canonical homomorphism κ : A → A/∼ is defined by κ(a) =

[a]∼. Prove that κ is a strong and surjective homomorphism.

Exercise set 3: Skolem normal form

Two formulas ϕ1 and ϕ2 are equi-satisfiable, if

ϕ1 is satisfiable if and only if ϕ2 is satisfiable.

(8) Consider a sentence ψ over a vocabulary L of the form:

ψ := ∃x1 · · · ∃xn ϕ

Pick n “new” constant symbols c1, . . . , cn /∈ L. Show that ϕ[(x1, . . . , xn)/(c1, . . . , cn)] and ψ
are equi-satisfiable.

(9) Consider a sentence ψ over a vocabulary L of the form:

ψ := ∀x1 · · · ∀xn∃y ϕ

Pick a “new” arity n function symbol f /∈ L. Show that ∀x1 · · · ∀xnϕ[y/f(x1, . . . , xn)] and ψ
are equi-satisfiable.

(10) Consider a sentence ψ over a vocabulary L of the form:

ψ := ∀x1 · · · ∀xn∃y1 · · · ∃ym ϕ,

where ϕ does not start with existential quantifiers. Prove that there is a sentence of the
form:

ψ′ := ∀x1 · · · ∀xn ϕ′

such that ϕ′ does not start with existential quantifiers, and ψ and ψ′ are equi-satisfiable.

(11) (Skolem normal form) Consider a sentence ψ over a vocabulary L of the form:

ψ := Q1x1 · · ·Qnxn ϕ, (3)

where each Qi is a quantifier (either ∀ or ∃), and ϕ is quantifier free. Prove that there is
∀-sentence ψ′ (over different vocabulary L′) such that ψ and ψ′ are equi-satisfiable.

Note 1: The ∀-sentence ψ′ is called the Skolem normal form of ψ.

Note 2: Formulas of the form (3) are often called formulas in Prenex Normal Form (PNF).
We will show later on that every formula can be converted into PNF.
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Lesson 6: Logical consequences and theories

Theme: Logical consequences and first-order theories.

1 Logical consequences

Definition 6.1 Let X be a set of formulas. We write (A, val) |= X, if (A, val) |= ϕ, for every
ϕ ∈ X.

Definition 6.2 A formula β is a logical consequence of a formula α, denoted by α |= β, if every
model of α is also a model of β. If α |= β and β |= α, we write α |= |=β, or α ≡ β.

One example is ∀x ϕ |= ∃x ϕ. (Recall that the domain of a structure is never empty.)

Definition 6.3 We say that α is a logical consequence of a set X of formulas, denoted by X |= α,
if every model of X is also a model of α. More formally, X |= α means that for every model
(A, val), if (A, val) |= X, then (A, val) |= α.

We write X 6|= α, if it is not the case that X |= α.

Definition 6.4 A sentence ϕ is valid, if |= ϕ. In other words, ϕ is valid, if A |= ϕ, for every
structure A.∗

Some conventions to read the notations:

• (A, val) |= X is read as “(A, val) is a model of X.”

• α |= β is also read as “α implies β.”

• α ≡ β is also read as “α and β are equivalent.”

Theorem 6.5 X |= ϕ if and only if X ∪ {¬ϕ} is not satisfiable.

Proposition 6.6 For every formulas α and β, the following holds.

¬∀x α ≡ ∃x ¬α
¬∃x α ≡ ∀x ¬α

α ∧ ∀x β ≡ ∀x
(
α ∧ β

)
when x is not free in α

α ∧ ∃x β ≡ ∃x
(
α ∧ β

)
when x is not free in α

Definition 6.7 Every formula is in Prenex Normal Form (PNF), if is is of the form:

Q1x1 · · ·Qnxn ϕ,

where ϕ is quantifier-free, and each Qi ∈ {∀,∃}.

Theorem 6.8 Every formula is equivalent to another formula in PNF.
∗Recall that |= ϕ is the abbreviation for ∅ |= ϕ.
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2 First-order theories

Definition 6.9

• A set T of sentences is called a theory, if it is closed under logical consequences, i.e., for
every sentence ϕ, if T |= ϕ, then ϕ ∈ T .

• A theory T is complete, if for every sentence ϕ, either ϕ ∈ T or ¬ϕ ∈ T .

Definition 6.10

• For a set X of sentences, Model(X) := {A | A |= X}.
• For a set X of sentences, Cn(X) := {ϕ | X |= ϕ}.
• For a set K of structures, Th(K) := {ϕ | ϕ holds in every structure in K}.

Theorem 6.11 For a set K of structures, and a set X of sentences, the following holds.

• K ⊆ Model(Th(K)).

• Th(K) is a theory.

• Cn(X) = Th(Model(X)).

Definition 6.12 A theory T is finitely axiomatizable, if there is a finite set Σ such that T =
Cn(Σ).

Remark 6.13 If Cn(T ) is finitely axiomatizable, then there is a finite subset T0 ⊆ T such that
Cn(T0) = Cn(T ).

Exercises

(1) Show that ∃x∀y ϕ 6|= ∀x∃y ϕ.
That is, give a model A and a formula ϕ such that A |= ∃x∀y ϕ. but A 6|= ∀x∃y ϕ.

(2) Give a set K of sentences such that K 6= Model(Th(K)).

(3) Let K = {A}, i.e., it consists of only one structure A. Prove that Th(K) is complete.

(4) Give a set K of structures such that Th(K) is not complete.

(5) Let T be a complete theory and let A |= T . Prove that for every sentence α, A |= α if and
only if T |= α.

We denote by A ∼= B, if A is isomorphic to B, i.e., there is an isomorphism from A to B. Two
structures A and B are elementarily equivalent, written as A ≡ B, if for every sentence ϕ,

A |= ϕ if and only if B |= ϕ.

(6) Prove that if A ∼= B, then A ≡ B.
(7) Let K be a set of structures such that for every A,B ∈ K, we have A ∼= B. Prove that Th(K)

is complete.



CSIE 5111: Intro. to Math. Logic Lesson 6: Logical consequences and theories

Appendix

The converse of question (6) does not hold in general. That is, A ≡ B does not necessarily imply
A ∼= B. Consider, for example, the following two structures.

• R = (R, <R), where <R is the standard ordering in R.
• Q = (Q, <Q), where <Q is the standard ordering in Q.

It is known thatR ≡ Q, butR is not isomorphic to Q, since R is uncountable, but Q is countable.
In general it is not a trivial matter to determine whether two structures are elementarily

equivalent. It usually involves a technique called Ehrenfeucht-Fraïssé game, which we will not
cover in this course.
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Lesson 7: Proof system in first-order logic

Theme: The notion of provability in first-order logic.

1 Proofs in first-order logic

Throughout this note, L is a fixed vocabulary. For a formula α, we denote by var(α) to be the
set of all variables in α (both free and quantified).

Let X be a set of formulas and α be a formula (over L). We say that α can be provable from
X, or α is derivable from X, denoted by X `L α, if it can be obtained inductively according to
the following rules.

Initial Rule (IR):
X `L α if α ∈ X
X `L t ≈ t for every L-term t

Monotonicity Rule (MR):
X `L α
Y `L α

for every Y ⊇ X

And Combine Rule (ACR):
X `L α and X `L β

X `L α ∧ β

And Split Rule (ASR):
X `L α ∧ β

X `L α and X `L β

Contradiction Rule (CR):
X `L α and X `L ¬α

X `L β
for every β

Negation Rule (NR):
X,α `L β and X,¬α `L β

X `L β

Specialisation Rule (SR):
X `L ∀x α
X `L α[t/x]

where [t/x] is collision-free in α

Generalisation Rule (GR):
X `L α[y/x]
X `L ∀x α

where y /∈ free(X) ∪ var(α)

Equality Rule (ER):
X `L s ≈ t and X `L α[s/x]

X `L α[t/x]
where α is atomic

We write X 6 `Lα, if it is not the case that X `L α.

Remark 7.1 When there is no confusion, we will omit writing L, and thus, write only `, instead
of `L.
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We will also follow the writing convention from the proof system in the propositional calculus.
We write α ` α to denote {α} ` α, whereas X,α ` β means X ∪ {α} ` β. As before, ` α to
denote ∅ ` α.

Theorem 7.2 (Finiteness theorem for `) If X ` α, then there is a finite set X0 ⊆ X such
that X0 ` α.

Example 7.3
X ` s ≈ t and X ` s ≈ t′

X ` t ≈ t′

1. X ` s ≈ t. (supposition)

2. X ` s ≈ t′. (supposition)

Let x /∈ var(t′) and α := x ≈ t′. So (2) is actually X ` α[s/x].

3. X ` α[t/x]. (Equality Rule on 1 and 2)

α[t/x] is precisely t ≈ t′.

Example 7.4
X ` s ≈ t
X ` t ≈ s

1. X ` s ≈ t. (supposition)

2. X ` s ≈ s. (Initial rule)

3. X ` t ≈ s. (Example 7.3 on 1 and 2)

Example 7.5
X ` t ≈ s and X ` s ≈ t′

X ` t ≈ t′

1. X ` t ≈ s. (supposition)

2. X ` s ≈ t′. (supposition)

3. X ` s ≈ t. (Example 7.4 on 1)

4. X ` t ≈ t′. (Example 7.3 on 3 and 3)

Example 7.6
X ` ti ≈ s

X ` f(t1, . . . , tk) ≈ f(t1, . . . , ti−1, s, ti+1,...,tk)

1. X ` ti ≈ s. (supposition)

2. X ` f(t1, . . . , tk) ≈ f(t1, . . . , tk). (Initial rule)

Let x /∈ var(t1) ∪ · · · ∪ var(tk) ∪ var(s) and α := f(t1, . . . , tk) ≈ f(t1, . . . , ti−1, x, ti+1, . . . , tk). So
(2) is actually X ` α[ti/x].

3. X ` α[s/x]. (Equality Rule on 1 and 2)

α[s/x] is precisely f(t1, . . . , tk) ≈ f(t1, . . . , ti−1, s, ti+1,...,tk).

Example 7.7
X ` ti ≈ s and X ` R(t1, . . . , tk)
X ` R(t1, . . . , ti−1, s, ti+1,...,tk)

.
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In the following X ` (t1, . . . , tk) ≈ (s1, . . . , sk) denotes X ` ti ≈ si, for each i ∈ {1, . . . , k}.

Example 7.8
X ` (t1, . . . , tk) ≈ (s1, . . . , sk)

X ` f(t1, . . . , tk) ≈ f(s1, . . . , sk)

Example 7.9
X ` (t1, . . . , tk) ≈ (s1, . . . , sk) and X ` R(t1, . . . , tk)

X ` R(s1, . . . , sk)
.

Lemma 7.10 Let t be a term, and x /∈ var(t). Then, the following holds.

(a) ` ∃x t ≈ x. (Here ∃x t ≈ x stands for ¬∀x t 6≈ x.)
(b) ` ∃x x ≈ x. (Here ∃x x ≈ x stands for ¬∀x x 6≈ x.)

Proof. We prove item (a).

1. ∀x t 6≈ x ` ∀x t 6≈ x. (Initial rule)

2. ∀x t 6≈ x ` (t 6≈ x)[t/x]. (Specialisation Rule on 1)

3. ∀x t 6≈ x ` t 6≈ t.
(
(t 6≈ x)[t/x] = t 6≈ t

)
4. ∀x t 6≈ x ` t ≈ t. (Initial Rule)

5. ∀x t 6≈ x ` ¬∀x t 6≈ x. (Contradiction Rule on 3 and 4)

6. ¬∀x t 6≈ x ` ¬∀x t 6≈ x. (Initial Rule)

7. ` ¬∀x t 6≈ x. (Negation Rule on 5 and 6)

Part (b) can be proved in a similar manner starting with ∀x x 6≈ x ` x 6≈ x and ∀x x 6≈ x ` x ≈ x.
�

2 Precursors to the soundness of `
Proposition 7.11 Let α be a formula, and y /∈ var(α). Then, the following holds.

• α[y/x][x/y] = α.

• ∀z α ≡ ∀y α[y/z].

Proposition 7.12 Let (A, val) be an interpretation. Let t be a term. Suppose that tA[val] = b.

(a) For every term s,

s[t/x]A[val] = sA[val[x 7→ b]].

(b) For every term s1, s2,

(A, val[x 7→ b]) |= s1 ≈ s2 if and only if (A, val) |= (s1 ≈ s2)[t/x].

(c) For a relation R and terms s1, . . . , sm,

(A, val[x 7→ b]) |= R(s1, . . . , sm) if and only if (A, val) |= R(s1, . . . , sm)[t/x].
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Proposition 7.13 Let (A, val) be an interpretation. Let α be a formula, and [t/x] be collision-
free in α. Suppose tA[val] = b. Then, (A, val[x 7→ b]) |= α if and only if (A, val) |= α[t/x].

Proof. The proof is by induction on α. The base case is when α is atomic formula, i.e., of the
form s1 ≈ s2 or R(s1, . . . , sn). This has been settled in Proposition 7.12 parts (b) and (c).

For the induction step, we have three cases: α is of the form ¬β, or β ∧ γ, or ∀z β. The first
two cases are easy. We consider the case when α is ∀z β.

We first prove the “only if” direction. By definition,

(A, val[x 7→ b]) |= ∀z β (1)

if and only if for every a ∈ A,

(A, val[x 7→ b][z 7→ a]) |= β (2)

Now, [t/x] is collision-free in α, which by definition, t does not contain z and [t/x] is collision-free
in β. Since t does not contain z, we have:

tA[val[z 7→ a]] = tA[val] = b (3)

CAUTION: if t contains z, Equation 3 may not hold. That is why we need [t/x] to be collision-free
in α.

So by the induction hypothesis on Equation 2, we have that for every a ∈ A:

(A, val[z 7→ a]) |= β[t/x] (4)

This means that (A, val) |= ∀z β[t/x], and therefore,

(A, val) |= α[t/x] (5)

The “if” direction can be proved in a similar manner via (5)⇒(4)⇒(3)⇒(2). �

Exercises

We are going to show that our proof system is sound, as stated formally below.

(Soundness theorem for `) If X ` α, then X |= α.

We are going to show that each rule in our proof system is sound.

(1) Prove that the Initial Rule (IR) is sound, i.e., for every set X,

• X |= α, for every α ∈ X.
• X |= t ≈ t, for every term t.

(2) Prove that the Monotonicity Rule (MR) is sound, i.e., for every set X, if X |= α, then Y |= α,
for every Y ⊇ X.

(3) Prove that the And Combine Rule (ACR) is sound, i.e., for every set X, for every formulas
α and β, if X |= α and X |= β, then X |= α ∧ β.

(4) Prove that the And Split Rule (ASR) is sound, i.e., for every set X, for every formulas α and
β, if X |= α ∧ β, then X |= α and X |= β.
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(5) Prove that the Contradiction Rule (CR) is sound, i.e., for every set X, for every formula α,
if X |= α and X |= ¬α, then X |= β, for every formula β.

(6) Prove that the Negation Rule (NR) is sound, i.e., for every set X, for every formulas α and
β, if X,α |= β and X,¬α |= β, then X |= β.

(7) Prove that the Specialisation Rule (SR) is sound, i.e., for every set X, for every formula α,
if X |= ∀x α, and [t/x] is collision-free in α, then X |= α[t/x].

(8) Prove that the Generalisation Rule (GR) is sound, i.e., for every set X, for every formula α,
for every variable y /∈ free(X) ∪ var(α), if X |= α[y/x], then X |= ∀x α.

(9) Prove that the Equality Rule (ER) is sound, i.e., for every set X, for every atomic formula
α, for every terms s and t, if X |= s ≈ t and X |= α[s/x], then X |= α[t/x].

(10) Finally, conclude that ` is sound. That is, for every set X, for every formula α, if X ` α,
then X |= α.

Hint: For questions (7)–(9), use Propositions 7.11, 7.12 and 7.13.
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Lesson 8: Gödel’s completeness theorem∗

Theme: Consistent set, Henkin set and the equivalence between the notions of ` and |=.

1 Consistent sets

Let L be a vocabulary, and let X ⊆ FO[L]. The set X is inconsistent, if there is a formula α
such that X ` α and X ` ¬α. By the contradiction rule, this also means that X is inconsistent
if X ` β, for every formula β.

We say that X is consistent, if X is not inconsistent. It is maximally consistent, if it is
consistent and for every set Y ⊆ FO[L] and Y ⊇ X, Y is inconsistent.

2 Constants elimination

Let c be a constant symbol and z be a variable. For a formula α, we write α zc to denote the
formula obtained by replacing every constant symbol c in α by z. For a set X, we write X z

c to
denote the set {α zc | α ∈ X}.

Lemma 8.1 Suppose X `L α. Let c be a constant in L, and L′ denote L− {c}. Then, there is
a finite subset X0 ⊆ X and a variable z /∈ var(X0) ∪ var(α),

X0
z
c `L′ α zc .

Proof. (Sketch) Suppose X `L α. By the finiteness theorem of `, there is a finite set X0 ⊆ X
such that X0 `L α. Let z /∈ var(X0) ∪ var(α).

Claim 1 X0
z
c `L′ α zc .

The claim can be proved by induction on the length of the proof of X0 `L α. �

Lemma 8.2 Suppose X ` α[c/x] and c does not appear in X and α. Then, X ` ∀x α.

Proof. Suppose X ` α[c/x], where c does not appear in X and α.
By Lemma 8.1, there is a finite subset X0 ⊆ X such that X0

z
c ` α[c/x] zc , where z /∈ var(X0)∪

var(α[c/x]).
Now, since c does not appear in X, X0

z
c = X0. So,

X0 ` α[c/x] zc .

Moreover, c does not appear in α. So α[c/x] zc = α[z/x]. Thus,

X0 ` α[z/x].

Since z does not appear in X0 and α, by generalisation rule, we have X0 ` ∀x α. Lemma 8.2
follows immediately by monotonicity rule. �

For a variable x ∈ VAR and α ∈ FO[L], we define a “new” constant cx,α /∈ L. We define the
following formula αx ∈ FO[L ∪ {cx,α}].

αx := ¬∀x α ∧ α[cx,α/x]
∗Similar material can be obtained from Section 3.2 in the textbook A Concise Introduction to Mathematical

Logic (3rd ed.) by Wolfgang Rautenberg.
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Lemma 8.3 Let L be a vocabulary. Define the set ΓL of formulas as follows.†

ΓL := {¬αx | x ∈ VAR and α ∈ FO[L]}

If a set X is consistent, then so is X ∪ ΓL.

Proof. Let X be a consistent set. Suppose to the contrary that X ∪ΓL is inconsistent. That is,
there is ϕ such that

X ∪ ΓL ` ϕ and X ∪ ΓL ` ¬ϕ

Thus, X∪ΓL ` F, where F denotes ϕ∧¬ϕ. By finiteness theorem, there is a finite subset X0 ⊆ X
such that

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ,¬α
xn
n ` F. (1)

We can assume that n is minimal in the sense that X0,¬αx11 , . . . ,¬α
xi
i 0 F, for every i < n. By

Contradition Rule on (1),

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ,¬α
xn
n ` αxnn . (2)

By Initial Rule and Monotonicity Rule,

X0,¬αx11 , . . . ,¬α
xn−1

n−1 , α
xn
n ` αxnn . (3)

By Negation Rule on (2) and (3),

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ` αxnn . (4)

Let us denote by x := xn, α := αn and c := cx,α. Thus,

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ` ¬∀x α ∧ α[cx,α/x]. (5)

By And Split Rule on (5)

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ` ¬∀x α (6)
X0,¬αx11 , . . . ,¬α

xn−1

n−1 ` α[cx,α/x]. (7)

Since cx,α does not appear in X0 and in each of αxii , by Lemma 8.2 on (7), we have

X0,¬αx11 , . . . ,¬α
xn−1

n−1 ` ∀x α. (8)

But (6) and (8) imply thatX0,¬αx11 , . . . ,¬α
xn−1

n−1 is inconsistent, which contradicts the assumption
that n is minimal. �

†Note that ΓL is a set of formulas over the vocabulary L ∪ {cx,α | α ∈ FO[L], x ∈ VAR}.
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3 Henkin sets

Definition 8.4 A set X ⊆ FO[L] is called a Henkin set, if it satisfies the following properties.

(H1) X ` ¬α if and only if X 0 α. Or, equivalently, X ` α if and only if X 0 ¬α.
(H2) X ` ∀x α if and only if X ` α[c/x] for every constant c ∈ L.

Proposition 8.5 If X is a Henkin set over vocabulary L, then for each L-term t, there is a
constant c ∈ L such that X ` t ≈ c.

Proof. Let X be a Henkin set over vocabulary L. By Example 7.10, we have ` ¬∀x t 6≈ x, when
x /∈ var(t). By Monotonicity Rule, X ` ¬∀x t 6≈ x. Since X is Henkin, by (H1), we have

X 0 ∀x t 6≈ x.

By (H2), for some constant c,

X 0 t 6≈ c.

By (H1),

X ` t ≈ c.

This completes our proof of Proposition 8.5. �

Lemma 8.6 For every consistent set X ⊆ FO[L], there is a Henkin set Y ⊇ X, where Y ⊆
FO[L ∪ C], for some set C of “new” constants not in L.

Proof. Let X ⊆ FO[L] be a consistent set. For each integer i > 0, we define the sets Γi, ∆i, Li
and Ci as follows.

∆0 := X L0 := L C0 := ∅ Γ0 := ∅

For each i > 0,

Ci := {cx,α | x ∈ VAR and α ∈ FO[Li−1]}
Li := Li−1 ∪ Ci

Γi :=
{
¬αx αx := ¬∀x α ∧ α[cx,α/x] where α ∈ FO[Li−1] and cx,α ∈ Ci

}
∆i := ∆i−1 ∪ Γi

Now, let ∆ :=
⋃
i>0 ∆i and L′ :=

⋃
i>0 Li.

Consider the poset (F ,⊆), where

F := {Z | ∆ ⊆ Z ⊆ FO[L′] and Z is consistent}.

Claim 2 Let K be a chain in (F ,⊆). Then,
⋃
K is consistent.

Proof. (of Claim 2) Proceeds like the one in propositional calculus. �

By Zorn’s lemma, there is a maximal consistent set Y ∈ F . We will now show that that Y is
Henkin.
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Claim 3 Y satisfies (H1), i.e., Y ` ¬α if and only if Y 0 α.

Proof. (of Claim 3) For the “only if” direction, suppose Y ` ¬α. Since Y is consistent, Y 0 α.
For the “if” direction, suppose Y 0 α, which means that α /∈ Y . Since Y is maximal, Y ∪{α}

is not consistent. So,

Y, α ` ¬α.

By Initial Rule,

Y,¬α ` ¬α.

By Negation Rule,

Y ` ¬α.

This completes our proof of Claim 3. �

Claim 4 Y satisfies (H2), i.e., Y ` ∀x α if and only if Y ` α[c/x] for every constant c ∈ L′.

Proof. (of Claim 4) For the “only if” direction, suppose Y ` ∀x α. Let c ∈ L′. Now [c/x] is
collision-free in α. By Specialisation Rule, Y ` α[c/x].

For the “if” direction, suppose Y ` α[c/x] for every constant c ∈ L′. Let α ∈ FO[Ln]. So, in
particular for c ∈ Cn,

Y ` α[c/x]. (9)

Now, suppose to the contrary that Y 0 ∀x α. By (H1),

Y ` ¬∀x α. (10)

By And Combine Rule on (9) and (10),

Y ` ¬∀x α ∧ α[c/x] (11)

Note that the right side of (11) is simply αx. So, Y ` αx.
However, ¬αx ∈ Y . So, Y ` ¬αx, which means Y is inconsistent. This contradicts the fact

that Y ∈ F , which means that Y is consistent. Therefore, Y ` ∀x α, and this completes the
proof of Claim 4. �

Claims 3 and 4 state that Y is Henkin, and this completes our proof of Lemma 8.6. �

Lemma 8.7 Every Henkin set is satisfiable.

Proof. This will be proved in the exercise. �

4 The completeness theorem for FO

Theorem 8.8 (Gödel’s completeness theorem) X |= α if and only if X ` α.

Proof. The “if” direction is the soundness theorem. For the “only if” direction, we show if X 0 α,
then X 6|= α. Suppose X 0 α. Then, X ∪ {¬α} is consistent‡. By Lemmas 8.6 and 8.7, there
is a Henkin set Y ⊇ X ∪ {¬α} and Y is satisfiable. This means X ∪ {¬α} is satisfiable, and
therefore, X 6|= α. �

‡Lemma 3.2 can be easily proved for a set X of first-order formulas.
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Exercises

In questions (1)-(8) below we are going to show that every Henkin set is satisfiable. Let Y be a
Henkin set and C be the set of all the constants that appear in Y . We associate each constant
c ∈ C with an element ac. Different constants c 6= c′ are associated with different elements
ac 6= ac′ . Consider the set U .

U := {ac | c ∈ C}

Define a relation ∼ on U as follows.

ac ∼ ac′ if and only if Y ` c ≈ c′

(1) Prove that ∼ is an equivalence relation on U . (Note this is not a trivial question.)

Let [ac] denote the equivalence class of ac w.r.t. ∼. The structure A = (A,R1, . . . , f1, . . . , c1, . . .)
is defined as follows.

• A = {[ac] | ac ∈ U}.
• ci = [aci ].

• Ri([ac1 ], . . . , [acn ]) if and only if Y ` R(c1, . . . , cn).

• fi([ac1 ], . . . , [acn ]) = [ac], if Y ` fi(c1, . . . , cn) ≈ c.

(2) Prove that the definition of Ri is well defined.

That is, if ([ac1 ], . . . , [acn ]) = ([ad1 ], . . . , [adn ]), then,

Y ` R(c1, . . . , cn) if and only if Y ` R(d1, . . . , dn)

(3) Prove that the definition of fi is well defined.

That is,

• for every c1, . . . , cn ∈ C, there is c such that Y ` fi(c1, . . . , cn) ≈ c, and
• if ([ac1 ], . . . , [acn ]) = ([ad1 ], . . . , [adn ]), then fi([ac1 ], . . . , [acn ]) = fi([ad1 ], . . . , [adn ]).

Consider the following valuation val : VAR→ A, where val(x) = [ac], where Y ` x ≈ c.

(4) Prove that val is well defined.

(5) Prove that for every term t, if Y ` t ≈ c, then tA[val] = [ac].

Next, we will show that Y is satisfiable, i.e., (A, val) |= α, for every α ∈ Y .

(6) Prove that (A, val) |= s ≈ t, for every atomic formula s ≈ t ∈ Y .

(7) Prove that (A, val) |= R(s1, . . . , sn), for every atomic formula R(s1, . . . , sn) ∈ Y .

(8) Prove that (A, val) |= α, for every α ∈ Y , and hence, Y is satisfiable.

Compactness theorem states that X is satisfiable if and only if X is finitely satisfiable.

(9) Use the completeness theorem to prove the compactness theorem for FO.
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Lesson 9: Löwenheim-Skolem theorem and categorical sets

Theme: Cardinalities of first-order structures.

1 Cardinal numbers

• Two sets A and B have the same cardinality, if there is a bijection from A to B, denoted
by |A| = |B|.

• In the same spirit, |A| 6 |B|, if there is an injective function from A to B.

• |A| < |B|, if |A| 6 |B| and |A| 6= |B|.

For i ∈ {0, 1, 2, . . .}, we define ℵi and ii as follows.

• Both ℵ0 and i0 denote N.
• For each i > 1, ℵi denotes the minimal set such that |ℵi| > |ℵi−1|.
• For each i > 1, ii denotes 2ii−1 .

Abusing the notation, we will often regard each ℵi and ii as “cardinalities.” So, when we write
A = ℵi and A = ii, we mean |A| = |ℵi| and |A| = |ii|, respectively. Likewise, such abuse also
applies for < and 6 comparisons.

Theorem 9.1 (Cantor’s theorem) |A| < |2A|, for every set A.

Cantor’s theorem implies that the sequence i0,i1,i2, . . . will never end, which in turn implies
that the sequence ℵ0,ℵ1,ℵ2, . . . will also never end. The so called Continuum Hypothesis (CH)
states the following.

ℵ1 = i1

2 Löwenheim-Skolem theorem

Theorem 9.2 (Löwenheim-Skolem theorem) If X ⊆ FO[L] is satisfiable, and L is count-
able, then X is satisfied by a countable structure.

Theorem 9.3 (Downward Löwenheim-Skolem theorem) If X ⊆ FO[L] is satisfiable, and
L is of cardinality λ, then X is satisfied by a structure with cardinality 6 λ.

Theorem 9.4 (Upward Löwenheim-Skolem-Tarski theorem) If X ⊆ FO[L] is satisfiable,
and L is of cardinality λ, then for every cardinal number κ > λ, there is a structure with cardi-
nality κ that satisfies X.

Corollary 9.5

(a) Let X ⊆ FO[L], where L is countable. If X has an infinite model, then X has models of
every infinite cardinality.

(b) Let A be an infinite structure for a countable vocabulary L. Then, for every infinite cardinal
λ, there is a structure B of cardinality λ, such that A ≡ B.
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3 Categorical sets

A set X is categorical, if every two models of X is isomorphic.

Proposition 9.6 If X has an infinite model, then X is not categorical.

A theory T is ℵ0-categorical, if all infinite countable models of T are isomorphic. A theory T
is κ-categorical, if all models of T of cardinality κ are isomorphic.

Theorem 9.7 (Łoś-Vaught Test) Let T be a theory over a countable vocabulary. Assume that
T has no finite models.

(a) If T is ℵ0-categorical, then T is complete.

(b) If T is κ-categorical for some infinite cardinal κ, then T is complete.

4 The ZFC system

The ZFC system (Zermelo-Fraenkel-Axiom of Choice) is a set of axioms that describe math-
ematics being founded entirely on set theory. The vocabulary has only one binary relation ε,
which intuitively represents the standard relation ∈.

The ZFC system consists of the following axioms.

Extensionality axiom: ∀x ∀y
(
∀z
(
z ε x↔ z ε y

)
→ x ≈ y

)
.

Intuitively, this means that if x and y have the same members, then x and y are the same.

Separation axioms: ∀x1 · · · ∀xn ∀x ∃y ∀z
(
z ε y ↔

(
z ε x ∧ ϕ(z, x1, . . . , xn)

))
.

The formula ϕ is over the vocabulary {ε}. Intuitively, it means that for a set x, and a
“property” ϕ, there is a set y that contains precisely the elements in x that satisfies ϕ.

Pairing axiom: ∀x ∀y ∃z ∀w
(
w ε z ↔

(
w ≈ x ∨ w ≈ y

))
.

Intuitively, it means that for every two sets x and y, the set {x, y} exists.

Union axiom: ∀x ∃y ∀z
(
z ε y ↔ ∃w

(
w ε x ∧ z ε w

))
.

Intuitively, it means that for every set x, the set
⋃
x exists.

Power set axiom: ∀x ∃y ∀z
(
z ε y ↔ ∀w

(
w ε z → w ε x

))
.

Intuitively, it means that for every set x, the set 2x exists.

Infinity axiom: ∃x
(
∅ ε x ∧ ∀y

(
y ε x → y ∪ {y} ε x

))
Intuitively, it means that there is an infinite set containing 0̂, 1̂, 2̂, . . ., where 0̂ stands for ∅,
1̂ stands for {∅}, and n̂ = {1̂, . . . , n̂− 1}.
Note that both ∅ ε x and y ∪ {y} ε x are abbreviations, where ∅ ε x represents “∅ ∈ x,”
i.e., ∃y

(
∀z ¬(z ε y) ∧ y ε x

)
, and y ∪ {y} ε x represents “y ∪ {y} ∈ x,” which can be

written in a similar manner.

Replacement axioms: ∀x1 · · · ∀xn
∀x ∃=1y ϕ(x, y, x1, . . . , xn) → ∀u ∃v ∀y

(
y ε v ↔ ∃x

(
ϕ(x, y, x1, . . . , xn) ∧ x ε u

))
Intuitively, this means that if for parameters x1, . . . , xn, the formula ϕ(x, y, x1, . . . , xn)
defines a map x 7→ y, then the range of a set is again a set.
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Axiom of choice: ∀x(
∅ 6ε x ∧ ∀u∀v

(
u ε x ∧ v ε x ∧ u 6≈ v
→ u ∩ v ≈ ∅

))
→ ∃y ∀w

(
w ε x → ∃=1z

(
z ε w ∩ y

))
This states axiom of choice. As before, those underline represent abbreviations of first-order
formula describing their respective intuitive meanings.

Remark 9.8 Assuming the consistency of ZFC, the following holds.

• ZFC + CH is consistent (Gödel 1940).

• ZFC + ¬CH is consistent (Cohen 1963).

That is, both CH and its negation cannot be proved from ZFC, provided that ZFC is consistent.

5 Skolem paradox

It is generally accepted that ZFC is consistent, although there is no way to prove it. In the follow-
ing we are going to show an application of Löwenheim-Skolem theorem that yields a seemingly
absurd result, called Skolem paradox.

Assuming its consistency, by Löwenheim-Skolem theorem, ZFC has a countable structure
A = (A, εA). By the infinity axiom, there is an element x ∈ A such that x is an infinite set. By
power set axiom, 2x ∈ A. Now, by Cantor’s theorem, we know that 2x is uncountable. However,
since A is countable, the set of elements related to 2x (by relation ε) must be countable too
(since they all must come from A). Does this mean that Cantor’s theorem and Löwenheim-
Skolem theorem contradict each other? Or, that ZFC is inconsistent?
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Lesson 10: Gödel’s incompleteness theorem, part. 1∗

Theme: Robinson arithmetic and its arithmetization.

In this lesson and the next, we are only dealing with logic over vocabulary {0̃, Succ,+, ·},
where 0̃ is a constant symbol intended to represent the number zero; Succ is a unary function
intended to represent +1, i.e., Succ(x) = x + 1; and finally, + and · are intended to represent
the standard addition and multiplication operands.

1 Robinson arithmetic

Robinson’s arithmetic is a theory Q derived from the following axioms.

(Q1) ∀x
(
Succ(x) 6≈ 0

)
.

(Q2) ∀x∀y (Succ(x) ≈ Succ(y) → x ≈ y).

(Q3) ∀x
(
x 6≈ 0̃ → ∃y x ≈ Succ(y)

)
.

(Q4) ∀x
(
x+ 0̃ ≈ x

)
.

(Q5) ∀x∀y
(
x+ Succ(y) ≈ Succ(x+ y)

)
.

(Q6) ∀x
(
x · 0̃ ≈ 0̃

)
.

(Q7) ∀x∀y
(
x · Succ(y) ≈ (x · y) + x

)
.

Note that by its definition, Q is a finitely axiomatizable theory, and that Q is a proper subtheory
of Th(N ), where N is the standard structure N = (N, 0, Succ,+, ·). What we call number theory
usually refers to Th(N ). Note that Th(N ) is much stronger than Q. For example, ∀x x 6≈ Succ(x)
is not provable in Q.

In the following, we will often write x 6 y as an abbreviation for ∃z x+ z ≈ y, and x < y for
x 6 y ∧ x 6≈ y.

Remark 10.1 For the rest of this lesson and the next, the proof system will always be in a
theory T ⊇ Q, with the sentences (Q1)–(Q7) above being included as axioms of T .

2 Arithmetization

We denote the set Symb = {¬,∧, ∀, (, ),≈, 0̃, Succ,+, ·, x0, x1, x2, . . .} In principle, we can assume
that every formula is a string with symbols from Symb, and every proof is a sequence of formulas
with a comma in between two formulas.

In this section we are going to see how to encode a formula ϕ as a number, and hence, a proof
as a number too. For this purpose, we assign each symbol s ∈ Symb∪{,} a number ]s as follows.

s ¬ ∧ ∀ ( ) ≈ 0̃ Succ + · , x0 x1 x2 · · ·

]s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

Let {p0, p1, . . .} be the set of all prime numbers with p0 < p1 < · · · .
∗Some of the material is taken from the textbook A Concise Introduction to Mathematical Logic (3rd ed.) by

Wolfgang Rautenberg.
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For a string str = s0 · · · sn with each symbol si coming from Symb ∪ {,}, the Gödel number of
str, denoted by ]str is the number:

]str := p]s00 p]s11 · · · p
]sn
n

The Gödel numbers of a formula ϕ and a proof ξ are defined as ]ϕ and ]ξ, respectively, where ϕ
and ξ are viewed as a string of symbols coming from Symb ∪ {,}.

Remark 10.2

• We can write a computer program IsFormula for the following task.

– Input: A positive number N .
– Output: Output True, if N “represents” a formula, i.e., N is the Gödel number of a

formula. Otherwise, output False.

Likewise, we can write a program IsSentence that checks whether an input number N
represents a sentence.

• We can write a computer program IsProofQ for the following task.

– Input: A positive number N .
– Output: Output True, if N represents a proof in Q. Otherwise, output False.

• We can write a computer program IsProofOfQ for the following task.

– Input: Two positive numbers N and M .
– Output: Output True, if N represents a proof, M represents a formula, and N is a

proof of M in Q. Otherwise, output False.

Definition 10.3 Let T be a theory such that T = Cn(Σ). We say that T is recursively axioma-
tizable, if there is a computer program IsAxiomT for the following task.

• Input: A positive number N .

• Output: Output True, if N represents an axiom in T , i.e., N represents a sentence Σ.
Otherwise, output False.

Remark 10.4

• We can write a computer program IsProofOfT for the following task.

– Input: Two positive numbers N and M .
– Output: Output True, if N represents a proof in T , M represents a formula, and N

is a proof of M in T . Otherwise, output False.
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3 A sketch proof of the incompleteness theorem

Gödel’s incompleteness theorem states that for every consistent and recursively axiomatizable
theory T ⊇ Q, there is a sentence Ψ such that neither Ψ nor ¬Ψ are provable in T .

For an integer N > 0, let N denote the following term:

N := Succ · · · Succ︸ ︷︷ ︸
N times

(0̃)

Now, suppose that instead of being a computer program, the boolean function IsProofOfT (y, x)
is a first-order formula that indicates y is a proof of x in T . So, for every sentence ϕ,

T ` ϕ if and only if T ` ∃y IsProofOfT (y, ]ϕ). (1)

Consider a sentence Ψ such that

T ` Ψ ↔
(
∀y ¬ IsProofOfT (y, ]Ψ)

)
(2)

which is an abbreviation for:

T ` Ψ →
(
∀y ¬ IsProofOfT (y, ]Ψ)

)
(3)

T `
(
∀y ¬ IsProofOfT (y, ]Ψ)

)
→ Ψ (4)

From Equation (4), we can derive:†

T ` ¬Ψ → ¬
(
∀y ¬ IsProofOfT (y, ]Ψ)

)
(5)

We now argue that neither T ` Ψ nor T ` ¬Ψ.

• Suppose T ` Ψ.

Applying modus ponens on T ` Ψ and Equation (3), we have:‡

T ` ∀y ¬ IsProofOfT (y, ]Ψ)

which by Equation (1), means Ψ is not provable in T , contradicting supposition T ` Ψ.

• Suppose T ` ¬Ψ.

Applying modus ponens on T ` ¬Ψ and Equation (5),

T ` ¬ ∀y ¬ IsProofOfT (y, ]Ψ)

which is equivalent to

T ` ∃y IsProofOfT (y, ]Ψ).

By Equation (1), it means T ` Ψ, contradicting the consistency of T .

Therefore, neither Ψ nor ¬Ψ are provable in T , hence the incompleteness of T .
In this lesson and the next, we focus on the following two tasks in order to complete our proof

above.

(a) Find the formula for IsProofOfT (y, x) using the vocabulary {0̃, Succ,+, ·}.
(b) Find the statement Ψ.

†Recall that in Lesson 4 we show if X ` α→ β, then X ` ¬β → ¬α, which is called contrapositive.
‡Recall that in Lesson 4 we show if X ` α→ β and X ` α, then X ` β, which is called modus ponens.
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Appendix: The formal definition of recursive functions

We will formalize the notion of recursive functions, which are equivalent to the notion of com-
putable functions. Recall that N = {0, 1, 2, . . .}. Let Fn be the set of all functions from Nn to N,
and let F :=

⋃
n>1Fn.

µ-recursive functions, or shortly, recursive functions, are functions that are built inductively
as follows.

• Base case: All three kinds of functions below are recursive.

Constant function: f(v1, . . . , vn) = 0.
Successor function (on the i-component): f(v1, . . . , vn) = Succ(vi).
Projection function (to the i-component): f(v1, . . . , vn) = vi.

• Induction step: All the functions built up from recursive functions using one of the rules
below are recursive functions.

Composition (Oc). If h ∈ Fm and g1, . . . , gm ∈ Fn are recursive, then the following
function f is also recursive. For every ā = (a1, . . . , an) ∈ Nn,

f(ā) := h(g1(ā), . . . , gm(ā)).

We usually write h[g1, . . . , gm] to denote the function f constructed above.
Primitive recursion (Op). If g ∈ Fn and h ∈ Fn+2 are recursive functions, then so is

f ∈ Fn+1, defined as follows. For every ā = (a1, . . . , an) ∈ Nn,

f(ā, 0) := g(ā)

f(ā, Succ(b)) := h(ā, b, f(ā, b))

µ operation (Oµ). Let g ∈ Fn+1 be such that for every ā ∈ Nn, there is b ∈ N, where
g(ā, b) = 0. If g is computable, then so is the following function f . For every ā =
(a1, . . . , an) ∈ Nn,

f(ā) := the smallest b such that g(ā, b) = 0

We write f(ā) := µb[g(ā, b) = 0] to denote the function f as constructed above.

A recursive function obtained without using the Oµ rule is called a primitive recursive function.

Example 10.5

• The function fadd(a, b) = a+ b is recursive by an application of Op rule.

fadd(a, 0) := a and fadd(a, Succ(b) := Succ(fadd(a, b))

• The functions fmul(a, b) = a · b and fexp(a, b) = ab are recursive.

fmul(a, 0) := 0 and fmul(a, Succ(b)) := fadd(b, fmul(a, b))

fexp(a, 0) := Succ(0) and fexp(a, Succ(b)) := fmul(a, fexp(a, b))

• The function fabs(a, b) := |a− b| is recursive.
• The function fdiv(a, b) := 0, if b divides a, and 1, otherwise, is recursive.
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• The function fprime(n) := pn, where pn is the nth prime number, is recursive.

Theorem 10.6 (Church-Turing thesis) If a function f is computable (by a “computer pro-
gram”), then it is also (i) computable in λ-calculus; (ii) computable by a Turing machine; (iii)
µ-recursive.

In fact, the notions of λ-calculus, Turing machines, and µ-recursive are all equivalent. That
is, a function is computable in λ-calculus if and only if it is computable by a Turing machine if
and only if it is µ-recursive.

In his original paper,§ Gödel showed the following.

• An explicit construction of the primitive recursive function for IsProofOf(x, y) as specified
in Remark 10.4.

• For every primitive recursive function f : Nn → N, there is a formula α(x1, . . . , xn, y) over
vocabulary {Succ,+, ·, 0̃} such that

f(a1, . . . , an) = b if and only if T ` α(a1, . . . , an, b) (6)

An explicit formula for IsProofOf is conceptually not difficult, but long and tedious. In this
class, having convinced ourselves that we can write a computer program for IsProofOf(x, y), we
can invoke Church-Turing thesis to arrive at the conclusion that IsProofOf(x, y) is recursive.
On the other hand, converting a recursive function f to a formula α as specified in Equation (6)
involves a very nice piece of mathematics,¶ and this will be our focus in our next lesson.

§Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I (On
formally undecidable propositions of Principia Mathematica and related systems I), Monatshefte für Mathematik
and Physik, 38:173–198 (1931).

¶To be exact, expressing Oc and Oµ rules in formulas over {0̃, Succ,+, ·} is not difficult. The main difficulty
is in expressing the Op.
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Lesson 11: Gödel’s incompleteness theorem, part. 2

Theme: Representability of recursive functions, fixed point lemma and Gödel’s first incomplete-
ness theorem.

1 Some preliminary results on Robinson’s arithmetic Q

Recall that all our formulas are over the vocabulary Lar = {0̃, Succ,+, ·}, and that for every
integer n > 0, we write n to denote the term Succn(0̃), i.e., applying Succ on 0̃ for n number of
times. For a vector ā = (a1, . . . , an) of integers, we will write ā to denote (a1, . . . , an).

By a straightforward induction on n and m, it is not that difficult to show that for every
integers n,m > 0, the following holds.

(C1) Q ` (Succ(m) + n) ≈ (m+ Succ(n)).

(C2) Q ` (m+ n) ≈ m+ n.

(C3) Q ` (m · n) ≈ m · n.
(C4) Q ` n 6≈ m, for every n 6= m.

(C5) Q ` m 6 n, for every m 6 n.

Recall that our vocabulary Lar does not include 6. The formula m 6 n is actually an
abbreviation for ∃z m+ z ≈ n.

(C6) Q ` ¬(m 6 n), for every m 66 n.
(C7) Q, x 6 n ` (x ≈ 0̃) ∨ (x ≈ 1) ∨ · · · ∨ (x ≈ n).

(C8) Q ` (x 6 n) ∨ (n 6 x).

All these statements show that the natural meaning of the standard operations like addition and
multiplication are provable in Q, and hence, in any extension T ⊇ Q.

Definition 11.1

• A formula ϕ is called a ∆0-formula, if all its quantifiers are bounded quantifiers, i.e., of the
form (∀x 6 t) α, where t is a term over Lar.

Intuitively (∀x 6 t) α states “for every x 6 t, the formula α holds.”

• A formula ϕ is called a Σ1-formula, if it is of the form ∃x̄ ψ, where ψ is a ∆0-formula.

• A formula ϕ is called a Π1-formula, if it is of the form ∀x̄ ψ, where ψ is a ∆0-formula.

Proposition 11.2 Let t be a term over Lar with free variables x1, . . . , xn. For a valuation
val : VAR→ N, consider the substitution sub := [x1/val(x1), . . . , xn/val(xn)]. Then,

tN [val] = m if and only if Q ` t[sub] ≈ m
tN [val] 6 m if and only if Q ` t[sub] 6 m

Proof. By straightforward induction on t together with (C1)–(C8) above. �

Theorem 11.3 below will be very useful. It states that in order to check whether a ∆0-sentence
ϕ is provable in Q, it is sufficient to check whether it holds in N . In other words, instead of
looking for a proof of ϕ, we simply checks whether it holds in N , which is a more convenient and
intuitive system to work with.
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Theorem 11.3 For every ∆0-formula ϕ(x̄), where x̄ = (x1, . . . , xn), the following holds. For
every ā = (a1, . . . , an) ∈ Nn:

N |= ϕ(ā) if and only if Q ` ϕ(ā).

Proof. The proof is by induction on ϕ. The base case, when the atomic formula of the form
s ≈ t, can be deduced directly from Proposition 11.2.

The induction step consists of three cases.

Case 1: ϕ(x̄) is ¬α(x̄).

N |= ϕ(ā) if and only if N 6|= α(ā), if and only if Q 6` α(ā), if and only if Q ` ϕ(ā), with
the second “if and only if” coming from the induction hypothesis.

Case 2: ϕ(x̄) is α1(x̄) ∧ α2(x̄).

N |= ϕ(ā) if and only if N |= α1(ā) ∧ α2(ā), if and only if N |= α1(ā) and N |= α2(ā), if
and only if Q ` α1(ā) and Q ` α2(ā), if and only if Q ` ϕ(ā), with the third “if and only
if” coming from the induction hypothesis.

Case 3: ϕ(x̄) is ∀z 6 t α(x̄, z).

Let val denote the valuation that maps xi to ai, and sub denote the substitution that
substitute xi with ai. Let M = tN [val]. By Proposition 11.2, we have Q ` t ≈M .

N |= ϕ(ā) if and only if for every m 6M ,

N , [val, z 7→ m] |= α(ā, z),

which holds, if and only if for every m 6M ,

Q ` α[sub, z/m],

which holds, if and only if

Q, z 6M ` α[sub, z],

which holds, if and only if

Q ` (∀z 6M)α(x̄, z),

which holds, if and only if

Q ` (∀z 6 t)α(x̄, z).

The third “if and only if” comes from the induction hypothesis, while the fourth is from
(C5) and (C7). The fifth comes from the fact that (∀z 6 M)α(x̄, z) is an abbreviation of
∀z(z 6M → α(x̄, z)). The last one comes from Q ` t ≈M .

�
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2 Representable functions

In the following let x̄ be a vector of variables, and ā be a vector of natural numbers with the
same length as x̄.

Representable functions in a theory T ⊇ Q. A function f : Nk → N is called representable
in a theory T ⊇ Q, if there is a formula ϕ(x̄, y) such that f(ā) = m if and only if T ` ϕ(ā,m).
Note that this is equivalent to saying that f(ā) = m if and only if T ` y ≈ m ↔ ϕ(ā, y).

It is Σ1-representable, if the formula ϕ(x̄) is Σ1-formula, and the formula ϕ is called the
representation formula for f .

Likewise, a relation R ⊆ Nk is called representable in a theory T ⊇ Q, if there is a formula
ϕ(x̄) such that if ā ∈ R, then T ` ϕ(ā); and if ā /∈ R, then T ` ¬ϕ(ā).

Arithmetical functions (functions representable in N ). A function f : Nk → N is called
arithmetical, or representable in N , if there is a formula ϕ(x̄, y) such that f(ā) = m if and only
if N |= ϕ(ā,m). The notions of Σ1-representable and Π1-representable are defined similarly as
above.

3 Representability of recursive functions

In this section we will show the following theorem.

Theorem 11.4 Every recursive function f is representable by a Σ1-formula in Q.

The proof consists of two steps:

(1) We show that f is representable in N by a Σ1-formula, as well as by a Π1-formula.

(2) We show that it can be represented by a Σ1-formula in Q.

Representing f in N . The proof is by induction on f . The base case is as follows.

• f is the constant zero function, i.e., f(x̄) = 0.

Then, ϕ(x̄, y) := y ≈ 0̃ is a ∆0-formula representing f .

• f is the successor function of one of its component, i.e., f(x̄) = Succ(xi).

Then, ϕ(x̄, y) := y ≈ Succ(xi) is a ∆0-formula representing f .

• f is the projection function to one of its components, i.e., f(x̄) = xi.

Then, ϕ(x̄, y) := y ≈ xi is a ∆0-formula representing f .

The induction step is as follows.

• Functions obtained from applying the composition rule Oc.

Let f = h[g1, . . . , gm] be a function from Nn → N, i.e., each gi : Nn → N and h : Nm → N.
By the induction hypothesis, let α and γi be Σ1-formulas representing h and γi, respectively.

Both Σ1-formula ϕ1 and Π1-formula ϕ2 below represent f in N .

ϕ1(x̄, z) := ∃y1 · · · ∃ym
∧

16i6m

γi(x̄, yi) ∧ α(y1, . . . , ym, z)

ϕ2(x̄, z) := ∀u
(
ϕ1(x̄, u) → u ≈ z

)
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• Functions obtained from applying the primitive recursive rule Op.

This is the most challenging part. See the appendix for the details.

• Functions obtained from applying the rule Oµ.

Let x̄ = (x1, . . . , xn), and let f(x̄) := µy[g(x̄, y) = 0]. By the induction hypothesis, there
is a Σ1-formula α1(x̄, y, z), and Π1-formula α2(x, t, z) representing g in N .

α1(x̄, y, z) := ∃v̄ ψ1(x̄, y, z, v̄) where ψ1 is a ∆0-formula
α2(x̄, y, z) := ∀w̄ ψ2(x̄, y, z, w̄) where ψ2 is a ∆0-formula

Consider the formula ϕ1 below.

ϕ1(x̄, y) := α1(x̄, y, 0̃) ∧ (∀z < y) ¬α2(x̄, z, 0̃)

:= ∃v̄ ψ1(x̄, y, z, v̄) ∧ (∀z < y) ∃w̄ ¬ψ2(x̄, z, 0̃, w̄)

We have the following identity (can be easily proved) in N :

N |= (∀z < y) ∃u ψ ≡ ∃u′(∀z < y)¬(∀u < u′)¬ψ

Therefore, the following Σ1-formula ϕ′1 is equivalent to ϕ1 in N .

ϕ′1(x̄, y) := ∃v̄ ψ1(x̄, y, z, v̄) ∧ ∃w̄′(∀z < y) ψ′2(x̄, z, 0̃) where ψ′2 is ∆0-formula

:= ∃v̄∃w̄′
(
ψ1(x̄, y, z, v̄) ∧ (∀z < y) ψ′2(x̄, z, 0̃)

)
Thus, ϕ′1 is the desired Σ1-formula representing f in N .

A Π1-formula ϕ2 representing f can be obtained as follows.

ϕ2(x̄, y) := ∀u
(
ϕ′1(x̄, u) → u ≈ y

)
Representing f in Q. Note that if f is representable in Q, then by monotonicity rule, it is
representable in T ⊇ Q.

Let f : Nn → N be a recursive function, and let ϕ(x̄, y) := ∃z̄ ψ(x̄, y, z̄) be its representing
formula in N , where ψ is ∆0-formula. That is, for every ā ∈ Nn,

f(ā) = b if and only if N |= ϕ(ā, b).

We have to show that for every ā ∈ Nn,

f(ā) = b if and only if Q ` ϕ(ā, b).

We start with the “if” part. Suppose f(ā) = b. Since ϕ represents f , for some w̄,

N |= ψ(ā, b, w̄)

Since ψ is ∆0-formula, by Theorem 11.3, we have Q ` ψ(ā, b, w̄), and hence, Q ` ∃z̄ ψ(ā, b, z̄).
Now, we show the “only if” part. Suppose for some w̄, Q ` ψ(ā, b, w̄). Since N |= Q, we have

that N |= ψ(ā, b, w̄), and thus, N |= ∃z̄ ψ(ā, b, z̄). Therefore, N |= ϕ(ā, b). Since ϕ represents f ,
we have f(ā) = b. This completes the proof of Theorem 11.4.
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4 Fixed point lemma and Gödel’s first incompleteness theorem

Recall that in order to prove Gödel’s incompleteness theorem, we have to show that:

• Every recursive function is representable in Q.

• For a consistent and recursively axiomatizable theory T ⊇ Q, there is a sentence Ψ such
that T ` Ψ ↔

(
∀y ¬ IsProofOfT (y, ]Ψ)

)
,

We describe how to achieve the first part in the previous section. We will now describe how to
achieve the second part.

For a variable x, define the function Subsx : N2 → N as follows.

Subsx(N,m) := K

where K is “the formula” obtained by substituting variable x with the term m in “formula”
N . Here, “the formulas” K and N refer to the formulas whose Gödel’s numbers are K and N ,
respectively. It is not that difficult to think of a computer program for Subsx. So, it is also a
recursive function, and can be represented in a theory Q, and hence, in any extension T ⊇ Q.
Let ΛSubsx(v1, v2, v3) be a Σ1-formula representing Subsx.

Lemma 11.5 (Fixed point lemma) Let T ⊇ Q. For every formula α(z) over vocabulary
{0̃, Succ,+, ·}, there is a formula γ such that T ` γ ↔ α(]γ).

Proof. Due to the definition of ΛSubsx(v1, v2, v3), for every formula ϕ,

T ` ΛSubsx(]ϕ, n, y) ↔ y ≈ ]ϕ[x/n]

If we plug in n with ]ϕ itself,

T ` ΛSubsx(]ϕ, ]ϕ, y) ↔ y ≈ ]ϕ[x/]ϕ] (1)

Let β(x) be the following formula.

β(x) := ∀y
(

ΛSubsx(x, x, y) → α[z/y]
)

Consider γ := β[x/]β]. That is,

γ = ∀y
(

ΛSubsx(]β, ]β, y) → α[z/y]
)

By (1),

T ` γ ↔ ∀y
(
y ≈ ]β[x/]β] → α[z/y]

)
Since γ = β[x/]β],

T ` γ ↔ ∀y
(
y ≈ ]γ → α[z/y]

)
T ` γ ↔ α(]γ)

This completes the proof of fixed point lemma. �

To wrap up, we state and prove formally Gödel’s incompleteness theorem.
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Theorem 11.6 (Gödel’s incompleteness theorem) For every consistent and recursively ax-
iomatizable theory T ⊇ Q, there is a sentence Ψ such that neither T ` Ψ nor T ` ¬Ψ.

Proof. Since T is recursively axiomatizable theory, we have a “computer program” on an input
proof y, output x, which represents the conclusion of the proof y. By Church-Turing thesis, every
“computer program” is equivalent to a recursive function, and by Theorem 11.4, a recursive func-
tion can be represented in Σ1-formula in T ⊇ Q. Thus, we have a Σ1-formula IsProofOfT (y, x)
which states that y is a proof of x. In particular, we also have the following formula.

ProvableT (x) := ∃y IsProofOfT (y, x)

such that

T ` ϕ ↔ ProvableT (]ϕ)

Consider the negation of ProvableT (x), i.e., ¬ProvableT (x). By fixed-point lemma, there is
Ψ such that

T ` Ψ ↔ ¬ProvableT (]Ψ)

which is simply

T ` Ψ ↔ ∀y ¬IsProofOfT (y, ]Ψ)

Following the argument in Section 3 in Lesson 10, neither Ψ nor ¬Ψ are provable in T . �

Appendix: Representing the Op rule

The proof consists of two steps.

• First, we construct a function G : N2 → N representable with ∆0-formula such that for
every n, for every sequence c0, . . . , cn, there is c such that for all i = 0, . . . , n, we have
G(c, i) = ci.

• Using the function G constructed, we can represent the Op rule with a Σ1-formula.

Intuitively, the function G “encodes” every sequence element (c0, . . . , cn) ∈ N∗ =
⋃

i>1Ni as a
number c such that to retrieve an element ci, we simply “access” G(c, i).

Constructing the function G. Consider the following bijection ℘ : N2 → N.

℘(a, b) := a+
a+b∑
i=1

i = a +
1

2
(a+ b)(a+ b+ 1)

Note that a, b 6 ℘(a, b), for every a, b. It is trivial that ℘ can be represented by a ∆0-formula.
Let F : N3 → N be the following function.

F (a, b, i) := the remainder of a divided by 1 + (1 + i)b

It is not that difficult to show that the function F is represented by a ∆0-formula.
Let Projx and Projy be the following functions. For every m ∈ N, if ℘−1(m) = (a, b),

Projx(m) := a and Projy(m) := b
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Consider the following function G : N2 → N.

G(c, i) := F (Projx(c) , Projy(c) , i)

The function G can be represented with a ∆0-formula as follows.

G(c, i) = m if and only if (∃x 6 c)(∃y 6 c)
(
℘(a, b) = c ∧ F (a, b, i) = m

)
The underlined parts denote abbreviations of the formulas that represent ℘(a, b) = c and
F (a, b, i) = m, respectively.

We will show that G is our desired function. In the following we write a | b to denote that
a divides b, i.e., when b is divided by a, there is no remainder. For two positive integers a, b, we
say that a and b are coprime, if there is no prime p that divides both a and b.

Lemma 11.7 (Euclid) If a and b are coprime, then there are x, y ∈ N such that ax+ 1 = by.

Theorem 11.8 (Chinese remainder theorem) Let c0, . . . , ck, d0, . . . , dk such that ci < di.
Let d1, . . . , dk be pairwise coprime. Then, there exists an integer a ∈ N such that rem(a, di) = ci,
i.e. the remainder of a divided by di is ci.

Theorem 11.9 For every n, for every sequence c0, . . . , cn, there exist a, b such that for all i =
0, . . . , n, we have F (a, b, i) = ci.

Since G(℘(a, b), i) = F (a, b, i), we have that for every sequence c0, . . . , cn, there is c, which is
℘(a, b) and greater than each ci, such that for all i = 0, . . . , n, we have G(c, i) = ci.

Proof. Let c0, . . . , cn be a sequence of natural numbers. Consider the following two numbers M
and K.

• M := max(n, c0, . . . , cn).

• b := lcm(1, . . . ,M), where “lcm” is least common multiplier.

Let di := 1 + (1 + i)b, for each i = 0, . . . , n. Note that di > ci.
We claim that d0, . . . , dn are pairwise coprime. Suppose to the contrary that there is a prime

p that divides both di and dj . Thus, p | di − dj = (i− j)b. So, either p|(i− j) or p | b.
Now, i, j 6 M , since b is the least common multiplier of all integers between 1 and M , we

have (i− j) | b. This means that p | b. By definition of di, b | (di − 1), which means p | (di − 1).
This is absurd, since p | di. So, there is such prime p that divides di and dj . In other words,
d0, . . . , dn are coprime.

By Theorem 11.8, there is a such that rem(a, di) = ci. By the definition of the function F ,
we have F (a, b, i) = ci. By the construction, it is obvious that ℘(a, b) > ci. �

Representing functions obtained from applying Op rule. Let g ∈ Fn and h ∈ Fn+2 be
recursive functions.

• Let g be represented by a Σ1-formula α1, as well as a Π1-formula α2.

• Let h be represented by a Σ1-formula β1, as well as a Π1-formula β2.

Suppose f ∈ Fn+1 is the function obtained via the Op rule as follows. For every ā ∈ Nn,

f(ā, 0) := g(ā) and f(ā, Succ(b)) := h(ā, b, f(ā, b))
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The following formula represents f .

ϕ(x̄, y, z) :=
(
y ≈ 0̃ → α1(x̄, z)

)
∧ ∃z′(∀y′ < y)

(
G(z′, Succ(y′)) = h(x̄, y′, G(z′, y′))

)
Intuitively, the variable z′ is such that for every i 6 y, G(z′, i) = f(x̄, i).

Now, ϕ(x̄, y, z) can be rewritten into:

ϕ(x̄, y, z) :=
(
y ≈ 0̃ → α1(x̄, z)

)
∧

∃z′(∀y′ < y)(∀u < z′)(∀v < z′)(
G(z′, Succ(y′)) = u ∧ G(z′, y′) = v → β1(x̄, y

′, u2, u1)
)

By pulling all the existential quantifiers from β1 and ∃z′ to the front of the formula, we obtain a
Σ1-formula. A Π1-formula can be obtained via:

ϕ′(x̄, y, z) := ∀w ϕ(x̄, y, w)→ w ≈ z
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Lesson 12: Decision problems in FO

Theme: The complexity of some standard decision problems in FO.

From Gödel’s incompleteness theorem, it is immediate that the following problem SAT(N ) is
undecidable, where N is the structure N = (N, 0, succ,+, ·).

SAT(N )

Input: An FO sentence ϕ over the vocabulary Lar = {0̃, Succ,+, ·}.
Task: Output True, if N |= ϕ. Otherwise, output False.

Theorem 12.1 The problem SAT(N ) is undecidable.

Consider the following evaluation problems.

EVAL(FO)

Input: An FO sentence ϕ and a finite structure A.
Task: Output True, if A |= ϕ. Otherwise, output False.

EVAL(ϕ), where ϕ is an FO sentence

Input: A finite structure A.
Task: Output True, if A |= ϕ. Otherwise, output False.

Theorem 12.2

• The problem EVAL(FO) is Pspace-complete.

• For every FO sentence ϕ, the problem EVAL(ϕ) is in Ptime.

Recall that a sentence ϕ is satisfiable, if there is a model A such that A |= ϕ. A sentence is
finitely satisfiable, if there is a finite model A such that A |= ϕ. We will consider the following
two problems.

SAT(FO)

Input: An FO sentence ϕ.
Task: Output True, if ϕ is satisfiable. Otherwise, output False.

FIN-SAT(FO)

Input: An FO sentence ϕ.
Task: Output True, if ϕ is finitely satisfiable. Otherwise, output False.

Theorem 12.3

• Both SAT(FO) and FIN-SAT(FO) are undecidable.

• SAT(FO) is co-r.e (co-recursive enumerable).

• FIN-SAT(FO) is r.e (recursive enumerable).


