
CSIE 3110: Formal Languages and Automata Theory

Tony Tan

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Table of contents

Lesson 0. Preliminaries: The halting problem in the C++ language, the basic notions of
alphabets and languages and review of some basic facts from discrete mathematics.

Lesson 1. Finite state automata: Deterministic finite state automata, the closure proper-
ties of regular languages, non-deterministic finite state automata and pumping lemma.

Lesson 2. Regular expressions: Regular expressions as another model for finite state au-
tomata.

Lesson 3. Context-free languages: Context-free grammars, derivation trees and pumping
lemma.

Lesson 4. Push-down automata: Push-down automata as a model of computation for
context-free languages.

Lesson 5. Turing machines and decidable languages: Turing machines as a model of
general computation and the notion of decidable and recognizable languages.

Lesson 6. Turing machines and the notion of algorithms: Multi-tape Turing machines,
an informal definition of algorithms and the equivalence with Turing machines.

Lesson 7. Universal Turing machines and the halting problem: Universal Turing
machines, the halting problem and the existence of undecidable and unrecognizable languages.

Lesson 8. Reducibility: Turing reductions, mapping reductions, Rice’s theorems and unde-
cidability of some problems related to CFL.

Lesson 9. Non-deterministic Turing machines: Non-deterministic Turing machines and
the equivalence to deterministic Turing machines.

Lesson 10. Basic complexity classes: Classification of languages/problems according to
number of steps (time) and cells (space) needed by Turing machines to decide them.

Lesson 11. NP-complete languages: Polynomial time reductions and NP-complete lan-
guages/problems.

CSIE 3110: Formal languages and automata theory Lesson 0: Preliminaries

Lesson 0: Preliminaries

Theme: Some introductory material.

1 Problems impossible for computers

Consider the following problem, which we denote by Problem-A.

Problem-A

Input: Two files:
The first file is a C++ program, denoted by file-1.cpp.
The second file is a file with arbitrary extension, denoted by file-2.

Task: Output True, if the C++ program file-1.cpp returns True
when the input (to file-1.cpp) is the content of file-2.

Otherwise, output False.

We will show that it is impossible to write a C++ program for Problem-A. Before we proceed,
we consider the following two simpler problems.

Problem-B

Input: One file, a C++ program, denoted by program.cpp.
Task: Output True, if the C++ program program.cpp returns True

when the input is itself, i.e., the content of program.cpp.
Otherwise, output False.

Problem-C

Input: One file, a C++ program, denoted by program.cpp.
Task: Output False, if the C++ program program.cpp returns True

when the input is itself, i.e., the content of program.cpp.
Otherwise, output True.

Note that Problem-C is just the “negation” of Problem-B, thus, they are computationally
“equivalent” in the sense that if we can write a C++ program for Problem-B, we can write another
C++ program for Problem-C. Likewise, if we can write a C++ program for Problem-C, we can
write another C++ program for Problem-B. On the other hand, Problem-A is computationally
“more general” than Problem-B and Problem-C in the sense that if we can write a a C++ program
for Problem-A, we can write another C++ program for Problem-B or for Problem-C.

We can show the following.

Theorem 0.1 There is no C++ program for Problem-C. Therefore, there is no C++ program
for Problem-B and Problem-A, as well.

Proof. Suppose to the contrary that there is a C++ program for Problem-C, which we denote by
myprog.cpp. We run myprog.cpp with input myprog.cpp itself and consider the output. There
are two possibilities

CSIE 3110: Formal languages and automata theory Lesson 0: Preliminaries

• The output is True.

Since myprog.cpp is a program for Problem-C, by definition of Problem-C, myprog.cpp does
not return True on myprog.cpp itself. Thus, we arrive at a contradiction.

• The output is False.

Since myprog.cpp is a program for Problem-C, by definition of Problem-C, myprog.cpp
returns True on myprog.cpp itself. Again, we arrive at a contradiction.

In both cases, we arrive at a contradiction. Thus, there is no such C++ program myprog.cpp
for Problem-C.

Remark 0.2 Note that in the proof of Theorem 0.1 we do not use any fact about C++ program
itself. The non-existence of C++ program for Problem-C is established by pure logic. So we can
redefine all the problems Problem-A, Problem-B and Problem-C in terms of any other programming
languages, and show that one can not possibly write a computer program (in that particular
language) for any of them.

2 The notion of alphabets and languages

In this course we assume familiarity with basic terminology from discrete mathematics. See
Appendix A. In addition, we will use the following terminology.

• An alphabet is a finite set of symbols. We usually use the symbol Σ to denote an alphabet.

• A (finite) string/word over Σ is a finite sequence of symbols from Σ.

• We will usually write w = a1 . . . an to denote a word whose label in position i is ai. The
length of w is denoted by |w|.

• We write ε to denote the empty string/word, i.e., the word of length 0.

• For an integer n > 0, Σn denotes the set of all the words over Σ of length n.

• Σ∗ denotes the set of all finite words over Σ, i.e., Σ∗ =
⋃

n>0 Σn.

• A language L over Σ is a subset of Σ∗.

Note that a computer program (say, in C++) can be viewed as a string. It is important to
notice also that the length of a computer program can only be finite, albeit it can be a very long
string.

CSIE 3110: Formal languages and automata theory Lesson 0: Preliminaries

Appendix

A Reviews of some basic terminology from discrete mathematics

Set-theoretic terminology:

• A set is a collection of things, which are called its members or elements.

a ∈ X (read: a is in X, or a belongs to X) means a is a member or an element of X,
whereas a /∈ X means a is not a member of X.

• We usually write a set X as X = {a|a satisfies some property P}, which we read as “X is
the set of all elements a that satisfy property P .”

Sometimes, we will also write X = {a ∈ U |a satisfies some property P} to specify that the
set X only contains elements from some set U . In this case, we read it as “X is the set of
all elements in U that satisfy property P .”

For example, P = {a ∈ N|a is a prime number} denotes the set of all prime numbers.

• The empty set is denoted by ∅, i.e., a set that does not contain anything.

• X is a subset of Y , denoted by X ⊆ Y , if every element of X is also an element of Y .

X is a proper subset of Y , denoted by X (Y , if X 6= Y and X ⊆ Y .

• For two sets X and Y , we write X ∩ Y and X ∪ Y to denote their intersection and union,
respectively.

• The cartesian product between two sets X and Y is the following.

X × Y := {(a, b) | a ∈ X and b ∈ Y }.

We write Xn to denote X × · · · ×X, where X appears n time.

Relations and functions:

• A relation R from a set X to another set Y is a subset of X × Y .

• A binary relation R over X is a subset of X ×X.

• An n-ary relation R over X is a subset of Xn.

• A relation R from X to Y is a function or a mapping, if for every x ∈ X, there is exactly
one y ∈ Y such that (x, y) ∈ R.

In this case, we will say R is a function from X to Y , or R maps X to Y . We denote it by
R : X → Y .

• We usually use the letters f, g, h, . . . to represent functions. As usual, we write f(x) to
denote the element y in which (x, y) ∈ f .

• A function f : X → Y is an injective function, if for every y ∈ Y , there is at most one
x ∈ X such that f(x) = y. An injective functions is also called an injection.

• A function f : X → Y is a surjective function, if for every y ∈ Y , there is at least one
x ∈ X such that f(x) = y.

• A function f : X → Y is a bijection, if it is both injective and surjective.

CSIE 3110: Formal languages and automata theory Lesson 0: Preliminaries

B The use of quantifiers in mathematical statements

In this course it is important to be able to read mathematical/formal statements. It will take a
while to get used to them. One important aspect of a formal statement is its use of “quantifiers.”

Consider the following statement.

Every student stays in a dormitory room. (1)

If we want to write in strict logical form, we will have to write it in the following way.

For every student x, there is a dormitory room y such that x stays in y.

“For every” and “there exists” in the above sentence are called quantifiers.
The negation of statement (1) is:

There is student x, such that for every dormitory room y, x does not stay in y. (2)

Note also that neither (1) nor (2) are equivalent to the following sentence:

There is student x, such that for every dormitory room y where x stays in y. (3)

Some examples of deductions involving quantifiers. Suppose we know that the following
is true:

For every student x, if x is not from Taipei, then x lives in dormitory. (4)

Now, suppose we also know that:

John is a student, but he does not live in dormitory. (5)

From (4), we can deduce that John is from Taipei.
As another example, suppose we know that:

Bob is a student and he is from Taipei. (6)

Can we conclude from (4) that Bob does not live in dormitory? No! It is because (4) does not
give any us information about students from Taipei. It only gives us information about students
not from Taipei.

Consider another example:

Charlie is not from Taipei. (7)

Can we conclude from (4) that Charlie lives in dormitory? No! It is because (4) only gives us
information about students. Note that (7) does not tell us whether Charlie is a student.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

Lesson 1: Finite state automata

Theme: Deterministic and non-deterministic finite state automata.

1 Deterministic finite state automata

A deterministic finite state automaton (DFA) is a system A = 〈Σ, Q, q0, F, δ〉, where each com-
ponent is as follows.

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ : Q× Σ→ Q is the transition function.

In this case, we will say that “A is a DFA over alphabet Σ,” or that “the alphabet of A is Σ.”

Remark 1.1 A DFA A = 〈Σ, Q, q0, F, δ〉 can be visualised as a directed graph where the vertices
are elements of Q and there is an edge from p to p′ labeled with a, if δ(p, a) = p′.

On input word w = a1 · · · an, the run of A on w is the sequence:

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q0 and δ(pi, ai+1) = pi+1, for each i = 0, . . . , n− 1.
Sometimes we are interested in a run that does not start from the initial state. In that case,

we can define the run of A on w starting from state q as the sequence defined as above, but with
condition p0 = q. That is,

p0 a1 p1 a2 p2 · · · an pn,

where p0 = q and δ(pi, ai+1) = pi+1, for each i = 0, . . . , n− 1.
A run is called an accepting run, if p0 = q0 and qn ∈ F . We say that A accepts w, if there is

an accepting run of A on w. The language of all words accepted by A is denoted by L(A).
A language L is called a regular language, if there is a DFA A such that L(A) = L.

Remark 1.2 Let A = 〈Σ, Q, q0, F, δ〉 be a DFA.

• The empty string ε is accepted by A if and only if q0 ∈ F .
• For every word w, there is exactly one run of A on w.

Theorem 1.3 Regular languages are closed under boolean operations, i.e., intersection, union,
and complement. More formally, it can be stated as follows.

• For every DFA A over alphabet Σ, there is a DFA A′ over the same alphabet Σ such that
L(A′) = Σ∗ − L(A).

• For every two DFA A1 and A2, there is a DFA A′ such that L(A′) = L(A1) ∩ L(A2).

• For every two DFA A1 and A2, there is a DFA A′ such that L(A′) = L(A1) ∪ L(A2).

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

Proof. (Closure under complement) Let A = 〈Σ, Q, q0, F, δ〉 be a DFA. Consider the DFA B =
〈Σ, Q, q0, Q−F, δ〉. That is, B is exactly the same as A with the difference only in the accepting
states, where the accepting states in A become non-accepting in B and the non-accepting states
in A become accepting in B.

Obviously, for every word w ∈ Σ∗, the accepting run of A on w becomes non-accepting run
of B on w. Vice versa, the non-accepting run of A on w becomes accepting run of B on w. Thus,
L(B) = Σ∗ − L(A).

(Closure under intersection) Let A1 = 〈Σ, Q1, q0,1, F1, δ1〉 and A2 = 〈Σ, Q2, q0,2, F2, δ2〉 be
DFA. Consider the following DFA B = 〈Σ, Q, q0, F, δ〉, where:

• Q = Q1 ×Q2.

• The initial state q0 is (q0,1, q0,2).

• F = F1 × F2.

• The transition function δ is defined as follows. For every (p1, p2) ∈ Q1 × Q2, for every
a ∈ Σ,

δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a))

We will show that L(B) = L(A1)∩L(A2). First, we show that L(B) ⊆ L(A1)∩L(A2). Consider
a word w = a1 · · · an, where each ai ∈ Σ. Suppose w ∈ L(B), and we denote its accepting run
by:

(s0, t0) a1 (s1, t1) a2 (s2, t2) · · · an (sn, tn).

By the definition of accepting run and the definition of B,

s0 a1 s1 a2 s2 · · · an sn and t0 a1 t1 a2 t2 · · · an tn

are accepting runs of A1 and A2 on w, respectively, and hence, w ∈ L(A1) ∩ L(A2).
Now, we show that L(A1)∩L(A2) ⊆ L(B). Consider a word w = a1 · · · an, where each ai ∈ Σ.

Suppose w ∈ L(A1) ∩ L(A2). We denote the accepting run of A1 on w by:

s0 a1 s1 a2 s2 · · · an sn

and the accepting run of A2 on w by:

t0 a1 t1 a2 t2 · · · an tn.

By the definition of accepting run and the definition of B,

(s0, t0) a1 (s1, t1) a2 (s2, t2) · · · an (sn, tn).

is the accepting run of B on w. Hence, w ∈ L(B).
(Closure under union) Similar to the intersection case, except that the set of accepting states

become (Q1 × F2) ∪ (F1 ×Q2).

2 Non-deterministic finite state automata

A non-deterministic finite state automaton (NFA) is a system A = 〈Σ, Q, q0, F, δ〉, where each
component is as follows.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

• Σ is an alphabet.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q× Σ×Q is the transition relation.

As before, we will say that “A is an NFA over alphabet Σ,” or that “the alphabet of A is Σ.”
On input word w = a1 · · · an, a run of A on w is a sequence:

q0 a1 q1 a2 q2 · · · an qn,

where (qi, ai+1, qi+1) ∈ δ, for each i = 0, . . . , n− 1.∗ It is called accepting run, if qn ∈ F . We say
that A accepts w, if there is an accepting run of A on w. The language of all words accepted
by A is denoted by L(A). A language L is an NFA language, if there is an NFA A such that
L = L(A), in which, we say that the language L is accepted by A, or A accepts the language L.

Remark 1.4 NFA languages are closed under intersection and union. More formally, it can be
stated as follows.

• For every two NFA A1 and A2, there is an NFA A′ such that L(A′) = L(A1) ∩ L(A2).

• For every two NFA A1 and A2, there is an NFA A′ such that L(A′) = L(A1) ∪ L(A2).

Question: Why can we not conclude that NFA languages are closed under complementation
directly from the definition of NFA?

Theorem 1.5 For every NFA A, there is a DFA A′ such that L(A) = L(A′).

Proof. Let A = 〈Σ, Q, q0, F, δ〉 be an NFA. Consider the following DFA A′ = 〈Σ, Q′, q′0, F ′, δ′〉.

• Q′ = 2Q, i.e., the set of all subsets of Q, including ∅ and Q.

• The initial state q′0 is {q0}, i.e., the set that contains only a single element which is the
initial state q0 of A.

• F ′ consists of the subset S ⊆ Q where S ∩ F 6= ∅.
• The transition function δ : 2Q × Σ→ 2Q is defined as follows.

δ′(S, a) = {p | there is q ∈ S such that (q, a, p) ∈ δ}

In other words, for every S ∈ 2Q and a ∈ Σ, we define δ′(S, a) to be the set T , where p ∈ T
if and only if there is q ∈ S such that (q, a, p) ∈ δ. By default, we define δ′(∅, a) = ∅.

We have the following two claims.

Claim 1 For every word w ∈ Σ∗, where w = a1 · · · an, if there is a run of A on w:

q0 a1 q1 a2 q2 · · · an qn, where q0 is the initial state of A,

then the run of A′ on w denoted by:

S0 a1 S1 a2 S2 · · · an Sn, where S0 is the initial state of A′,

is such that qi ∈ Si, for each i = 0, 1, . . . , n.
∗As in the case of DFA, we can define a run of A on w starting from state q as above, but starts from state q.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

Proof. (of claim) The proof is by induction on the length of w, i.e., n. The base case, n = 0,
holds trivially, since by the definition of A′, its initial state q′0 is the set {q0}.

For the induction hypothesis, assume that the claim holds for words of length n. For the
induction step, let w = a1 · · · anan+1, i.e., of length n+ 1. Suppose there is a run of A on w:

q0 a1 q1 a2 q2 · · · an qn an+1 qn+1

Applying the induction hypothesis on the word a1 · · · an, the run of A′ on a1 · · · an is:

S0 a1 S1 a2 S2 · · · an Sn,

is such that qi ∈ Si, for each i = 0, 1, . . . , n.
Let Sn+1 = δ′(Sn, an+1). By the definition of run, (qn, an+1, qn+1) ∈ δ. Since qn ∈ Sn, by

definition of δ′, qn+1 ∈ Sn+1. Thus, the run of A′ on a1 · · · anan+1 is:

S0 a1 S1 a2 S2 · · · an Sn an+1 Sn+1,

where qi ∈ Si, for each i = 0, 1, . . . , n+ 1.

Claim 2 For every word w ∈ Σ∗, where w = a1 · · · an, if the run of A′ on w is as follows:

S0 a1 S1 a2 S2 · · · an Sn, where S0 is the initial state of A′

then for every q ∈ Sn, there is a run of A on w:

q0 a1 q1 a2 q2 · · · an qn, where q0 is the initial state of A

such that qn = q.

Proof. (of claim) The proof is very similar to the claim above, i.e., by induction on n. The base
case, n = 0, holds trivially, since by the definition of A′, its initial state is the set {q0}.

For the induction hypothesis, assume that the claim holds for words of length n. For the
induction step, let w = a1 · · · anan+1, i.e., of length n + 1. Suppose the run of A′ on w is as
follows.

S0 a1 S1 a2 S2 · · · an+1 Sn+1, where S0 is the initial state of A′

Let q ∈ Sn+1. By the definition of run, Sn+1 = δ′(Sn, an+1). By the definition of δ′, if q ∈ Sn+1,
there is p ∈ Sn such that (p, an+1, q) ∈ δ.

Applying the induction hypothesis on the word a1 · · · an and the state p, there is a run of A
on a1 · · · an:

q0 a1 q1 a2 q2 · · · an qn,

where qn = p. Since (p, an+1, q) ∈ δ, we extend the run to be:

q0 a1 q1 a2 q2 · · · an qn an+1 qn+1,

where qn+1 = q.

Note that Claim 1 implies L(A) ⊆ L(A′) and Claim 2 implies L(A′) ⊆ L(A).

In view of Theorem 1.5, we can say that a language is regular if and only if it is accepted by
an NFA.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

Corollary 1.6 NFA languages are closed under complement. That is, for every NFA A over
alphabet Σ, there is a DFA A′ over the same alphabet Σ such that L(A′) = Σ∗ − L(A).

Remark 1.7 For every NFA A = 〈Σ, Q, q0, F, δ〉, we can always convert it into another NFA
A′ = 〈Σ, Q′, q′0, F ′, δ′〉 such that L(A) = L(A′) and the initial state q′0 of A′ does not have any
incoming edge.

This is actually pretty straightforward. Let p be a state that is not in Q. The NFA A′ =
〈Σ, Q′, q′0, F ′, δ′〉 is defined as follows.

• Q′ = Q ∪ {p}.

• The initial state is p.

• The set of accepting states F ′ is as follows.

F :=

{
F, if q0 /∈ F
F ∪ {p}, if q0 ∈ F

• The transition relation δ′ is defined as δ with the following extra transitions. For every
(q0, a, q) ∈ δ, we have (p, a, q) ∈ δ′. That is, state p behaves like state q0.

Theorem 1.8 Regular languages are closed under concatenation and Kleene star. More formally,
it can be stated as follows.

• If L1 and L2 are regular languages, so is L1L2.

• If L is a regular language, so is L∗.

Proof. (Closure under concatenation) Let A1 = 〈Σ, Q1, q0,1, F1, δ1〉 and A2 = 〈Σ, Q2, q0,2, F2, δ2〉
be NFA for L1 and L2, respectively. We can assume that Q1 ∩Q2 = ∅. By Remark 1.7, we can
assume that both q0,1 and q0,2 do not have incoming edge.

Define the following NFA A = 〈Σ, Q, q0, F, δ〉.

• Q = Q1 ∪Q2.

• q0,1 is the initial state.

• The set F of accepting states is F2.

• The transition relation δ is defined as δ1 ∪ δ2 and the following extra transitions.

– For every (p, a, q) ∈ δ1, where q ∈ F1, we have transition (p, a, q0,2) in δ.

It is not difficult to show that L(A) = L1L2.
(Closure under Kleene star) Let A = 〈Σ, Q1, q0, F, δ〉 be NFA for L. By Remark 1.7, we can

assume that q0 does not have incoming edge. Define the following NFA A′ = 〈Σ, Q′, q′0, F ′, δ′〉.

• Q′ = Q.

• q0 is the initial state.

• The set F ′ of accepting states is {q0}.

• The transition relation δ′ is defined as δ and the following extra transitions.

– For every (p, a, q) ∈ δ, where q ∈ F , we have transition (p, a, q0) in δ′.

It is not difficult to show that L(A′) = L∗.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

3 Pumping lemma

In the following, for a word w and an integer n > 0, wn obtained by repeating w for n number
of times, i.e., w · · ·w︸ ︷︷ ︸

n times

. By default, we define w0 = ε.

Lemma 1.9 (pumping lemma) Let A = 〈Σ, Q, q0, F, δ〉 be an NFA. Let x ∈ L(A) be a word
such that |x| > |Q|. Then, the word x can be divided into three parts u, v, w, i.e., x = uvw, such
that |v| > 1 and for every integer k > 0, uvkw ∈ L(A).

Proof. Let x = a1 · · · an and x ∈ L(A), where n > |Q|. Let the following be its accepting run:

p0 a1 p1 a2 p2 · · · an pn

Since n > |Q|, there are 0 6 i < j 6 n such that pi = pj .
Let u = a1 · · · ai, v = ai+1 · · · aj and w = aj+1 · · · an. Then, for every integer k > 0, the

following is an accepting run of A on uvkw:

p0 a1 p1 a2 p2 · · · ai pi ai+1 pi+1 · · · aj pj︸ ︷︷ ︸
repeat k times

aj+1 pj+1 · · · an pn

Lemma 1.9 can be restated as follows.

Lemma 1.10 (pumping lemma) For every regular language L, there is an integer n > 1 such
that for every word x ∈ L with length |x| > n, there are u, v, w where x = uvw and |v| > 1 and
for every integer k > 0, uvkw ∈ L.

Note that from the proof of Lemma 1.9, we can easily deduce the following “more refined”
pumping lemma.

Lemma 1.11 Let A = 〈Σ, Q, q0, F, δ〉 be an NFA. Let x ∈ L(A) be a word and x = szt, where
|z| > |Q|. Then, the word z can be divided into three parts u, v, w such that |v| > 1 and for every
integer k > 0, suvkwt ∈ L(A).

Example 1.12 Using pumping lemma, we can show that all languages below are not regular
languages.

• L1 = {anbn | n > 0}.

• L2 = {an | n is a prime number}.

CSIE 3110: Formal languages and automata theory Lesson 1: Finite state automata

Appendix: Concatenation and Kleene star

For two words u and v, u · v denotes the word obtained by concatenating v at the end of u. (u · v
reads: u concatenates with v.) By default, u · ε = ε · u = u. We will usually omit · and simply
write uv instead of u · v.

In the following, let L1, L2 and L be languages. We define the following operators.

L1 · L2 := {uv | u ∈ L1 and v ∈ L2} (Concatenation)
Ln := {u1 · · ·un | each ui ∈ L}
L∗ :=

⋃
n>0

Ln (Kleene star)

As before, we usually write L1L2 to denote L1 ·L2, and L1L2 reads as L1 concatenates with L2.
Note that by default, for any set X ⊆ Σ∗, X0 = {ε}. Thus, ∅∗ = {ε}.

CSIE 3110: Formal languages and automata theory Lesson 2: Regular expressions

Lesson 2: Regular expressions

Theme: Regular expressions as alternative description of regular languages.

In the following we fix an alphabet Σ. Regular expressions (over Σ) are expressions built
inductively as follows.

• ∅ is a regular expression.

• a is a regular expression, for every symbol a ∈ Σ.

• If e1, e2 are regular expressions, then so are (e1 · e2) and (e1 ∪ e2).
• If e is a regular expression, then so is (e)∗.

A regular expression e over Σ defines a language, denoted by L(e), over the same alphabet as
follows.

• If e is ∅, then L(e) = ∅.
• If e is a, where a ∈ Σ, then L(e) = {a}.
• If e is of the form (e1 ·e2), where e1 and e2 are regular expressions, then L(e) = L(e1)·L(e2).

• If e is of the form (e1∪e2), where e1 and e2 are regular expressions, then L(e) = L(e1)∪L(e2).

• If e is of the form (e1)
∗, where e1 is a regular expression, then L(e) = L(e1)

∗.

Usually, we omit writing · in (e1 · e2), and instead, we simply write (e1e2). Also, when there is
no ambiguity, we will omit writing the brackets and simply write e1e2 and e∗1, instead of (e1e2)
and (e1)

∗.
The following theorem states that the class of languages defined by regular expressions is

exactly the class of regular languages.

Theorem 2.1 Regular expressions define precisely the class of regular languages. More formally,
it can be stated as follows.

• For every regular expression e over Σ, L(e) is a regular language.

• For every NFA A, there is a regular expression e such that L(e) = L(A).

Proof. We first prove the first item. The proof is by induction on the regex e. The base case is
when e is either ∅ or a ∈ Σ.

• When e is ∅, then L(e) = ∅.
One can easily construct an NFA A that accepts nothing.

• When e is a, for some symbol a ∈ Σ, then L(e) = {a}.
We can construct an NFA A, that has only two states p and q, p is the initial state and
there is only one accepting state q and δ contains only one transition (p, a, q).

For the induction step, we will prove the case where e is either of the form α · β, α ∪ β or α∗.
By the induction hypothesis, there are NFA A1 and A2 that accept the languages L(α) and

L(β), respectively. By Remark 1.4 and Theorem 1.8 (in Lesson 1), there are NFAs for all the
languages L(α · β), L(α ∪ β) and L(α∗).

CSIE 3110: Formal languages and automata theory Lesson 2: Regular expressions

We now prove the second item. Let A = 〈Σ, Q, q0, F, δ〉 be an NFA. Without loss of generality,
we assume that Q = {1, . . . , n}. For every 1 6 i, j 6 n and 0 6 k 6 n, define the language
L(i, j, k) as follows.

L(i, j, k) :=

{
w ∈ Σ∗

there is a run of A on w from state i to state j
without passing any states > k + 1

}
That is, if w ∈ L(i, j, k), there is a run of A on w from state i to j without passing through the
states k + 1, . . . , n.

We will first prove the following claim.

Claim 1 For every 1 6 i, j 6 n and 0 6 k 6 n, there is a regex e such that L(e) = L(i, j, k).

Proof. The proof is by induction on k. The base case is k = 0. For every 1 6 i, j 6 n, consider
the set of symbols Γi,j = {a | (i, a, j) ∈ δ}.

• If Γi,j = ∅, then L(i, j, 0) = ∅. The desired regex e is:

e =

{
∅ if i 6= j
∅∗ if i = j

• If Γi,j 6= ∅, assume Γi,j = {a1, . . . , at}. The desired regex e is:

e =

{
a1 ∪ · · · ∪ at if i 6= j
a1 ∪ · · · ∪ at ∪ ∅∗ if i = j

For the induction hypothesis, we assume that the claim holds for k. For the induction step, we
will prove it for k + 1. Note the following identity:

L(i, j, k + 1) = L(i, j, k) ∪
(
L(i, k + 1, k) · L(k + 1, k + 1, k)∗ · L(k + 1, j, k)

)
By the induction hypothesis, there are regexes that define each of L(i, j, k), L(i, k+ 1, k), L(k+
1, k+1, k), and L(k+1, j, k). By the definition of regex, there is regex that define L(i, j, k+1).

To complete our proof, note that:

L(A) =
⋃

qf∈F
L(q0, qf , n)

By the claim above, for each L(q0, qf , n), there is a regex that defines it. Taking the union of all
of them, we have a regex for L(A).

Combining what we have learnt so far, we obtain three different, but equivalent, characteri-
sations of regular languages, as stated below.

Corollary 2.2 Let L be a language. The following are equivalent.

• L is accepted by a DFA.

• L is accepted by an NFA.

• L is defined by a regular expression.

CSIE 3110: Formal languages and automata theory Lesson 2: Regular expressions

Remark 2.3 The term regular expressions are commonly abbreviated as regex. In most litera-
tures and websites, the term “regex” are used more often than “regular expression.” Due to its
widespread applications, many modern programming languages now include libraries for regex.
The following are some of them.

• Scala: http://www.scala-lang.org/api/rc2/scala/util/matching/Regex.html

• C++: http://www.cplusplus.com/reference/regex/

• Java: https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html

• Python: https://docs.python.org/2/library/re.html

http://www.scala-lang.org/api/rc2/scala/util/matching/Regex.html
http://www.cplusplus.com/reference/regex/
https://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
https://docs.python.org/2/library/re.html

CSIE 3110: Formal languages and automata theory Lesson 3: Context-free languages

Lesson 3: Context-free languages

Theme: Context-free grammars and their languages.

1 Context-free grammars

A context-free grammar (CFG) is a system G = 〈Σ, V,R, S〉, where each component is as follows.

• Σ is a finite set of symbols called terminals.∗

• V is a finite set of variables, and V ∩ Σ = ∅.
• R is a finite set of rules, where each rule is of the form:

A → w,

where A ∈ V and w ∈ (V ∪ Σ)∗.

• S is a special variable from V called the start variable.

There is no(!) restriction that for each variable A ∈ V , there is only one rule A → w in R. We
may have several rules, say A → w1, A → w2, . . . , A → wm, all belong to R. In this case, we
usually abbreviate them as:

A → w1 | w2 | · · · | wm

Note also that we may have a rule of the form A→ ε.
We have a few important notations and terminology.

• Let uAv ∈ (Σ∪V)∗ be a word in which a variable A ∈ V appears. If there is a rule A→ w
in R, we say that uAv yields uwv, denoted as uAv ⇒ uwv.

• For strings x, y ∈ (Σ ∪ V)∗, we say that x derives y, if either x = y, or there is a sequence
z1, . . . , zn such that x = z1, y = zn and

z1 ⇒ z2 ⇒ · · · ⇒ zn.

We write x⇒∗ y to denote that x derives y.†

• For a variable A, L(G, A) denotes the language of all words over Σ that can be derived from
variable A. Formally,

L(G, A) = {w ∈ Σ∗ | A⇒∗ w}.

• L(G) denotes the language L(G, S), i.e., the language of all words over Σ that can be derived
from the start variable S. Formally,

L(G) = {w ∈ Σ∗ | S ⇒∗ w}.

The language L(G) is called the language generated/defined/derived from/by G.
∗Σ is actually the alphabet. Usually in context-free grammars elements in Σ are called terminals, instead of

symbols.
†Sometimes we will say “y is derived from x” or “from x we can derive y” to mean “x derives y.”

CSIE 3110: Formal languages and automata theory Lesson 3: Context-free languages

• A language L is called a context-free language (CFL), if there is a CFG G such that L(G) =
L.

Example 3.1 Consider the following CFG G = 〈Σ, V,R, S〉, where:

• Σ = {a, b}.
• V = {S}.
• R = {S → ε | aSb}.
• S is the start variable.

It can be shown that L(G) = {anbn | n > 0}.

Theorem 3.2 Context-free languages are closed under union, concatenation and Kleene star.

Proof. Let G1 = 〈Σ, V1, R1, S1〉 and G2 = 〈Σ, V2, R2, S2〉. First, we rename the variables in V1

and V2 such that V1 ∩ V2 = ∅.
(Closure under union) Consider the CFG G = 〈Σ, V,R, S〉 defined as follows.

• V = V1 ∪ V2 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1 ∪ V2.

• R = R1 ∪R2 ∪ {S → S1|S2}.
• S is the start variable.

Due to the rule S → S1|S2, every word derived from S can also be derived from S1 or S2.
Vice versa, every word that can be derived from S1 or S2 can also be derived from S. Thus,
L(G) = L(G1) ∪ L(G2).

(Closure under concatenation) Consider the CFG G = 〈Σ, V,R, S〉 defined as follows.

• V = V1 ∪ V2 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1 ∪ V2.

• R = R1 ∪R2 ∪ {S → S1S2}.
• S is the start variable.

Due to the rule S → S1S2, every word w derived from S can be divided into two w = uv such
that u and v can be derived from S1 and S2, respectively. Vice versa, for every word u and v
that can be derived from S1 and S2, respectively, the word uv can be derived from S. Thus,
L(G) = L(G1)L(G2).

(Closure under Kleene star) Consider the CFG G = 〈Σ, V,R, S〉 defined as follows.

• V = V1 ∪ {S}, where S is a “new” variable, i.e., S /∈ V1.

• R = R1 ∪ {S → S1S|ε}.
• S is the start variable.

Due to the rule S → S1S|ε, for every word w that can be derived from S, the following holds:
Either w = ε or w can be divided into finitely many words w = v1 · · · vn such that every vi can
be derived from S1. Thus, L(G) ⊆ L(G1)∗.

Conversely, for every word w ∈ L(G1)∗, by definition of Kleene star, either w = ε or w can be
divided into finitely many words w = v1 · · · vn such that every vi can be derived from S1. Due to
the rule S → S1S|ε, we have the derivation S ⇒∗ S1 · · ·S1︸ ︷︷ ︸

n times

. Since each vi can be derived from one

S1, this means w can be derived from S. Thus, L(G1)∗ ⊆ L(G). Therefore, L(G) = L(G1)∗.

CSIE 3110: Formal languages and automata theory Lesson 3: Context-free languages

Theorem 3.3 Every regular language is a context-free language.

Remark 3.4 Modifying the CFG in the previous example, we can show that the following two
languages are also context-free.

• L1 = {akbmcn | k, n,m > 0 and k = m}.
• L2 = {akbmcn | k, n,m > 0 and m = n}.

However, we will show later that L1∩L2 is not CFL. Hence, context-free languages are not closed
under intersection. Combining this remark with Theorem 3.2, it is immediate that context-free
languages are not closed under complement (why?).

2 Derivation trees

A derivation tree, or a parse tree, of a CFG G = 〈Σ, V,R, S〉 is a tree T in which:

• every vertex has a label, which is a symbol from V ∪ Σ ∪ {ε};
• the label of an interior vertex is a variable from V ;

• the label of a leaf vertex is either ε or a terminal from Σ;

• if an interior vertex has a label A ∈ V and it has k children n1, . . . , nk (in the order from
left to right) with labels X1, . . . , Xk, respectively, then A→ X1 · · ·Xk must be a rule in R.

If the label of the root is a variable A, and the leaf vertices of T are n1, . . . , nm (in the order
from left to right) with labels u1, . . . , um, we say that T is a derivation tree of G from variable A
on word u1 · · ·um. When the label of the root is the start variable S, we will simply say T is a
derivation tree of G on u1 · · ·um.

Theorem 3.5 Let G = 〈Σ, V,R, S〉 be a CFG. For every variable A ∈ V , for every word w ∈ Σ∗,
the following holds.

A⇒∗ w if and only if there is a derivation tree of G from A on w.

In particular, w ∈ L(G) if and only if there is a derivation tree of G on w.

3 Pumping lemma for context-free languages

Like regular languages, context-free languages also have property that their words can be “pumped.”

Lemma 3.6 (pumping lemma) Let G = 〈Σ, V,R, S〉 be a CFG. Then, there is an integer N
such that every w ∈ L(G) with length > N can be partitioned into:

w = s x y z t

such that the following holds.

(P1) |x|+ |z| > 1.

(P2) |xyz| 6 N .

(P3) For every i > 0, sxiyzit ∈ L(G).

CSIE 3110: Formal languages and automata theory Lesson 3: Context-free languages

Proof. Let G = 〈Σ, V,R, S〉 be a CFG and let n = |V |. Let m = maxA→w∈R |w|, i.e., the
maximum length of the string u over all the rule A → u in R. Intuitively, this means that in
every derivation tree of G, every node has at most m children. We define N = mn + 1. In the
following we will show that for every word w ∈ L(G) with length > N can be partitioned into
sxyzt such that (P1)–(P3) above hold.

Let w ∈ L(G) and |w| > N . Thus, there is a derivation tree T of G on w. Since every node
in T has at most m children and |w| > N = mn + 1, the depth of the tree T is > n + 1.‡

Consider a leaf node ` with depth > n + 1. The length of the path from the root node to `
is at least n + 1,§ which means there are at least n + 1 internal nodes. Since there are only n
variables, there is a variable A that appears at least twice in the path. See figure below.

rS
@
@
@
@
@
@
@
@
@

�
�

�
�

�
�

�
�
�

rA
@
@
@
@
@
@

�
�

�
�

�
�

rA
@
@
@

�
�

�-�
s

-�
x

-�
y

-�
z

-�
t

We can choose variable A such that |x| + |z| > 1. Such variable exists. Otherwise, if
|x|+ |z| = 0, then we can omit the path from A to A, and thus, shorten it, and choose another
path from the root node to a leaf node with length > n + 1. Thus, (P1) holds.

Furthermore, we can also choose such variable A for which the “first” A has the minimal
depth. That is, all the path from starting from the first A to the leaf nodes do not contain other
variable that appear twice in the path. Thus, in this case |x|+ |y|+ |z| 6 N and (P2) holds.

Finally, to show that (P3) holds, by repeating the variable A as many times as we want, i.e.,
for every integer i > 0, we repeat the derivation tree starting from variable A for as many as i
times, we obtain the derivation tree for the word sxiyzit, which means that it is in L(G). That
is, (P3) holds.

Using Lemma 3.6, we can show that the language L = {akbkck | k > 0} is not a CFL. Since
L is the intersection of two CFL’s {ambmcn | m,n > 0} and {anbmcm | m,n > 0}, it also shows
that CFL’s are not closed under intersection.

We can also rewrite Lemma 3.6 as follows.

Lemma 3.7 (pumping lemma) For every CFL L, there is an integer N such that every u ∈
L(G) with length > N can be partitioned into:

u = s x y z t

such that the following holds.

• |x|+ |z| > 1.

• |xyz| 6 N .

• For every i > 0, sxiyzit ∈ L.

‡Here we define the depth of the root node to be 0 and for every other node u, its depth is the depth of its
parent plus 1. The depth of the tree T is the maximal depth over all its nodes.

§Here the length of a path is defined as the number of edges.

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

Lesson 4: Push-down automata

Theme: Push-down automata as a model of computation for context-free languages.

In the following we will have two alphabets Σ and Γ. A push-down automaton (PDA) is a system
A = 〈Σ,Γ, Q, q0, F, δ〉, where each of the component is as follows.

• Σ is a finite alphabet, called the input alphabet, whose elements are called input symbols.

• Γ is a finite alphabet, called the stack alphabet, whose elements are called stack symbols.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting states.

• δ ⊆ Q ×
(
Σ ∪ {ε}

)
×

(
Γ ∪ {ε}

)
× Q ×

(
Γ ∪ {ε}

)
is the transition relation.

We will usually write a transition (p, x, y, q, z) ∈ δ as:

(p, x, pop(y)) → (q, push(z))

Intuitively, such transition means that when a PDA is in state p reading x from the input and
the top of the stack is y, it can “pop” y from the top of the stack and moves to state q and push
z into the stack. Here it is possible that x, y and z are the empty string ε.

Note that the fashion a symbol is written into and taken out of the stack is “Last In First
Out” (LIFO), i.e., the last symbol that gets written into the stack has to come out first. It is
also important to note that while the input is a word over Σ, its stack contains symbols from Γ.

We will now describe formally how PDA computes. Let A = 〈Σ,Γ, Q, q0, F, δ〉 be a PDA. A
configuration of A is a pair (q, u) ∈ Q× Γ∗, where q is the state of A and u is the content of the
stack. The initial configuration is (q0, ε). A configuration is accepting, if the state component is
one of the accepting states.

On input w = a1 . . . am, a run of a PDA from a configuration (q, u) is a sequence:

(p0, v0) `b1 (p1, v1) `b2 · · · · · · `bn (pn, vn), (†)

where

• (p0, v0) = (q, u),

• b1 · · · bn = a1 · · · am, i.e., some of the bi’s can be ε,

• for each i = 1, . . . , n, there is (pi, x, pop(y))→ (pi+1, push(z)) ∈ δ such that

– x = bi,
– vi = sy and vi+1 = sz, for some s ∈ Γ∗.

Note: Here vi = sy denotes that the content of the stack, where the top of the stack is
y. When the transition (pi, x, pop(y)) → (pi+1, push(z)) is applied, the PDA is in state pi
reads x from the input, “pops” y from the stack, and moves to state pi+1 and at the same
time “pushes” z into the stack. Thus, the subsequent content vi+1 of the stack is sz.

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

We will also write the run (†) as:

(p0, v0) `∗w (pn, vn).

In this case we will also say that there is a run of A on w from (p0, v0) to (pn, vn).
A run is accepting, if it starts from the initial configuration and ends with an accepting

configuration. The language accepted by A, denoted by L(A), consists of all the words for which
it has an accepting run. Formally,

L(A) =
{
w | there is an accepting run of A on w

}
.

The following theorem states that CFL and PDA are actually equivalent.

Theorem 4.1

• For every CFG G, there is a PDA A such that L(A) = L(G).

• Vice versa, for every PDA A, there is a CFG G such that L(A) = L(G).

The proof is a bit technical and can be found in the appendix. One immediate consequence
of Theorem 4.1 is that the intersection of a regular language and a CFL is a CFL.

Theorem 4.2 If K is CFL and L is regular language, then the intersection K ∩ L is CFL.

Appendix: Proof of Theorem 4.1

We are going to show that CFG and PDA define precisely the same class of languages. More
precisely, we are going to show the following.

• For every CFG G, there is a PDA A such that L(A) = L(G).

• For every PDA A, there is a CFG G such that L(A) = L(G).

A From CFG to PDA

Allowing the PDA to push a string of symbols. First, we note that we can modify the
definition of PDA to allow it to push a string of symbols to its stack. That is, the transitions can
be of the form:

(p, x, pop(y)) → (q, push(z)), where z ∈ Γ∗

Allowing such transition does not change the capability of a CFG. We can add “new” states
t1, . . . , tm, where m is the lenth of z and z = a1 . . . am. Each ti is used to push the symbol ai
into the stack. More formally, the transition (p, x, pop(y)) → (q, push(z)) can be replaced with
the following transitions:

(p, x, pop(y)) → (t1, push(a1))

(t1, ε, pop(ε)) → (t2, push(a2))

(t2, ε, pop(ε)) → (t3, push(a3))

...
...

(ti−1, ε, pop(ε)) → (ti, push(ai))

...
...

(tm−1, ε, pop(ε)) → (tm, push(am))

(tm, ε, pop(ε)) → (q, push(ε))

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

Left-most substitution property. Let G = 〈Σ, V,R, S〉 be a CFG. Let z1 ⇒ z2 ⇒ · · · ⇒ zn
be a derivation. We say that the derivation has the left-most substitution property, if for every
i ∈ {1, . . . , n − 1}, zi ⇒ zi+1 is obtained by applying a rule A → w, where A is the left most
variable in zi. Intuitively, it means that we only substitute the left-most variable in our derivation.

For example, suppose we have grammars with the following rules: A → aABa, A → SS,
B → aab, B → SA. The derivation aABAaa ⇒ aSSBAaa has the left-most substitution
property, because we substitute the left-most variable which is A. On the other hand, aABAaa⇒
aASAAaa does not, because we substitute variable B, which is not the left-most variable, and
aABAaa ⇒ aABSSaa does not either, because we substitute the second A, which is not the
left-most.

Remark 4.3 Without loss of generality, we only need to consider derivations that has left-most
substitution property, by simply substituting the left-most variable first.

Constructing a PDA from a CFG. Let G = 〈Σ, V,R, S〉 be a CFG. Consider the following
PDA A = 〈Σ,Γ, Q, q0, F, δ〉 where each component is as follows.

• Γ = Σ ∪ V ∪ {⊥}.
• Q = {p, q}
• p is the initial state.

• F = {q}.
• δ consists of the following transitions. (Here wr denotes the reverse of w.)

– (p, ε, pop(ε))→ (q, push(S)).

– (q, a, pop(a))→ (q, push(ε)), for every a ∈ Σ.

– (q, ε, pop(A))→ (q, push(sr)), for every rule A→ s ∈ R.

Notice that in the first and third transitions, A pushes a string of symbols to its stack.

We will show that L(G) = L(A). First, we show the following lemma.

Lemma 4.4 For every derivation:

u ⇒ ũ

there is a run of A on w:
(q, v) `∗w (q, ṽ),

where
vr = u and wṽr = ũ (†)

Proof. Suppose u⇒∗ ũ. Let m be the length of the derivation, which is denoted as follows.

u0 ⇒ u1 ⇒ · · · ⇒ um−1 ⇒ um (1)

where u0 = u and um = ũ. We will prove the lemma by induction on m.
The base case is m = 0. In this case the derivation is a trivial derivation:

u0 ⇒∗ u0

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

The run:

(q, v) `∗ε (q, v), where vr = u0

satisfies property (†).
For the induction hypothesis, we assume that the lemma holds when the length of the deriva-

tion is m− 1. We will prove the derivation of length m case for the induction step.
Consider a derivation as in (1). We may assume that it has the left-most substitution property.

Suppose the derivation u0 ⇒ u1 is obtained by applying the rule A→ s, where variable A is the
left-most variable in u0. So, we can denote u0 by xAy, where x ∈ Σ∗. and hence, u1 = xsy.
Since x contains only terminals, using transitions of the form (q, a, pop(a))→ (q, push(ε)), where
a ∈ Σ, there is a run:

(q, yrAxr) `∗x (q, yrA). (2)

By our construction of A, there is a transition (q, ε, pop(A))→ (q, push(sr)). So, we have:

(q, yrA) `ε (q, yrsr). (3)

Moreover, x will not change during the derivation u0 ⇒ u1 ⇒ · · · ⇒ um (because x contains only
terminals). Thus, the string ui has prefix x, for every i ∈ {1, . . . ,m}. That is, ui = xu′i, for some
u′i ∈ (Σ ∪ V)∗. So, the derivation is of the form:

xAy ⇒ xu′1 ⇒ · · · ⇒ xu′m.

Ignoring the first part of the derivation, we have:

xu′1 ⇒ · · · ⇒ xu′m,

which means we also have derivation (since x contains only terminals):

u′1 ⇒ · · · ⇒ u′m,

which has length m− 1. By the induction hypothesis, there is a run:

(q, z1) `∗t (q, z2), where zr1 = u′1 and tzr2 = u′m+1. (4)

Now, recall that u1 = xu′1 = xsy, and hence, z1 = yrsr. Combining the runs (2), (3) and (4), we
have the following run:

(q, yrAxr) `∗x (q, yrA) `ε (q, yrsr) `∗t (q, z2)

which can be abbreviated as:
(q, yrAxr) `∗xt (q, z2).

Since tzr2 = u′m, we have xtzr2 = xu′m = um. Since u0 = xAy, this is the desired property (†).
This completes the proof of Lemma 4.4.

The next lemma is the converse direction of Lemma 4.4.

Lemma 4.5 For every run of A:

(q, v) `∗w (q, ṽ),

there is a derivation:

u ⇒∗ ũ

such that:
vr = u and wṽr = ũ (?)

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

Proof. Suppose we have a run (q, v) `∗w (q, ṽ). Let n be the length of the run, which is denoted
as follows.

(q, v0) `b1 (q, v1) `b2 · · · `bn (q, vn), (5)

where v0 = v, vn = ṽ and b1 · · · bn = w. We will prove the lemma by induction on n.
The base case is n = 0. In this case, the run is a trivial run:

(q, v0) `∗ε (q, v0)

Thus, the trivial derivation:

u ⇒∗ u where u = vr0

satisfies the desired property (?).
For the induction hypothesis, we assume that the lemma holds when the length of the run is

n− 1. We will prove the case when the length of the run is n for the induction step.
We consider a run of length n as in (5). We consider the step (q, v0) `b1 (q, v1). There are

two cases:

• b1 6= ε, i.e., b1 is a symbol from Σ.

By the construction of the PDAA, it has to use the transition (q, b1, pop(b1))→ (q, push(ε)),
which means that the top of the stack v0 is b1. Therefore, v0 = v1b1.

Now consider the run:
(q, v1) `b2 · · · `bn (q, vn).

This run is of length n− 1. By the induction hypothesis, we have a derivation:

u1 ⇒∗ u2 where u1 = vr1 and u2 = b2 · · · bnvrn.

Adding b1 in front of u1 and u2, we have:

b1u1 ⇒∗ b1u2

Now, b1u1 = b1v
r
1 = vr0 and b1u2 = b1b2 · · · bn+1v

r
n+1, which is the desired property (?).

• b1 = ε.

By the construction of the PDAA, it has to use the transition (q, ε, pop(A))→ (q, push(sr)),
for some rule A→ s. This means that the top of the stack v0 is A. We denote by v0 = yA
and v1 = ysr, for some y.

Consider the run:
(q, v1) `b2 · · · `bn (q, vn).

This run has length n− 1. By the induction hypothesis, there is a derivation:

u1 ⇒∗ u2 where u1 = vr1 and u2 = b2 · · · bnvrn

Since v1 = ysr, and hence, u1 = syr, we have a derivation:

Ayr ⇒ u1 ⇒∗ u2.

By our notation, v0 = yA and u2 = b2 · · · bnvrn = b1b2 · · · bnvrn, which is the desired prop-
erty (?).

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

This completes our proof of Lemma 4.5.

Using the two lemmas above, we can show that L(A) = L(G) as stated below.

Theorem 4.6 L(G) = L(A).

Proof. We first prove L(G) ⊆ L(A). Let S ⇒∗ w, where w ∈ Σ∗. By Lemma 4.4, there is a run:

(q, S) `∗x (q, y), where xyr = w.

Since w contains only symbols from Σ, so does y. If y 6= ε, using the transitions of the form
(q, a, pop(a))→ (q, push(ε)), we can extend the run until y = ε, which means that x = w.

By the construction of A, we have the following accepting run on w:

(p, ε) `ε (q, S) `∗w (q, ε).

Thus, w ∈ L(A).
Now we prove L(G) ⊇ L(A). Let w ∈ L(A). So, there is an accepting run of A on w, which

must start from the initial state p and end with the accepting state q after finishes reading the
input word w. Thus, it has to start by using the transition (p, ε, pop(ε)) → (q, push(S)). This
means the run is of the form:

(p, ε) `ε (q, S) `∗w (q, ε).

By Lemma 4.5, there is a derivation:

u1 ⇒∗ u2, where u1 = S and u2 = w.

Thus, S ⇒∗ w and w ∈ L(G). This completes the proof of Theorem 4.6.

B From PDA to CFG

Let A = 〈Σ,Γ, Q, q0, F, δ〉 be a PDA. Without loss of generality, we can assume the following.

• It has only one final state, say qf . That is, F = {qf}.
• The stack is empty before accepting an input word. More precisely, on every word w, if A

accepts w, there is an accepting run of A on w from the initial configuration (q0, ε) to a
final configuration (qf , ε) where the content of the stack is empty.

• In each transition, A either pushes a symbol into the stack or pops one from the stack, but
it cannot do both. More precisely, every transition can only be of the forms:

(p, x, pop(y)) → (q, push(ε))

(p, x, pop(ε)) → (q, push(z))

Consider the following CFG G = 〈Σ, V,R, S〉 where each component is as follows.

• V = {Ap,q | p, q ∈ Q}.
• Aq0,qf is the start variable.

• R consists of the following rules:

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

– For every state p, q, r, s ∈ Q and every symbol z ∈ Γ and every symbol a, b ∈ Σ∪ {ε},
if the following transitions are in δ:

(p, a, pop(ε)) → (r, push(z))

(s, b, pop(z)) → (q, push(ε))

then the following rule is in R:

Ap,q → a Ar,s b (R1)

– For every state p, q, r ∈ Q and every symbol a ∈ Σ ∪ {ε}, if the following transition is
in δ:

(p, a, pop(ε)) → (r, push(ε))

then the following rule is in R:

Ap,q → a Ar,q (R2)

– For every state p, q, r ∈ Q, we have the following rule in R:

Ap,q → Ap,r Ar,q (R3)

– For every p ∈ Q, we have the following rule in R:

Ap,p → ε (R4)

We will show that L(A) = L(G). First, we prove the following lemma.

Lemma 4.7 For every derivation:

Ap,q ⇒∗ w, where w ∈ Σ∗

there is a run:

(p, ε) `∗w (q, ε)

Proof. Suppose Ap,q ⇒∗ w, where w ∈ Σ∗. Let the derivation of length m and denoted as
follows.

Ap,q ⇒ w1 ⇒ · · · ⇒ wm, where wm = w. (6)

We will prove the lemma by induction onm. The base case ism = 1. So, we have a derivation:

Ap,q ⇒ w

The only rule that can be used in this case is rule (R4), which means w = ε and p = q. Thus,
there is a (trivial) run:

(p, ε) `∗ε (p, ε)

For the induction hypothesis, we assume the lemma holds for every derivation of length 6 m−1.
We will prove the case of derivations of length m for the induction step.

Let the derivation be as in (6). We consider the rules applied on the step Ap,q ⇒ w1. There
are three cases:

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

• The rule applied is (R1) type of rule, say:

Ap,q → aAr,sb

This means that w1 = aAr,sb, and hence, every wi starts with a and ends with b, for every
i ∈ {1, . . . ,m}. We denote each wi = aw′ib, for some w′i. Thus, there is a derivation:

Ar,s ⇒ w′2 ⇒ · · · ⇒ w′m

This derivation has length m− 1. By the induction hypothesis, there is a run:

(r, ε) `w′m+1
(s, ε) (7)

Since Ap,q → aAr,sb is a rule in R, there are the following two transitions in δ:

(p, a, pop(ε))→ (r, push(z)) and (s, b, pop(z))→ (q, push(ε)) (8)

Now, from the run (7), since the content of the stack never goes “below empty”, we also
have a run:

(r, z) `w′m+1
(s, z) (9)

Using the transitions (8), we have:

(p, ε)) `a (r, z) and (s, z) `b (q, ε) (10)

Combining the runs (9) and (10), we have:

(p, ε)) `a (r, z) `∗w′m+1
(s, z) `b (q, ε)

That is,

(p, ε)) `∗aw′m+1b
(q, ε)

Since w = aw′m+1b, the run is as desired.

• The rule applied is (R3) type of rule, say:

Ap,q → Ap,rAr,q, for some r ∈ Q.

Thus, w1 = Ap,rAr,q. This means w = xy where Ap,r ⇒∗ x and Ar,q ⇒∗ y. Both are
derivations of length 6 m − 1. By the induction hypothesis, there are the following two
runs:

(p, ε) `∗x (r, ε) and (r, ε) `∗y (q, ε)

Combining these two runs, we have:

(p, ε) `∗w (r, ε)

• The rule applied is (R2) type of rule, say:

Ap,q → aAr,q, for some r ∈ Q and a ∈ Σ

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

Thus, w1 = aAr,q. This means that every wi starts with a, for every i ∈ {1, . . . ,m}. We
denote each wi = aw′i, for some w′i. Thus, there is a run:

Ar,q ⇒ w′2 ⇒ · · · ⇒ w′m.

The length of this run is m− 1. By the induction hypothesis, there is a run:

(r, ε) `∗w′m (q, ε) (11)

Now, since there is a rule Ap,q → aAr,q, there is the following transition in δ:

(p, a, pop(ε)) → (r, push(ε))

Using this transition, we have:

(p, ε) `a (r, ε)

Combining this with run (11), we have run:

(p, ε) `a (r, ε) `∗w′m (q, ε)

Thus, there is a run:

(p, ε) `∗aw′m (q, ε)

This run is as required.

This completes the proof fo Lemma 4.7.

The following lemma is the converse direction of the previous lemma.

Lemma 4.8 For every run:

(p, ε) `∗w (q, ε)

there is a derivation:

Ap,q ⇒∗ w

Proof. Suppose there is a run (p, ε) `∗w (q, ε). Let the run has length n, denoted as follows.

(p0, v0) `b1 (p1, v1) `b2 · · · `bn (pn, vn) (12)

where p0 = p, v0 = ε, pn = q, vn = ε and b1 · · · bn = w. We will prove the lemma by induction
on n.

The base case is n = 0. In this case the run is a trivial run:

(p0, ε) `∗ε (p0, ε)

Applying the (R4) type of rule Ap0,p0 → ε, we have a derivation:

Ap0,p0 ⇒ ε

For the induction hypothesis, we assume that the lemma holds for run of length 6 n− 1. We
will now prove it for runs of length n for the induction step.

Consider a run of length n as in (12). We consider the transition used in the step (p0, v0) `b1
(p1, v1). There are two cases:

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

• The transition used is (p0, b1, pop(ε)) → (p1, push(ε)), i.e., the PDA A pops and pushes
nothing to its stack. By definition of the CFG G, there is a (R2) type of rule:

Ap0,pn → b1Ap1,pn (13)

Applying the induction hypothesis on the run:

(p1, v1) `b2 · · · `bn (pn, vn)

there is a derivation:
Ap1,pn ⇒∗ b2 · · · bn

Moreover, using rule (13), we have derivation:

Ap0,pn ⇒ b1Ap1,pn ⇒∗ b1b2 · · · bn

as desired.

• The transition used is of the form: (p0, b1, pop(ε))→ (p1, push(z)), for some z ∈ Γ.

There are two more cases here.

– For some j ∈ {2, . . . , n}, vj = ε.
Thus, there is a run:

(p0, v0) `∗x (pj , vj) `∗y (pn, vn) where w = xy.

By induction hypothesis, there are derivations:

Ap0,pj ⇒∗ x and Apj ,pn ⇒∗ y

By construction of G, there is a (R3) type of rule:

Ap0,pn → Ap0,pjApj ,pn .

Using this rule, we have the following derivation:

Ap0,pn ⇒ Ap0,pjApj ,pn ⇒∗ xy

This is the desired derivation, since w = xy.

– For every i ∈ {1, . . . , n− 1}, vi 6= ε.
This means that z is popped from vn−1 to obtain vn and there are the following
transitions:

(p0, a, pop(ε))→ (p1, push(z)) and (pn−1, b, pop(z))→ (pn, push(ε)) (14)

where b1 = a and bn = b. Since vn = ε, this means vn−1 = z. In particular, every
vi starts with z, for every i ∈ {1, . . . , n − 1}. We denote by vi = zv′i, for some
i ∈ {1, . . . , n− 1}. This means there is a run:

(p1, z) `∗w′ (pn−1, z) where w = aw′b

Since during this run, z is untouched, we have a run:

(p1, ε) `∗w′ (pn−1, ε)

CSIE 3110: Formal languages and automata theory Lesson 4: Push-down automata

This run has length 6 n− 1. By the induction hypothesis, there is a derivation:

Ap1,pn−1 ⇒ ∗ w′

Due to the transitions in (14), there is a (R1) type of rule:

Ap0,pn → aAp1,pn−1b

Using this rule, there is a derivation:

Ap0,pn ⇒ aAp1,pn−1b ⇒∗ aw′b.

Since aw′b = w, this derivation is as desired.

This completes the proof of Lemma 4.8.

Theorem 4.9 L(A) = L(G).

Proof. We first prove L(G) ⊇ L(A). Let w ∈ L(A). So, there is an accepting run of A on w,
which must start from the initial state q0 and end with the accepting state qf :

(q0, ε) `∗w (qf , ε)

By Lemma 4.8, we have:

Aq0,qf ⇒∗ w.

Thus, w ∈ L(G).
Now we prove that L(G) ⊆ L(A). Let w ∈ L(G). Thus,

Aq0,qf ⇒∗ w.

By Lemma 4.7, there is a run:

(q0, ε) `∗w (qf , ε).

Since this is an accepting run, w ∈ L(A). This completes the proof of Theorem 4.9.

CSIE 3110: Formal languages and automata theory Lesson 5: Turing machines

Lesson 5: Turing machines

Theme: Turing machines as a model of general computation.

We reserve a special symbol t called the blank symbol and / called the left-end symbol.
A Turing machine (TM) is a systemM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉, where each component is

as follows.

• Σ is a finite alphabet, called the input alphabet, where t, / /∈ Σ.

• Γ is a finite alphabet, called the tape alphabet, where Σ ⊆ Γ and t, / ∈ Γ.

• Q is a finite set of states.

• q0 ∈ Q is the initial state.

• qacc, qrej ∈ Q are two special states called the accept and reject states, respectively.

• δ : (Q− {qacc, qrej})× Γ→ Q× Γ× {Left, Right} is the transition function.

The intuitive meaning of δ(p, a) = (q, b, α) is as follows. When the head reads a symbol a, ifM
is in state p, it “writes” symbol b on top of a, enters state q, and the head moves left, if α = Left,
or moves right, if α = Right.

Remark 5.1 We assume that the left-most cell of a Turing machine always contains the symbol
/. So, the input word to a Turing machine is always of the form /w, where w ∈ Σ∗. For this
reason, we require that any Turing machine does not write / on any other cell except on the
left-most cell. It is also assumed that the head of the Turing machine always move right when it
reads /, i.e., for every transition δ(p, /) = (q, b, α), the move α is always Right.

To describe how a TM computes, we need a few terminologies. A configuration of M is a
string C from (Q∪Γ)∗ which contains exactly one symbol from Q. We call such symbol the state
of C. Intuitively, a configuration C = /a1 · · · ai−1 pai · · · am means the content of the tape is:

/a1 · · · ai−1ai · · · am t t t · · ·

with the head reading ai and the Turing machine is in state p.
On input word w ∈ Σ∗, the initial configuration ofM on w is the string /q0w. A configuration

is called accepting, if it contains qacc, and it is called rejecting, if it contains qrej. A halting
configuration is either an accepting or a rejecting configuration.

Let C = /a1 · · · ai−1 pai · · · am be a configuration, where a1, . . . , am ∈ Γ and p ∈ Q such that
p 6= qacc, qrej. The transition δ yields the subsequent configuration C ′, denoted by C ` C ′, as
follows.

• If δ(p, ai) = (q, b, Left) and i > 2, then C ′ = /a1 · · · ai−2 qai−1bai+1 · · · am.

• If δ(p, ai) = (q, b, Left) and i = 1, then C ′ = q / ba2 · · · am.

• If δ(p, ai) = (q, b, Right) and i 6 m− 1, then C ′ = /a1 · · · ai−1b qai+1 · · · am.

• If δ(p, ai) = (q, b, Right) and i = m, then C ′ = /a1 · · · am−1b qt.

The run ofM on w is the (possibly infinite) sequence:

C0 ` C1 ` C2 ` · · · , (1)

CSIE 3110: Formal languages and automata theory Lesson 5: Turing machines

where C0 is the initial configuration ofM on w.
M stops when it reaches a halting configuration, i.e., when it reaches either qacc or qrej.

If M halts in an accepting configuration, we say that M accepts w. If it halts in a rejecting
configuration, we say thatM rejects w.

Remark 5.2 Note that in our definition of Turing machine, we assume the left-end marker /
and we require the transitions are defined so that the the head does not go beyond this marker.
We make this assumption to prevent an overly technical presentation to address issue/question
such as “what happens if the head fall off the left-end of the tape?” As we will see in our next
lesson, the purpose of Turing machines is to serve as a precise mathematical model of algorithms
where questions like that is irrelevant. In fact, throughout this class we will implicitly assume
/ as the left-end marker, so it is not necessary to mention it explicitly when we define a Turing
machine.

However, we should note that in most textbook the definition of Turing machine does not
require such left-end marker and this is fine too. Adding such a marker will not increase/decrease
(at least in theory) what can be computed by Turing machines.

Important terminologies:

• We say thatM recognizes a language L, if:

(i) for every word w ∈ L,M accepts w;
(ii) for every word w /∈ L,M does not accept w.

Note that M does not accept w have two meanings: either M rejects w, or M does not
halt on w.

• We say thatM decides a language L, if:

(i) for every word w ∈ L,M accepts w;
(ii) for every word w /∈ L,M rejects w.

Note that this impliesM halts on every word w ∈ Σ∗.

• A language L is recognizable/recursively enumerable (r.e.), if there is a TMM that recog-
nizes L.

• A language L is decidable/recursive, if there is a TMM that decides L.

Otherwise, it is called undecidable.

Appendix

A Turing machines with Stay option

In some textbooks, Turing machines are defined such that the head can stay put, instead of
moving Left or Right. Formally, a transition can be of the form:

(q, a)→ (p, b, α), where α ∈ {Left, Right, Stay}

If α = Stay, then the head stays where it is. Such Stay option is obviously equivalent to making
two moves: Right, and followed by Left, thus, does not add any power of computation.

CSIE 3110: Formal languages and automata theory Lesson 5: Turing machines

B Encoding an arbitrary alphabet into the binary alphabet {0, 1}
Turing machines are usually defined with arbitrary input and tape alphabets. It is not difficult
to show that any alphabet can be “encoded” with binary alphabet.

Suppose Γ = {a1, . . . , an,t}. Each symbol ai can then be encoded with a 0-1 string of length
dlog2 ne. For example, if Γ = {a1, . . . , a5,t}, we can encode a1 with 000, a2 with 001, a3 with
010, a4 with 011, and a5 with 100. We denote by 〈ai〉 the encoding of the symbol ai. For a word
w ∈ Γ∗, 〈w〉 denotes the encoding of w by replacing each symbol ai in w with 〈ai〉. For example,
if w = a1a5a2a1, 〈w〉 = 〈a1〉〈a5〉〈a2〉〈a1〉 = 000 100 001 000.

We have the following proposition that shows that we can always assume that the Turing
machines under consideration always work on tape alphabet Γ = {C, 0, 1,t}, where C is the
marker that marks the leftmost cell of the tape.

Proposition 5.3 Let M = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉 be a TM, where Γ = {a1, . . . , an,t}. Let
K = dlog2 ne. Let 〈ai〉 be an encoding of symbol ai with 0-1 string of length K. There is a
TM M′ = 〈{0, 1}, {C, 0, 1,t}, Q′, q′0, qacc, qrej, δ′〉 such that for every word w ∈ Σ∗, the following
holds.

M accepts w if and only if M′ accepts 〈w〉

Intuitively,M′ simulatesM by reading the tapes by blocks of dlog2 ne cells. It then remem-
bers the block that it reads in its states, and “simulates” the transitions ofM accordingly.

Formally, M = 〈{0, 1}, {0, 1,t}, Q′, q0, qacc, qrej, δ
′〉 is defined as follows. Let {0, 1}6K , i.e.,

the set of all 0-1 strings of length less than or equal to K = dlog2 ne.

• Q′ = (Q× {0, 1}6K) ∪ (Q× {L1, . . . , LK ,R1, . . . ,RK})
∪ (Q× {L,R} × {W} × {0, 1}6K).

• q′0 = (q0, ε).

• δ′ is defined as follows.

– For every u ∈ {0, 1}6K−1, for every p ∈ Q − {qacc, qrej}, δ′ consists of the following
transitions.

((p, u), 0) → ((p, u0), 0, Right)

((p, u), 1) → ((p, u1), 1, Right)

– For every (q, a) → (p, b, Left) ∈ δ, for every d ∈ {0, 1,t}, δ′ consists of the following
transitions.

((q, 〈a〉), d) → ((p, L,W, 〈b〉), d, Left)

– For every (q, a)→ (p, b, Right) ∈ δ, for every d ∈ {0, 1,t}, δ′ consists of the following
transitions.

((q, 〈a〉), d) → ((p,R,W, 〈b〉), d, Left)

– For every p ∈ Q, for every c ∈ {0, 1}, for every v ∈ {0, 1}6K−1 and v 6= ε, for every
d ∈ {0, 1,t}, for every β ∈ {L,R}, δ′ consists of the following transitions.

((p, β,W, vc), d) → ((p, β,W, v), c, Left)

CSIE 3110: Formal languages and automata theory Lesson 5: Turing machines

– For every p ∈ Q, for every d ∈ {C, 0, 1,t}, δ′ consists of the following transitions.

((p, L,W, ε), d) → ((p, Lk), d, Right)

– For every p ∈ Q, for every d ∈ {C, 0, 1,t}, δ′ consists of the following transitions.

((p,R,W, ε), d) → ((p,Rk), d, Right)

– For every p ∈ Q, for every d ∈ {0, 1,t}, δ′ consists of the following transitions.

((p, L,W, ε), d) → ((p, Lk), d, Right)

– For every p ∈ Q, for every i ∈ {2, . . . , k}, for every d ∈ {0, 1,t}, δ′ consists of the
following transitions.

((p,Ri), d) → ((p,Ri−1), d, Right)

((p, Li), d) → ((p, Li−1), d, Left)

– For every p ∈ Q, for every d ∈ {0, 1,t}, δ′ consists of the following transitions.

((p,R1), d) → ((p, ε), d, Right)

((p, L1), d) → ((p, ε), d, Left)

All the other transitions not specified above are assumed to enter qrej.

CSIE 3110: Formal languages and automata theory Lesson 6: Turing machines and the notion of algorithms

Lesson 6: Turing machines and the notion of algorithms

Theme: Turing machines and the notion of algorithms.

1 Multi-tape Turing machines

A multi-tape Turing machine is a Turing machine that has a few tapes. On each tape, the Turing
machine has one head. Formally, it is defined as follows. Let k > 1. A k-tape Turing machine is
a systemM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉, where δ is the transition function:

δ : (Q− {qacc, qrej})× Γk → Q× Γk × {Left, Right}k

A transition in δ is written in the form:

(q, a1, . . . , ak)→ (p, b1, . . . , bk, α1, . . . , αk).

Intuitively, it means that if the TM is in state q, and on each i = 1, . . . , k, the head on tape i is
reading ai, then it enters state p, and for i = 1, . . . , k, the head on tape i writes the symbol bi
and moves according to αi.

A configuration ofM is a string of the form (q, /u1, . . . , /uk), where q ∈ Q, each ui is a string
over Γ∪{•} and the symbol • appears exactly once in each ui. The symbol • denotes the position
of the head. As before, the symbol / is the left-end marker of each tape.

The initial configuration ofM on input w is (q0, / •w, /•, . . . , /•), i.e., the first tape initially
contains the input word and all the other tapes are initially blank. The notion of “one step
computation” C ` C ′ is defined similarly as in the standard Turing machine. Likewise, the con-
ditions of acceptance and rejection are defined as when the Turing machine enters the accepting
and rejecting states, respectively.

Theorem 6.1 For every k-tape TM M, where k > 2, there is a single tape TM M′ such that
for every input word w, the following holds.

• IfM accepts w, thenM′ accepts w.
• IfM rejects w, thenM′ rejects w.
• IfM does not halt on w, thenM′ does not halt on w.

Proof. LetM = 〈Σ,Γ, Q, q0, F, δ〉 be a k-tape TM with k > 2. We will design a TMM′ that
simulates the run ofM on w using only one tape. The idea is that a configuration (q, /u1, . . . , /uk)
(ofM) can be viewed as a string over the alphabet Q ∪ Γ ∪ {•, /̃}:

q/̃u1 · · · /̃uk

This string can be stored in just one tape. Here /̃ is a new symbol to represent the symbol / of
M.

As an algorithm,M′ works as follows. On input word w, do the following.

• Let C be the string q0/̃ • w/̃ • · · · /̃•, i.e., the initial configuration ofM on w.

• While C is not a halting configuration ofM, do the following.

– Scan the string C from left to right to find out the symbol read by each “head.”

CSIE 3110: Formal languages and automata theory Lesson 6: Turing machines and the notion of algorithms

– Move the head back to the beginning of the tape.
– Change the state and the position of each head in C according to the transition

function δ.
This can be done by scanning the string C from left to right and when it encounters
the symbol •, it change its “position” according to δ.

• If C is an accepting configuration, ACCEPT. If C is a rejecting configuration, REJECT.

Note that M′ uses only one string variable C, so in principle it suffices to use only one tape
to store this string C. Note that when the head in tape-1 moves right to the new cell (i.e., the
length of u1 increases),M′ has to “shift” right all the strings /u2, · · · , / uk.

Alternatively we can also “compress” the content of each cell i on every tape into one symbol.
For example, for k = 3, a configuration (q, /01 • 1t, /1 • t, /0 • 1t) can be encoded as:

q, / (0, 1, 0) (1, •t, •1) (•1,t,t) t)

where each (0, 1, 0)(1, •t, •1), (•1,t,t) is represented by a symbol in the tape alphabet ofM′.
This encoding can be illustrated as follows.

tape-1 / 0 1 •1 t
tape-2 / 1 •t t t
tape-3 / 0 •1 t t

the encoding / (0, 1, 0) (1, •t, •1) (•1,t,t) t

More precisely, the string C is of the form (q, /a1a2 · · · ant), where each ai ∈ (Γ ∪ •Γ)k and •Γ
denotes a new alphabet whose symbols are used to represent •a, for each a ∈ Γ.

Remark 6.2 In the proof of Theorem 6.1, the TMM′ simulates the run ofM by remembering
the “last” configuration C which contains the state q. Since the TM M has only some fixed
number of states, the TM M′ can actually remember the state q in its state. So, in principle
the string C does not need to contain the state q. It suffices that C contains only the content of
each tape, i.e., of the form: /̃u1 · · · /̃uk.

Remark 6.3 Intuitively one can view a tape in TM as a variable in a computer program. A
k-tape TM can be viewed as a computer program that uses k variables. Likewise, a computer
program that uses k variables can be viewed as a k-tape TM. See the Appendix.

In view of Remark 6.3, to avoid being overly technical in our presentation, the term “Turing
machine” and “algorithm” will often be used interchangeably. When we describe a TM (especially
in the proofs in this and the subsequent lessons), we will often just describe an algorithm in some
acceptable format. We will write capital ACCEPT to denote that the TM enters the accept state
and REJECT to denote that the TM enters the reject state.

2 Some theorems on decidable and recognizable languages

Theorem 6.4

• If a language L (over the alphabet Σ) is decidable, so is its complement Σ∗ − L.
• If both a language L and its complement Σ∗ − L are recognizable, then L is decidable.

CSIE 3110: Formal languages and automata theory Lesson 6: Turing machines and the notion of algorithms

Proof. The first item is trivial. If a language L is decidable, then by definition, there is a TM
M that decides L. The TM that decides its complement can be obtained by simply switching
the accepting and rejecting states: The accept state becomes reject state and the reject state
becomes accept.

Now we prove the second item. Suppose L and its complement Σ∗ − L are recognizable. Let
M1 be the TM that recognizes L andM2 be the TM that recognizes Σ∗ − L. By Theorem 6.1,
we may assume that they are both 1-tape TM.

W describe a 2-tape TMM′ that decides L as follows. On input word w, do the following.

• Copy the input word w into the second tape.

• Run the TMM1 on the first tape and the TMM2 on the second tape simultaneously.

• IfM1 accepts, then ACCEPT. IfM2 accepts, then REJECT.

Note that for every word w ∈ Σ∗, either w ∈ L or w ∈ Σ∗ − L. Thus, by definition ofM1 and
M2, either w is accepted byM1 or byM2. That is, exactly one ofM1 orM2 will accept w. If
M1 accepts, it means w ∈ L, so the TM M′ accepts. If M2 accepts, it means w ∈ Σ∗ − L, so
the TMM′ rejects.

“To runM1 on the first tape andM2 on the second tape simultaneously,” we mean that the
head for tape-1 is used to “run” M1 and the head for tape-2 to “run” M2. More formally, at this
stage the states ofM′ are of the form (p1, p2), where p1 is a state ofM1 and p2 is a state ofM2.
According the symbols read by each head, it then applies the transitions inM1 andM2 on each
head separately. This is very similar to the proof of Theorem 1.3 (in Lesson 1), where to prove
that regular languages are closed under intersection, we can “run” two DFA simultaneously by
taking the Cartesian product Q1 ×Q2 as the set of states.

Theorem 6.5 Decidable languages are closed under union, intersection, concatenation and Kleene
star.

Proof. In the following letM1 andM2 be the TM that decide languages L1 and L2, respectively.
We may assume that both are 1-tape TM. The proof is actually similar to the second item of
Theorem 6.4.

(Closure under union) The TMM∪ that recognizes L1 ∪L2 works as follows. On input word
w, it runsM1 and thenM2 on w. It accepts if and only if at least one ofM1 orM2 accepts.

(Closure under intersection) Similar to union case.
(Closure under concatenation) The TMM· that recognizes L1 ·L2 works as follows. On input

word w, enumerate all possible pairs (v1, v2) such that v1v2 = w. On each pair (v1, v2), check if
M1 accepts v1 andM2 accepts v2. M· accepts if and only if there is a pair (v1, v2) where v1 is
accepted byM1 and v2 is accepted byM2.

Note that there are only |w|+ 1 possible pairs (v1, v2) where v1v2 = w. (It is possible that v1
or v2 is ε.)

(Closure under Kleene star) The TMM? that recognizes L∗1 works as follows. On input word
w, enumerate all possible tuples (v1, . . . , vm) such that v1 · · · vm = w. On each tuple (v1, . . . , vm),
check if each vi is accepted byM1. M? accepts if and only if there is a tuple (v1, . . . , vm) where
each vi is accepted byM1.

Note that we can easily write an algorithm that enumerates all possible tuples (v1, . . . , vm)
where v1 · · · vm = w.

Theorem 6.6 Recognizable languages are closed under union and intersection.

CSIE 3110: Formal languages and automata theory Lesson 6: Turing machines and the notion of algorithms

Proof. In the following let M1 and M2 be the TM that recognize languages L1 and L2,
respectively. We may assume that both are 1-tape TM. The proof is actually similar to the
second item of Theorem 6.4.

(Closure under union) The TM M∪ that recognizes L1 ∪ L2 works as follows. It has two
tapes. First, it copies the input word into the second tape. Then, it runs M1 and M2 on the
first and second tape simultaneously. It accepts if and only if at least one ofM1 orM2 accepts.

By definition ofM1 andM2, every word w ∈ L1 ∪ L2 is accepted by at least one ofM1 or
M2. Thus,M∪ recognizes the language L1 ∪ L2 correctly.

(Closure under intersection) Similar to above.

Remark 6.7 We should note that recognizable languages are also closed under concatenation
and Kleene star. In fact, we can already prove it in this lesson, but the proof will be quite
technical. So we will postpone the proof until Lesson 9. There we will use the notion of “non-
deterministic” TM to obtain a neater and clearer proof.

We should stress that recognizable languages are not closed under complement. We will see
this in Lesson 7.

Appendix

A An informal definition of algorithm

We define an algorithm (informally) as consisting of one “main” Boolean function of the form:

Boolean main (string w)

{ statement;
...

statement;

}

and some (finite number of) functions of the form:

〈value-type〉 function 〈function-name〉 (〈var-name〉,. . . ,〈var-name〉)
{ statement;

...

statement;

}

Statements in the algorithm are of the following form:

• 〈var-name〉 := 〈expression〉;

• 〈var-name〉 := 〈function-name〉(〈var-name〉,. . . ,〈var-name〉);

• return 〈variable-name〉/〈some-value〉;

CSIE 3110: Formal languages and automata theory Lesson 6: Turing machines and the notion of algorithms

• if 〈condition〉
{ statement;

...

statement;

} else

{ statement;
...

statement;

}

Note that we define our algorithm to mimic closely the C++ language so that we can be “con-
vinced” every C++ program can be rewritten as our algorithm.

In our algorithm variables can only store Boolean or string values. Note that there is no
while-loop, since it can be implemented as a recursive function.

We loosely define an “expression” as any reasonable “basic” computation which includes:

• Concatenating two strings.

• Shift left/right of a string.

• Change the symbol in a position in a string.

Since 0-1 strings can be used to represent numbers, “basic” computation also includes:

• Adding/subtracting/multiplying/dividing two numbers.

• Enumerating all the numbers between 1 and some number n.

• Measuring the length of a 0-1 string.

• Enumerating all the 0-1 strings with length between 1 and some number n.

“Condition” for if statement includes:

• Checking whether two numbers are equal, or whether one number is bigger than the other.

• Checking whether two strings are equal, or whether one string is lexicographically “bigger”
than the other.

One can argue that every C++ computer program can be written as an algorithm defined
above. Note that when we write an algorithm (or any computer program, in fact), it uses only
a fixed number of variables (including variables for data structures such as linked list, arrays,
etc). Multi-tape Turing machines and our definition of algorithms above are equivalent in the
sense that a k-tape Turing machine can be viewed as an algorithm that uses k variables, and
conversely, an algorithm that uses k variables can be viewed as a k-tape Turing machine.

CSIE 3110: Formal languages and automata theory Lesson 7: Universal Turing machines and the halting problem

Lesson 7: Universal Turing machines and the halting problem

Theme: Universal Turing machines and the halting problem.

1 The string representation of a Turing machine

Recall that a Turing machine is a systemM = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉. In the following we will
assume that Σ = {0, 1} and Γ = {0, 1,t}. Without loss of generality, we may also assume that
Q = {0, 1, . . . , n} for some positive integer n.

We note the following.

• Each state i ∈ Q can be written as a string in its binary form.

• Each transition (i, a)→ (j, b, α) ∈ δ can be written as a string over the alphabet:

{0, 1, (,), �,→, t̃, L, R}

where the symbol � represents the comma, t̃ represents t, and L, R represent Left, Right,
respectively. For example, a transition (5,t)→ (8, 1, Right) is written as the string:

(101 � t̃)→ (1000 � 1 � R)

So, the whole systemM = 〈Σ,Γ, Q, 0, qacc, qrej, δ〉 can be written as a string:

bΣc # bΓc # bQc # b0c # bqaccc # bqrejc # bδc

where b·c denotes the string representing the component · and # the symbol separating two
consecutive components.

For example, ifM is a 1-tape TM where Q = {0, . . . , 45}, 0 is the initial state, 3 is qacc and
4 is qrej, it is written as a string:

0 � 1 # 0 � 1 � t̃ # 45 # 0 # 3 # 4 # · · · · · · · · · · · · · · · · · ·︸ ︷︷ ︸
the list of the transitions

Recall that we use the symbol � to represent a comma here. Note also that we do not list all the
states 0, . . . , 45. It suffices to write 45 to indicate that the states are all the numbers between 0
and 45.

This shows that every 1-tape TM (whose tape alphabet is Γ = {0, 1,t}) can be described as
a string over the alphabet {0, 1, (,), �,→, t̃, L, R, #}. Each of these symbols can be further
encoded as 0-1 string of length 4. For example, 0 is encoded as 0000, 1 as 0001 and so on, as
shown in the following table.

symbol the encoding
0 0000
1 0001
(0010
) 0011
� 0100

symbol the encoding
→ 0101
t̃ 0110
L 0111
R 1000
1001

We denote by bMc the binary string obtained by such encoding and we call bMc the binary
string representation of the Turing machineM, or the description of M.

CSIE 3110: Formal languages and automata theory Lesson 7: Universal Turing machines and the halting problem

Remark 7.1 Note that we can easily extend the definition of bMc for TM M with multiple
tapes. In this course, bMc denotes the string representation of M where M can be any TM
with multiple tapes.

Note that a string w over the alphabet {0, 1, (,), �,→, t̃, L, R, #} is the string represen-
tation of a Turing machine, if it is of the form:

u1 # u2 # u3 # u4 # u5 # u6 # u7

that is, the symbol # appears exactly 6 times and each string ui satisfies the following.

• u1 is 0 � 1.

• u2 is 0 � 1 � t̃.
• u3 is an integer n (written in binary form).

• u4, u5, u6 are all the binary form of some numbers between 0 and n.

• u7 is a string such that for every (i, a) ∈ {0, . . . , n}×{0, 1, t̃}, there is exactly one (j, b, α) ∈
{0, . . . , n} × {0, 1, t̃} × {L, R} such that (i � a)→ (j � b � α) appears in u7.

We can easily write an algorithm/computer program that on input string w over the alphabet
{0, 1, (,), �,→, t̃, L, R, #}, it checks whether w satisfies all these properties. In similar
manner, we can also write an algorithm/computer program that on input string w over {0, 1},
it checks whether w is the binary string representation of a Turing machine. This observation is
summarized formally as the following proposition.

Proposition 7.2 There is an algorithm A for the following problem.

Verifying the description of a Turing machine

Input: A string w over the alphabet {0, 1}.
Task: Output True, if w is indeed the description of a TMM, i.e. w = bMc.

Output False, otherwise.

Note that the algorithm A depends on the 0-1 encoding of the symbols 0, 1, (,), �, →, t̃, L,
R and #. Under different encoding, a different algorithm is needed for verifying the description
of a Turing machine. Throughout this course we will assume the fixed encoding shown in the
table above. Hence, we also assume a fixed algorithm A for verifying the description of a Turing
machine.

2 Universal Turing machines

Definition 7.3 A universal Turing machine (UTM) is a Turing machine U that on input bMc$w,
where w ∈ {0, 1}∗, does the following.

• IfM accepts w, then U accepts bMc$w.
• IfM rejects w, then U rejects bMc$w.
• IfM does not halt on w, then U does not halt on bMc$w.

Intuitively, a UTM U works as follows. On input bMc$w, it simulates M on w, i.e., it
constructs the run ofM on w. The way it works is actually similar to the proof of Theorem 6.1,
except that now the TM M is given as part of the input. More precisely, on input word u, it
does the following.

CSIE 3110: Formal languages and automata theory Lesson 7: Universal Turing machines and the halting problem

• Check if u is of the form v$w, where v, w ∈ {0, 1}∗.
• Check if v is indeed the description of a TMM, i.e., v = bMc, by using the algorithm in

Proposition 7.2.

If it is not, REJECT. Otherwise, continue.

• Construct the initial configuration ofM on w and store it as a string C.

• while (C is not a halting configuration):

– Compute the next configuration of C (by accessing the transition ofM).

• If C is an accepting configuration, ACCEPT. If C is a rejecting configuration, REJECT.

It is obvious that: (i) ifM accepts w, then U accepts bMc$w; (ii) ifM rejects w, then U rejects
bMc$w and (iii) ifM does not halt on w, then U does not halt on bMc$w.

Similar to algorithm A in Proposition 7.2, a UTM is defined according to the encoding of
the descriptions of the Turing machines. Since we assume that we only use one fixed encoding,
throughout this course we will also assume a fixed UTM U .

Remark 7.4 At this point we would like to clarify on the meaning of the phrases “run a TMM
on w” and “simulate a TMM on w.”

Intuitively, “run a TM M on w” means that we view a TM M as a procedure/function
(written, say, in C++) and we “call” it with input w. On the other hand, “simulate a TMM on
w” essentially means that we construct the run ofM on w (assuming that we have access to the
transitions ofM).∗

3 The halting problem

We define the following languages:

HALT := {bMc$w | M accepts w where w ∈ {0, 1}∗}.
HALT0 := {bMc | M accepts bMc}.
HALT′0 := {bMc | M does not accept bMc}.

Note that we can use the UTM U to recognize the language HALT and we can also easily
modify the UTM U to recognize the language HALT0. We state this formally as the following
proposition.

Proposition 7.5 The language HALT0 and HALT are recognizable.

Theorem 7.6 HALT′0 is undecidable.

Proof. Suppose to the contrary that HALT′0 is decidable. Let B be the TM that decides HALT′0.
We examine whether B accept its own description bBc. There are two cases.

• If B accepts bBc.
Since B decides HALT′0, this means bBc ∈ HALT′0. By the definition of HALT′0, B does not
accept bBc. A contradiction.

∗Sometimes these two phrases are used interchangeably, since the end results (in terms of accept/reject) are
usually the same. However, the two processes have different run time.

CSIE 3110: Formal languages and automata theory Lesson 7: Universal Turing machines and the halting problem

• If B rejects bBc.
Since B decides HALT′0, this means bBc /∈ HALT′0. By the definition of HALT′0, B accepts
bBc. A contradiction.

Both cases yield contradiction. Thus, there is no such TM B that decides HALT′0, i.e., HALT′0 is
undecidable.

We should note that Theorem 7.6 actually states the same thing as Theorem 0.1 in Lesson
0. The only difference is that Theorem 7.6 is formulated in term of the Turing machines while
Theorem 0.1 is formulated in term of the C++ programs.

Corollary 7.7 HALT0 and HALT are undecidable.

Proof. It follows immediately from Theorem 7.6.

Recall that if both L and its complement L = Σ∗−L are recognizable, then both are decidable.
Then, the following corollary follows immediately from Proposition 7.5 and Theorem 7.6.

Corollary 7.8 The language HALT′0 is not recognizable.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

Lesson 8: Reducibility

Theme: Reductions as a tool to prove undecidability.

1 Reductions

Definition 8.1 Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗. We say that a Turing machine
M computes the function F is a 2-tape Turing machine that accepts every word w ∈ Σ∗ and
when it halts, the content of its second tape is F (w).

Note that forM to compute F , the content of the first tape can be anything when it halts.
That is, on every word w,M accepts w with the accepting run:

(q0, •w, •) ` · · · ` (qacc, u, •F (w))

for some string u (which denotes the content of the first tape).
Note that due to the equivalence between multi-tape Turing machines and 1-tape Turing

machines, the Turing machine M that computes F is not necessarily 2-tape. It can be any
multi-tape Turing machine with a designated tape that contains the output string.

Definition 8.2 A function F : Σ∗ → Σ∗ is computable, if there is a Turing machine M that
computes it.

Definition 8.3 A language L1 is mapping reducible to another language L2, denoted by:

L1 6m L2,

if there is a computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

The function f is called mapping reduction.

Sometimes we omit the word “mapping” and call it simply “reducible” or “reduction,” instead
of “mapping reducible” or “mapping reduction.” Intuitively L1 6m L2 means that L2 is “compu-
tationally more general,” or “more general” than L1 and that a Turing machine that decides L2

can be used to decide L1.

Definition 8.4 A language L1 is Turing reducible to another language L1, denoted by L1 6T L2,
if by assuming that L2 is decidable by a TMM2, there is a TMM1 that decides L1 usingM2

as a “subroutine.”
Moreover, we also assume that M2 decides L2 in one step. We call M1 a TM with oracle

access to L2.

Remark 8.5 Some observations:

• If L1 6m L2, then L1 6T L2.

• If L1 6T L2 and L1 is undecidable, then L2 is also undecidable.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

2 Some variants of the halting problem

In the following for a Turing machineM, we denote by L(M) the set of all words accepted by
M.

We will show that the following languages are undecidable.

• L0 := {bMc | L(M) = ∅}.
That is, bMc ∈ L0 if and only ifM does not accept any word.

• L1 := {bMc | L(M) = {0, 1}∗}.
That is, bMc ∈ L1 if and only ifM accepts every word.

• L2 := {bMc | M accepts the empty word ε}
That is, bMc ∈ L2 if and only ifM accepts the empty word ε.

• L3 := {bMc | M accepts the word 1101}.
• L4 := {bMc | L(M) = {anbn | n > 0}}.
• L5 := {bMc | L(M) is a regular language}.

In the following we will illustrate how to prove that L0 and L4 are undecidable by both
mapping and Turing reductions. The proof can then be generalized easily to establish the so
called Rice’s theorem.

Proof that L0 is undecidable (via mapping reduction). We are going to show that
HALT 6m L0, where L0 is the complement of L0. The reduction is as follows.

INPUT: bMc$w.
• Construct a TM KM,w that works as follows.

INPUT: u ∈ Σ∗.
– RunM on w.
– IfM accepts w, ACCEPT.
– IfM rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside KM,w, thus, they are supposed to mean
KM,w accepts and rejects its input string u, respectively.)

• Output bKM,wc.

The language accepted by KM,w is as follows.

L(KM,w) :=

{
Σ∗, ifM accepts w
∅, ifM does not accept w

Thus,M accepts w if and only if L(KM,w) 6= ∅. By definition of L0 and HALT, bMc$w ∈ HALT
if and only if bKM,wc /∈ L0. Since HALT is undecidable, L0 is undecidable, and therefore, L0 is
undecidable.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

Proof that L0 is undecidable (via Turing reduction). Assume to the contrary that L0 is
decidable. LetM0 be a TM that decides L0. The following algorithm, denoted byM∗, decides
HALT.

INPUT: bMc$w.
• Construct a TM KM,w that works as follows.

INPUT: u ∈ Σ∗.
– RunM on w.
– IfM accepts w, ACCEPT. (Note: ACCEPT here is for KM,w to accept u.)
– IfM rejects w, REJECT. (Note: REJECT here is for KM,w to reject u.)

• RunM0 on bKM,wc.
• IfM0 accepts bKM,wc, REJECT. (Note: REJECT here is forM∗ to reject bMc$w.)
• IfM0 rejects bKM,wc, ACCEPT. (Note: ACCEPT here is forM∗ to accept bMc$w.)

Now that the language L(KM,w) is:

L(KM,w) :=

{
Σ∗, ifM accepts w
∅, ifM does not accept w

Thus, bMc$w ∈ HALT if and only if bKM,wc /∈ L0. Since M0 is supposed to decide L0,
our algorithm M∗ above decides HALT, which contradicts the fact that HALT is undecidable.
Therefore, there is no such Turing machineM0 that decides L0, which means L0 is undecidable.

Proof that L4 is undecidable (via mapping reduction). First, note that the language
{anbn|n > 0} is decidable and we denote by A the TM that decides it.

We now show that HALT 6m L4. The reduction is as follows.

INPUT: bMc$w.
• Construct a TM KM,w that works as follows.

INPUT: u ∈ Σ∗.
– Run A on u. (to check if u is of the form anbn, for some n > 0.)
– If A rejects u, REJECT.
– If A accepts u, then runM on w.

∗ IfM accepts w, ACCEPT.
∗ IfM rejects w, REJECT.

(Note: ACCEPT and REJECT above are inside KM,w, thus, they are supposed to mean
KM,w accepts and rejects its input string u, respectively.)

• Output bKM,wc.

The language accepted by KM,w is as follows.

L(KM,w) :=

{
{anbn | n > 0}, ifM accepts w
∅, ifM does not accept w

Thus, M accepts w if and only if L(KM,w) = {anbn | n > 0}. By definition of HALT and L4,
M$w ∈ HALT if and only if bKM,wc ∈ L4. Since HALT is undecidable, L4 is undecidable too.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

Rice’s theorem. As mentioned earlier, the statement that all languages L0–L4 are undecidable
is actually a special case of the so called Rice’s theorem which states as follows. Let P be a set of
the descriptions of Turing machines. We say that P is a property, if for for every Turing machines
M1 andM2, if L(M1) = L(M2), then either both bM1c and bM2c are in P , or both are not in
P . Intuitively, for a set P to be a property, the criteria for the membership of bMc depends on
the language L(M), and not on the string bMc itself. A property P is called a trivial property,
if it is either ∅ or contains all the descriptions of the Turing machines.

Theorem 8.6 (Rice’s theorem) For a property P , if P is not a trivial property, then P is
undecidable.

Proof. The proof is actually a straightforward generalization of the proof of the undecidablity
of L4 above.

Let P be a non-trivial property. We first assume that P does not contain the description of
a Turing machine bMc where L(M) = ∅. Let A be a Turing machine where bAc ∈ P . Such A
exists since P is not a trivial property.

We show that HALT 6m P by the following reduction.

INPUT: bMc$w.
• Construct a TM KM,w that works as follows.

INPUT: u ∈ Σ∗.
– Run A on u. (to check if u ∈ L(A))
– If A rejects u, REJECT.
– If A accepts u, then runM on w.

∗ IfM accepts w, ACCEPT.
∗ IfM rejects w, REJECT.

• Output bKM,wc.

We examine the language L(KM,w).

• IfM$w ∈ HALT, then L(KM,w) = L(A), and hence, bKM,wc ∈ P .
This is because P is a property and bAc ∈ P .

• IfM$w /∈ HALT, then L(KM,w) = ∅, and hence, bKM,wc /∈ P .
This is because P is a property and we assume that P does not contain the description of
a Turing machine bMc where L(M) = ∅.

Thus,
M$w ∈ HALT if and only if bKM,wc ∈ P

This proves that HALT 6m P . Hence, P is undecidable.
Next, we consider the case where P contains the description of a Turing machine bMc where

L(M) = ∅. In this case the complement of P , denoted by P , does not contain the description of
a Turing machine bMc where L(M) = ∅. We have shown above that P is undecidable. Hence,
P is also undecidable.

Remark 8.7 Note that when a property P is trivial, it is decidable. If P = ∅, it is obviously
decidable. When P contains all the descriptions of the Turing machines, we can use the algorithm
A in Proposition 7.2 to decide P .

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

3 Some undecidable problems concerning CFL

Consider the following problem

CFL-Intersection

Input: Two CFG’s G1 = 〈Σ, V1, R1, S1〉 and G2 = 〈Σ, V2, R2, S2〉, where Σ = {0, 1}.
Task: Output True, if L(G1) ∩ L(G2) 6= ∅. Otherwise, output False.

This problem can be viewed as a language:

CFL-Intersection := {bG1c$bG2c | L(G1) ∩ L(G2) 6= ∅}

where bGc denotes the encoding of the CFG G as a string over some fixed alphabet. For example,
we can encode a CFG over Σ as a string over the alphabet Σ∪{0, 1, 〈, 〉,→, �,#} as follows. Let G
be a CFG with n variables. The variables can be represented as 〈i〉, where i is an integer (written
in binary) between 1 and n. Each rule, say for example, S → 0X11 is written as 〈0〉 → 0〈3〉11
(assuming that S is represented as 0 and X as 3).

Theorem 8.8 The problem CFL-Intersection is undecidable.

Proof. We will show that HALT 6m CFL-Intersection. In the proof we assume that HALT
contains only the string bMc$w where M is a 1-tape Turing machine and M accepts w. Such
HALT is still undecidable.

We first make a few observations. First, for a Turing machineM, we can add a “new” state
qloop such that on every input word w, ifM rejects w, instead of entering the qrej,M enters qloop
and loops forever. By adding one more state, if necessary, we also assume that for every word w,
ifM accepts w, the run ofM on w has odd “length.” That is, the run is:

C0 ` C1 ` C2 ` C3 ` · · · ` Cn (1)

where n is odd. So, for every input word w, the following holds.

(P1) IfM accepts w, then the run is finite, i.e., C0 ` C1 ` · · · ` Cn and n is odd.

(P2) IfM does not w, then the run is infinite.

Recall that the states of a Turing machines M are represented as numbers written in binary
form. Thus, the run (1) can be viewed as a string over the alphabet {`, 0, 1, t̃, [,]}, where we
write [i] to represent the state in the configuration.

We will present an algorithm A such that on input bMc$w, it constructs two CFG G1 and
G2 such that the following holds. If the run ofM on w is finite:

C0 ` C1 ` C2 ` C3 · · · ` Cn (2)

then L(G1) ∩ L(G2) contains exactly one word and that word is:

C0 ` Cr
1 ` C2 ` Cr

3 ` · · · ` Cr
n (3)

where Cr
i denotes the reverse of Ci. We call the string in (3) the reverse representation of the

run in (2).
We define G1 as a CFG that generates words of the form:

u0 ` u1 ` u2 ` u3 · · · ` un (4)

such that the following holds.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

(a) n is an odd number.

(b) u0 is the initial configuration ofM on w.

(c) ui−1 ` uri , for each odd i in between 1 and n.

That is, the string in 4 is almost the reverse representation of the run, except that the steps on
even i are not guaranteed to obey the transitions ofM and the last string un is not guaranteed
to be an accepting configuration, i.e., to contain [qacc].

Note that the rules for G1 can be defined as:

S → X ` Y
X → C0 ` Cr

1

Y → Z ` Y
Y → ε

Variable Z generates words of the form: u ` vr. The rules for generating words of this form
can be constructed by accessing the transitions ofM. For example, for each transition (p, a)→
(q, b, Left), where a, b ∈ {0, 1,t}, we have the following rules:

Z → 0 Z 0
Z → 1 Z 1
Z → t̃ Z t̃
Z → 0[p]a T b0[q]
Z → 1[p]a T b1[q]
Z → t[p]a T b t [q]

T → 0 T 0
T → 1 T 1
T → t̃ T t̃
T → `

Recall that the states p and q are written in binary form. Variable Y generates words of the
form: u0 ` u1 ` u2 ` u3 · · · ` un, where ui−1 ` uri , for each odd i in between 1 and n.

Next, we define G2 as a CFG that generates words of the form (4) such that:

(d) uri−1 ` ui, for each even i in between 1 and n.

(e) The last string un contains [qacc].

In other words, G2 generates words of the form (4) where the steps on even i are guaranteed to
obey the transitions ofM and the last string un contains [qacc]. Again, the rules for generating
words of this form can be constructed by accessing the transitions ofM.

To summarize these observations, we present the following reduction for establishing HALT 6m

CFL-Intersection. On input bMc$w, do the following.

• Add some new states toM so that (P1) and (P2) hold.

• Construct the CFG G1 that generates words of the form (4) where (a)–(c) hold.

• Construct the CFG G2 that generates words of the form (4) where (d) holds.

• Output bG1c$bG2c.

To prove that the reduction is correct, observe that if M accepts w, then the run is finite. By
the construction of G1 and G2, the reverse representation of the run is in L(G1)∩L(G2). Likewise,
if a string u0 ` u1 ` · · · ` un is a word in L(G1) ∩ L(G2), then by the construction of G1 and G2,
it is the reverse representation of the run ofM on w. Thus, by definition, w is accepted byM.

Note that the CFG G1 and G2 are defined over the terminals 0, 1,t,`, [,], but each of them
can encoded properly as 0-1 string.

Next, we consider the following problem.

CSIE 3110: Formal languages and automata theory Lesson 8: Reducibility

CFL-Universality

Input: A CFG G = 〈Σ, V,R, S〉, where Σ = {0, 1}.
Task: Output True, if L(G) = Σ∗. Otherwise, output False.

Similar to CFL-Intersection, the problem CFL-Universality can be viewed as language.

Theorem 8.9 The problem CFL-Universality is undecidable.

Proof. The proof is quite similar to Theorem 8.8. We will describe an algorithm that on input
bMc$w, it construct a CFG G such that it generates all strings that are not(!) the run ofM on
w.

Note that a word:
u0 ` u1 ` u2 ` u3 · · · ` un (5)

is not the reverse representation of the runM on w, if at least one of the following holds.

(C1) The symbol ` appears even number of times.

(C2) u0 is not the initial configuration.

(C3) For some 0 6 i 6 n, the string ui is not a string that represents a configuration, i.e., it
does not contain a state or the states appear at least twice or the brackets [and] do not
appear “properly” or inside the bracket [and] is not a state ofM.

(C4) For some 0 6 i 6 n− 1, the string ui ` ui is not according to the transitions ofM.

(C5) For some o 6 i 6 n− 1, the string ui is not the reverse of the string ui+1 (disregarding the
state symbol and the symbols next to the state in both ui and ui+1).

(C6) The last string un does not contain qacc.

For each of the conditions (C1)–(C6), we can construct a CFG G that generate all the strings
that satisfy the condition. (It is useful to recall that CFL are closed union.) Here, as before, we
fix an encoding of the terminals 0, 1,t,`, [,] by 0-1 string.

Now, to complete our proof, we present the reduction for establishing HALT 6T CFL-Universality.
The following algorithm assumes that there is an algorithm for checking whether L(G) = Σ∗. On
input bMc$w, do the following.

• Construct the CFG G that generates words of the form (4) such that at least one of (C1)–
(C6) holds.

• If L(G) = Σ∗, then REJECT.

If L(G) 6= Σ∗, then ACCEPT.

We will show that this algorithm decides HALT. Note that if M accepts w, then by definition,
the run of M on w is finite. By the construction of G, the reverse representation of this run is
not in L(G). Thus, L(G) 6= Σ∗. Conversely, L(G) is the set of all the strings that are not the
reverse representation of the run ofM on w. So, if L(G) 6= Σ∗, then there is a string that is not
in L(G). This means that there is a string that is the reverse representation of the run ofM on
w, which means thatM accepts w. This completes the proof.

Corollary 8.10 The problem CFL-Subset defined below is undecidable.

CFL-Subset

Input: Two CFG’s G1 and G2.
Task: Output True, if L(G1) ⊆ L(G2). Otherwise, output False.

CSIE 3110: Formal languages and automata theory Lesson 9: Non-deterministic Turing machines

Lesson 9: Non-deterministic Turing machines

Theme: Non-deterministic Turing machines.

A non-deterministic Turing machine (NTM)M = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉 is defined as the stan-
dard Turing machine, with the exception that δ is now a relation where there maybe one or two
transitions applicable on every pair (p, a) ∈ Q× Γ.

More precisely, for every pair (p, a) ∈ Q× Γ, the following holds. Either there is exactly one
(q, b, α) such that:

(p, a)→ (q, b, α) ∈ δ

or there are exactly two (q1, b1, α1) and (q2, b2, α2) such that:

(p, a)→ (q1, b1, α1) ∈ δ and (p, a)→ (q2, b2, α2) ∈ δ

The standard Turing machine is a special case of non-deterministic Turing machine where
for every (p, a) ∈ Q × Γ, there is exactly one (q, b, α) such that (p, a) → (q, bα) ∈ δ. For
this reason, the standard Turing machine is also called deterministic Turing machine. To avoid
potential confusion, from now we will always specify whether a Turing machine is a deterministic
or non-deterministic. We use the abbreviation DTM for deterministic Turing machine.

As before, the initial configuration of M on input word w is /q0w. For two configurations
C,C ′, the notion of “one step computation” C ` C ′ is defined similarly as in the standard Turing
machine. A run ofM on input w is a sequence:

C0 ` C1 ` · · ·

where C0 is the initial configuration on w. A run is accepting/rejecting, if it ends up in an
accepting/rejecting configuration, respectively. However, due to non-determinism, for each C
there are two configurations C1 and C2 such that C ` C1 and C ` C2. Thus, for every input
word w, there are many runs ofM on w. Some may be accepting, some may be rejecting, and
some other may not halt.

The following is the definition of acceptance/rejection and recognizable/decidable languages
in terms of non-deterministic Turing machines.

• An NTMM accepts w, if there is an accepting run ofM on w.

• An NTMM rejects w, if all runs ofM on w are rejecting.

• An NTMM does not halt on w, ifM neither accept nor reject w, i.e.,M does not accept
w and it also does not reject w.

Equivalently, we can say thatM does not halt on w, if there is no accepting run ofM on
w and there is an infinite run ofM on w.

• A language L is decided by an NTMM, if:

– for every w ∈ L,M accepts w;
– for every w /∈ L,M rejects w.

• A language L is recognized by an NTMM, if:

– for every w ∈ L,M accepts w;
– for every w /∈ L,M does not accept w.

CSIE 3110: Formal languages and automata theory Lesson 9: Non-deterministic Turing machines

Theorem 9.1 For every language NTM M, there is DTM M′ such that for every input word
w, the following holds.

• If M accepts w, then M′ accepts w.

• If M rejects w, then M′ rejects w.

• If M does not halt on w, then M′ does not halt on w.

In other words, M and M′ are equivalent.

Proof. LetM be an NTM. The DTMM′ works by simulatingM on the input word as follows.
On input word w, do the following.

• Let C0 be the initial configuration ofM on w.

• Let S = {C0}, i.e., a set that contains only one element C0.

• while (S 6= ∅) or (S does not contain an accepting configuration):

– Delete all the rejecting configurations from S.
– Compute the next configurations of each element in S and store them all in S.

That is, construct the following set and store it back in S:

{ C | there is C ′ ∈ S such that C ′ ` C}

• If S contains an accepting configuration, ACCEPT.

If S = ∅, REJECT.

For each input word w, the DTMM′ behaves as follows.

• IfM accepts w.

By definition, there is an accepting run ofM on w. This means that at one point the set S
will contain an accepting configuration, soM′ will come out of the while-loop and accepts
w.

• IfM rejects w.

By definition, all the runs of M on w are rejecting. Since rejecting configurations are
deleted from the set S, this means that at one point the set S will become ∅, so M′ will
come out of the while-loop and rejects w.

• IfM does not halt on w.

This means that there is no accepting run and there is an infinite run. So, the set S will
never contain an accepting configuration.

Moreover, since there is an infinite run, the set S will never be empty. Thus, the while-loop
inM′ will also loop forever, which meansM′ will not halt too on w.

This completes the proof of Theorem 9.1.

Theorem 9.2 Recognizable languages are closed under concatenation and Kleene star.

Proof. Let L1 and L2 be recognizable languages and let M1 and M2 be DTM that recognize
them. We assume that Σ = {0, 1}.

(Closure under concatenation) We present an NTM M that recognizes the language L1L2.
It has two “new” symbols Õ and 1̃. On input word w, do the following.

CSIE 3110: Formal languages and automata theory Lesson 9: Non-deterministic Turing machines

• Scan the input word from left to right.

• On each symbol a ∈ {0, 1}, the TM non-deterministically chooses whether to move right
or write ã.

That is, it moves from left to right and “guesses” a position in the input word. It marks
the guessed position with ã.

Intuitively, we can view this asM “guesses” a partition w = v1v2.

• Let v1 and v2 be the portion of the word to the left and to the right of the marker, where
the first symbol of v2 is ã.

• RunM1 on v1. If it accepts, then runM2 on v2 (after the symbol ã is changed back to a).

• IfM2 accepts v2, ACCEPT.

Obviously, if the input word w indeed belongs to L1L2, then there is a partition w = v1v2 such
thatM1 accepts v1 andM2 accepts v2. Hence, w ∈ L1L2 if and only ifM accepts w.

(Closure under Kleene star) The proof is similar to the concatenation case. We present an
NTM M that recognizes the language L∗1 as follows. On input word w, it guesses a partition
w = v1 · · · vk, for some k > 1 and run M1 on each vi. It accepts w if and only if M1 accepts
each vi.

Appendix

A An informal definition of non-deterministic algorithm

One can view a “non-deterministic” algorithm as an algorithm as defined in the appendix in
Lesson 7, with an additional special variable z and an instruction of the following form:

z := 0 ‖ 1; (1)

This instruction means “randomly assign variable z with either 0 or 1.”
A non-deterministic algorithm A “accepts” an input word w, if on every instruction of the

form (1), variable z can be assigned with 0 or 1 such that A will “return true.” Note that the
instruction (1) can be encountered more than once during the execution of algorithm A. For
example, it may appear inside a while-loop.

As an example, we consider the problemSAT defined as follows.

SAT

Input: A propositional formula ϕ.
Task: Output True, if ϕ has a satisfying assignment. Otherwise, output False.

The following is an example of a non-deterministic algorithm that decides SAT. On input
formula ϕ, do the following.

• Let x1, . . . , xn be the variables in ϕ.

• For each i = 1, . . . , n do:

– z := 0 ‖ 1;
– If z == 1, then assign xi with True.

CSIE 3110: Formal languages and automata theory Lesson 9: Non-deterministic Turing machines

– If z == 0, then assign xi with False.

• Check if the formula ϕ evaluates to true under the assignment.

• If the formula evaluates to True, then ACCEPT.

If the formula evaluates to False, then REJECT.

We argue that the algorithm above decides SAT.

• If ϕ has a satisfying assignment, then there is a possibility that the algorithm ACCEPTS.

Formally, this means that there is an accepting run, hence, by definition, ϕ is accepted by
the algorithm.

• If ϕ does not have any satisfying assignment, then the algorithm always REJECTS.

Formally, this means that all runs are rejecting runs, hence, by definition, ϕ is rejected by
the algorithm.

Note that in the algorithm above, the assignment to the variables is done by invoking z := 0|1,
which can be viewed as “guessing” an assignment. If there is such an assignment, then there is a
possibility that the guess is correct, and we can assume that the NTM always guesses “correctly,”
i.e., it always makes a guess that leads to the accept state. If there is no such assignment, then
there is no possiblity that the guess is correct, i.e., all guesses lead to the reject state.

Note also that the non-deterministic algorithm above is different from the standard deter-
ministic algorithm for SAT which works as follows. On input formula ϕ, do the following.

• Let x1, . . . , xn be the variables in ϕ.

• Enumerate all possible assignment to the variables x1, . . . , xn.

• If there is an assignment under which the formula ϕ evaluates to true, then ACCEPT.

If there is no such assignment, then REJECT.

CSIE 3110: Formal languages and automata theory Lesson 10: Basic complexity classes

Lesson 10: Basic complexity classes

Theme: Classification of languages/problems according to number of steps (time) and cells
(space) needed by Turing machines to decide them.

In the following let N denote the set of natural numbers {0, 1, 2, . . .}. Recall the big ‘Oh’ notation
f(n) = O(g(n)) which means that there is c, n0 ∈ N such that for every n > n0,

f(n) 6 c · g(n).

Recall also that for a word w ∈ Σ∗, |w| denotes the length of w.

1 Polynomial time complexity

We say that a DTM/NTMM runs in time O(nk), if there is c, n0 ∈ N such that for every word
w ∈ Σ∗ with |w| > n0, every run ofM on w has length 6 c|w|k. That is, for every run ofM on
w with |w| > n0:

C0 ` C1 ` · · · ` CN where CN is an accepting/rejecting configuration,

we have N 6 c|w|k.
The notion thatM runs in time O(nk) is the same for DTM and NTM. The only difference

is that a DTM only has one run for each input word w, whereas NTM can have many runs for
each input word w. In both cases, we can only say thatM runs in time O(nk), if for each input
word w, the length of every run ofM on w is 6 c|w|k.

Definition 10.1 A DTM/NTM M decides/accepts a language L in time O(nk), if M decides
L and it runs in time O(nk).

Here it is useful to recall that a DTM/NTM M decides a language L, if for every word
w ∈ Σ∗,M accepts w if and only if w ∈ L.

We define the class Dtime[nk] and the class P as follows.

Dtime[nk] := {L | there is a DTMM that decides L in time O(nk)}
P :=

⋃
k>1

Dtime[nk]

Note that the class P is closed under complement, union and intersection.
The non-deterministic counterpart is defined as follows.

Ntime[nk] := {L | there is an NTMM that decides L in time O(nk)}
NP :=

⋃
k>1

Ntime[nk]

The following class is also an important class in complexity theory.

coNP := {L | Σ∗ − L ∈NP}

CSIE 3110: Formal languages and automata theory Lesson 10: Basic complexity classes

2 Space complexity

We say that a DTM/NTMM uses space O(nk) if the following holds.

• M halts on every word w ∈ Σ∗, i.e., it either accepts or rejects w.

• There is c, n0 ∈ N such that for every word w ∈ Σ∗ with length |w| > n0, each configuration
in every run ofM on w has length 6 c|w|k.

In other words, for every run ofM on w:

C0 ` C1 ` · · · ` CN where CN is an accepting/rejecting configuration,

the length |Ci| 6 c|w|k, for each i = 0, . . . , N .
Again, note that the notion of M uses space O(nk) is the same for DTM and NTM. The

only difference is that a DTM has only one run for each input word w, whereas NTM can have
many runs for each input word w. In both cases, we can only say that M uses space O(nk), if
for each input word w, for every run of M on w, the length of each configuration in the run is
always 6 c|w|k.

Definition 10.2 We say that a DTM/NTMM decides/accepts a language L in space O(nk), if
M decides L and it uses space O(nk).

We define the class Dspace[nk] and Pspace as follows.

Dspace[nk] := {L | there is a DTMM that decides L in space O(nk)}
Pspace :=

⋃
k>1

Dspace[nk]

Note that the class Pspace is closed under complement, union and intersection.
The non-deterministic counterpart is defined as follows.

Nspace[nk] := {L | there is an NTMM that decides L in space O(nk)}
NPspace :=

⋃
k>1

Nspace[nk]

coNPspace := {L | Σ∗ − L ∈NPspace}

3 Logarithmic space complexity

Another interesting classes are Log and NLog. We say that a language L is in Log, if there
is a 2-tape DTMM that decides L and a constant c such that for every input word w:

• The first tape always contains only the input word w, i.e.,M never changes the content of
the first tape.

• M uses space 6 c · log(|w|) in its second tape.

Likewise, we say that a language L is in NLog, if there is a 2-tape NTMM that decides L such
that the above two conditions are satisfied.

CSIE 3110: Formal languages and automata theory Lesson 10: Basic complexity classes

4 Some classic complexity results

Obviously, we have Log ⊆NLog, P ⊆NP, and Pspace ⊆NPspace.

Proposition 10.3

• Log ⊆ P.

• NP ⊆ Pspace.

Deterministic/non-deterministic time/space hierarchy theorem states that for every k > 1,
the following holds.

Dtime[nk] (Dtime[nk+1] Dspace[nk] (Dspace[nk+1]

Ntime[nk] (Ntime[nk+1] Nspace[nk] (Nspace[nk+1]

Some classic results in complexity theory are: (We will not prove them in the class.)

• NLog ⊆ P.

• If L ∈ Nspace[nk], then Σ∗ − L ∈ Nspace[nk].

• Nspace[nk] ⊆ Dspace[n2k].

The second bullet implies that coNspace[nk] = Nspace[nk], and hence, NPspace = coNPspace.
The third bullet implies that NPspace = Pspace.

Combining all these inclusions together, we obtain:

Log ⊆ NLog ⊆ P ⊆ NP ⊆ Pspace

From the deterministic/non-deterministic space hierarchy, it is also known that Log (Pspace
and NLog (Pspace. So, we know that at least one of the inclusions must be strict, but we
don’t know which one.

CSIE 3110: Formal languages and automata theory Lesson 11: NP-complete languages

Lesson 11: NP-complete languages

Theme: Polynomial time reductions and NP-complete languages/problems.

1 Polynomial time reduction

Recall the definition of reduction in Lesson 11: L1 6m L2, if there is a computable function F
such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

We say that a TM M computes F in time O(g(n)), if there is a constant c > 0 such that
on every word w, M computes F (w) in time 6 cg(|w|). If g(n) = nk for some k > 0, such a
function F is called polynomial time computable function.

Definition 11.1 A language L1 is polynomial time reducible to another language L2, denoted
by L1 6p L2, if there is a polynomial time computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

Such a function F is called polynomial time reduction, also known as Karp reduction.

2 NP-complete languages

Definition 11.2 Let L be a language.

• L is NP-hard, if for every L′ ∈NP, L′ 6p L.

• L is NP-complete, if L ∈NP and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x1, . . . , xn is in Con-
junctive Normal Form (CNF), if it is of the form:

∧
i

∨
j `i,j where each `i,j is a literal, i.e.,

a variable xk or its negation ¬xk. It is in 3-CNF, if it is of the form
∧

i

(
`i,1 ∨ `i,2 ∨ `i,3

)
.

A formula ϕ is satisfiable, if there is an assignment of Boolean values True or False to each
variables in ϕ that evaluates to True.

SAT

Input: A propositional formula ϕ in CNF
Task: Output True, if ϕ is satisfiable. Otherwise, output False.

Theorem 11.3 SAT is NP-complete.

3-SAT

Input: A propositional formula ϕ in 3-CNF
Task: Output True, if ϕ is satisfiable. Otherwise, output False.

Theorem 11.4 3-SAT is NP-complete.

CSIE 3110: Formal languages and automata theory Lesson 11: NP-complete languages

3 More NP-complete problems

We need a few terminologies. Let G = (V,E) be a (undirected) graph.

• G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored
with one color) such that no two adjacent vertices have the same color.

• A set C ⊆ V is a clique in G, if every pair of vertices in C are adjacent.

• A set W ⊆ V is a vertex cover, if every edge in E is adjacent to at least one vertex in W .

• A set I ⊆ V is independent, if every pair of vertices in I are non-adjacent.

• A set D ⊆ V is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are NP-complete.

3-color

Input: A (undirected) graph G = (V,E).
Task: Output True, if G is 3-colorable. Otherwise, output False.

Clique

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output True, if G has a clique of size > k. Otherwise, output False.

Independent-Set

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output True, if G has an independent set of size > k.

Otherwise, output False.

Vertex-Cover

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output True, if G has a vertex cover of size 6 k. Otherwise, output False.

Dominating-Set

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output True, if G has an dominating set of size 6 k.

Otherwise, output False.

