Lesson 12: IP = PSPACE

Theme: The equivalence between the class IP and PSPACE.

1 The verifier for the number of satisfying assignments of boolean formulas

Consider the following language $L_{\sharp SAT}$:

$$L_{\sharp \mathsf{SAT}} \stackrel{\mathsf{def}}{=} \left\{ \begin{array}{c} (\varphi, k) \\ \text{and } k \text{ is the number of its satisfying assignments (in binary)} \end{array} \right\}$$

We will describe its IP protocol.

The arithmetization of boolean formulas. Let $\varphi(x_1, \ldots, x_n)$ be a boolean formula with variables x_1, \ldots, x_n . We first convert it into a multi-variate polynomial $\tilde{\varphi}(x_1, \ldots, x_n)$ by replacing the operators \wedge, \vee and \neg as follows.

$$\begin{array}{cccc} \neg \varphi_1 & \mapsto & 1 - \widetilde{\varphi_1} \\ \varphi_1 & \wedge & \varphi_2 & \mapsto & \widetilde{\varphi_1} \cdot \widetilde{\varphi_2} \\ \varphi_1 & \lor & \varphi_2 & \mapsto & 1 - (1 - \widetilde{\varphi_1}) \cdot (1 - \widetilde{\varphi_2}) \end{array}$$

By a straightforward induction on φ , it is not difficult to show that $\varphi(\bar{b}) = \tilde{\varphi}(\bar{b})$, for every $\bar{b} = (b_1, \ldots, b_n) \in \{0, 1\}^n$. Thus,

$$\sharp \varphi = \sum_{x_1=0}^{1} \sum_{x_2=0}^{1} \cdots \sum_{x_n=0}^{1} \widetilde{\varphi}(x_1, \dots, x_n).$$

An intuitive description of the verifier for $L_{\sharp SAT}$. Let (φ, k) be the input and x_1, \ldots, x_n be the variables in φ . Let d be the maximal degree of each variable in $\tilde{\varphi}$. Let \mathbb{F} be some finite field with size $\geq 3d$.

Denote by $f_i(x_1, \ldots, x_i)$ the following polynomial:

$$f_i(x_1,\ldots,x_i) \stackrel{\text{def}}{=} \sum_{x_{i+1}=0}^1 \cdots \sum_{x_n=0}^1 \widetilde{\varphi}(x_1,x_2,\ldots,x_n)$$

In each round *i*, on some numbers $r_1, \ldots, r_i, t \in \mathbb{F}$, the prover tries to convince the verifier that the following holds.

$$f_i(r_1,\ldots,r_i) = t, \tag{1}$$

The protocol works by recursively on i.

For each $1 \leq i \leq n$, round *i* works as follows Let r_1, \ldots, r_{i-1} and *t* be the values from the previous round and the prover tries to convince the verifier that the following holds.

$$f_{i-1}(r_1, \dots, r_{i-1}) = t, (2)$$

• The verifier asks for the polynomial $f_i(r_1, \ldots, r_{i-1}, x_i)$.

- Suppose the prover replies with $g(x_i)$.
- The verifier checks if the following holds.

$$t = g(0) + g(1)$$

Reject, if it does not. Otherwise, continue.

• The verifier chooses a random $r \in \mathbb{F}$ and proceeds to the next round to check:

$$g(r) = f_i(r_1, \ldots, r_{i-1}, r).$$

Note that in round 1 the value t is k. In the last round i = n, the verifier can compute the value $f_n(r_1, \ldots, r_{n-1}, r)$ directly.

A more precise description of the verifier for $L_{\sharp SAT}$. Let (φ, k) be the input and x_1, \ldots, x_n be the variables in φ . Let d be the maximal degree of each variable in the polynomial $\widetilde{\varphi}(x_1, \ldots, x_n)$. Let \mathbb{F} be some finite field with size $\geq 3d$. The verifier works as follows, where all polynomial evaluation is computed in the field \mathbb{F} .

(Round 1)

- The verifier asks the prover for the polynomial $f_1(x_1)$.
- Suppose the prover replies with a polynomial $g_1(x_1)$.
- The verifier checks if $k = g_1(0) + g_1(1)$.

If not, the verifier rejects immediately. Otherwise, continue.

(Round 2)

- The verifier randomly chooses a number $r_1 \in \mathbb{F}$ and asks the prover for the polynomial $f_2(r_1, x_2)$.
- Suppose the prover replies with a polynomial $g_2(x_2)$.
- The verifier checks if $g_1(r_1) = g_2(0) + g_2(1)$.

If not, the verifier rejects immediately. Otherwise, continue.

... and so on, where each round $i \leq n$ is as follows.

(Round i)

- The verifier randomly chooses a number $r_{i-1} \in \mathbb{F}$ and asks the prover for the polynomial $f_i(r_1, \ldots, r_{i-1}, x_i)$.
- Suppose the prover replies with a polynomial $g_i(x_i)$.
- The verifier checks if $g_{i-1}(r_{i-1}) = g_i(0) + g_i(1)$.

If not, the verifier rejects immediately. Otherwise, continue.

(Round n+1)

- The verifier randomly chooses a number $r_n \in \mathbb{F}$.
- The verifier checks if $g_n(r_n) = f_n(r_1, \ldots, r_n)$. It accepts if and only if the equality holds. Note that $f_n(r_1, \ldots, r_n) = \widetilde{\varphi}(r_1, \ldots, r_n)$.

Proof of correctness. Note that if $(\varphi, k) \in L_{\sharp SAT}$, then the protocol works correctly. For each r_1, \ldots, r_{i-1} , the prover replies with $f_i(r_1, \ldots, r_{i-1}, x_i)$. So, $\mathbf{Pr}[V \text{ accepts }] = 1$.

Suppose $(\varphi, k) \notin L_{\sharp SAT}$. That is,

$$k \neq \sum_{x_1=0}^1 \sum_{x_2=0}^1 \cdots \sum_{x_n=0}^1 \widetilde{\varphi}(x_1,\ldots,x_n).$$

We can assume that in round 1 the prover replies with a polynomial $g_1(x_1)$ where $k = g_1(0) + g_1(1)$. Otherwise, verifier rejects immediately. Note that this means that $g_1(x_1) \neq f_1(x_1)$.

We will calculate the probability that V rejects. Consider a fixed interaction between a prover and the verifier. Let r_1, \ldots, r_n be the random strings generated by the verifier. There are two scenarios.

(S1)
$$g_n(x_n) \neq f_n(r_1, \dots, r_{n-1}, x_n).$$

(S2)
$$g_n(x_n) = f_n(r_1, \dots, r_{n-1}, x_n).$$

That is, in (S1) the polynomial $g_n(x_n)$ sent by the prover is not "correct" whereas in (S2) $g_n(x_n)$ is correct.

In (S1) the probability that the verifier accepts in round n + 1 is:

$$\mathbf{Pr}_{r_n}[V \text{ accepts }] = \mathbf{Pr}_{r_n}[g_n(r_n) = f_n(r_1, \dots, r_n)] \leqslant \frac{d}{|\mathbb{F}|} \leqslant \frac{1}{3}$$

The second last inequality comes from the fact that the degree of g_n and f_n are at most d, hence, there at most d such r_n where $g_n(r_n) = f_i(r_1, \ldots, r_{n-1}, r_n)$.

We now consider (S2). Since $g_1(x_1) \neq f_1(x_1)$ and $g_n(x_n) = f_n(r_1, \ldots, r_{n-1}, x_n)$, there is $1 \leq i \leq n$ such that:

$$g_{i-1}(x_{i-1}) \neq f_{i-1}(r_1, \dots, r_{i-2}, x_{i-1})$$
 and $g_i(x_i) = f_i(r_1, \dots, r_{i-1}, x_i)$

The probability that the verifier continues in round i is:

$$\begin{aligned} \mathbf{Pr}_{r_{i-1}}[\text{ the verifier continues in round } i] &= \mathbf{Pr}_{r_{i-1}}[g_{i-1}(r_{i-1}) = g_i(0) + g_i(1)] \\ &= \mathbf{Pr}_{r_{i-1}}[g_{i-1}(r_{i-1}) = f_{i-1}(r_1, \dots, r_{i-1})] \\ &\leqslant \frac{d}{|\mathbb{F}|} \leqslant \frac{1}{3} \end{aligned}$$

Again, the second last inequality is due to the degree of g_n and f_n being at most d. In both scenarios (S1) and (S2), the probability that the verifier rejects is $\geq 2/3$. Thus, we have shown the IP protocol for the language $L_{\pm SAT}$. We state this result formally.

Theorem 12.1 (Lund, Fortnow, Karloff, Nisan 1990) $L_{\sharp SAT} \in IP$.

Corollary 12.2 $PH \subseteq IP$.

2 The verifier for **TQBF**

We will now describe the IP protocol for TQBF. The idea is simple. To verify that $\forall x \ \varphi(x)$ is true, we check that $\tilde{\varphi}(0) \cdot \tilde{\varphi}(1) \neq 0$. Likewise, to verify that $\exists x \ \varphi(x)$ is true, we check that $1 - (1 - \tilde{\varphi}(0)) \cdot (1 - \tilde{\varphi}(1)) \neq 0$.

We formalize this intuition as follows. Let $q(\bar{x}, y_1, \ldots, y_n)$ be a polynomial where \bar{x} is a vector of variables and y_1, \ldots, y_n are variables. The expression $Q_1 y_1 \cdots Q_n y_n q(\bar{x}, y_1, \ldots, y_n)$, where each $Q_i \in \{A, E\}$, defines a polynomial $p(\bar{x})$ as follows.

- If $Q_1 = A$: $p(\bar{x}) \stackrel{\text{def}}{=} \left(Q_2 y_2 \cdots Q_n y_n \ q(\bar{x}, 0, y_2, \dots, y_n) \right) \cdot \left(Q_2 y_2 \cdots Q_n y_n \ q(\bar{x}, 1, y_2, \dots, y_n) \right)$
- If $\mathsf{Q}_1 = \mathsf{E}$: $p(\bar{x}) \stackrel{\text{def}}{=} 1 - \left(1 - \mathsf{Q}_2 y_2 \cdots \mathsf{Q}_n y_n \ q(\bar{x}, 0, y_2, \dots, y_n)\right) \cdot \left(1 - \mathsf{Q}_2 y_2 \cdots \mathsf{Q}_n y_n \ q(\bar{x}, 1, y_2, \dots, y_n)\right)$

Intuitively, the IP protocol for TQBF works as follows. Let $\Psi \stackrel{\text{def}}{=} Q_1 x_1 \cdots Q_n x_n \varphi(x_1, \ldots, x_n)$ be the input QBF. Its arithmetization is $\widetilde{\Psi} \stackrel{\text{def}}{=} Q_1 x_1 \cdots Q_n x_n \widetilde{\varphi}(x_1, \ldots, x_n)$, where each $\forall x_i$ is replaced by Ax_i and each $\exists x_i$ by $\mathsf{E}x_i$. It is not difficult to show that Ψ is true QBF if and only if $\widetilde{\Psi} = 1$.

Checking whether $\tilde{\Psi} = 1$ can be done by similar method in the previous section. In each round *i* the verifier asks the prover for the polynomial:

$$f_i(r_1,\ldots,r_{i-1},x_i) \stackrel{\text{def}}{=} \mathsf{Q}_{i+1}x_{i+1}\cdots\mathsf{Q}_nx_n \ \widetilde{\varphi}(r_1,\ldots,r_{i-1},x_i,x_{i+1},\ldots,x_n)$$

for some randomly chosen numbers r_1, \ldots, r_{i-1} . However, note that the degree of x_i can be 2^{n-i} . For this, we introduce a new operator Lx, whose semantics is defined as follows. The expression $LzQ_1y_1 \cdots Q_ny_n q(\bar{x}, z, y_1, \ldots, y_n)$ defines the following polynomial $p(\bar{x}, z)$:

$$p(\bar{x},z) \stackrel{\text{def}}{=} (1-z)\mathsf{Q}_1y_1\cdots\mathsf{Q}_ny_n \ q(\bar{x},0,y_1,\ldots,y_n) \ + \ z\mathsf{Q}_1y_1\cdots\mathsf{Q}_ny_n \ q(\bar{x},1,y_1,\ldots,y_n)$$

In the expression $Lz Q_1 y_1 \cdots Q_n y_n q(\bar{x}, z, y_1, \dots, y_n)$, the variables \bar{x} and z are free variables. The operator $Lz q(\bar{x}, z)$ means "linearize" the variable z in the polynomial $q(\bar{x}, z)$.

Since in the operators A and E we are only evaluating the polynomial on 0 and 1 and $x^k = x$ for $x \in \{0, 1\}$, the value $Q_1 x_1 \cdots Q_n x_n \widetilde{\varphi}(x_1, \dots, x_n)$ is equal to:

$$\mathsf{Q}_1 x_1 \mathsf{L} x_1 \; \mathsf{Q}_2 x_2 \mathsf{L} x_1 \mathsf{L} x_2 \; \cdots \; \mathsf{Q}_n x_n \mathsf{L} x_1 \cdots \mathsf{L} x_n \; \widetilde{\varphi}(x_1, \dots, x_n) \tag{3}$$

The IP protocol will verify that the value in Eq.(3) is 1.

It works recursively where in each round i, on some numbers r_1, \ldots, r_k and t, the prover tries to convince the verifier that the following holds.

$$\mathbf{Q}_i z_i \cdots \mathbf{Q}_m z_m \ \widetilde{\varphi}(r_1, \dots, r_k, x_{k+1}, \dots, x_n) = t, \tag{4}$$

where x_{k+1}, \ldots, x_n are the variables quantified by A or E in $Q_i z_i \cdots Q_m z_m$.

In round 0, the prover "tells" the verifier that the value in (3) is 1. Otherwise, the verifier rejects immediately.

In round *i*, suppose the values r_1, \ldots, r_k and *t* are already given. The verifier tries to verify that (4) is true as follows.

• If $Q_i z_i$ is $A x_{k+1}$.

The verifier asks for the polynomial:

$$\mathsf{Q}_{i+1}z_{i+1}\cdots \mathsf{Q}_m z_m \ \widetilde{\varphi}(r_1,\ldots,r_k,x_{k+1},\ldots,x_n)$$

Suppose the prover replies with $g(x_{k+1})$.

The verifier checks the following.

$$t = g(0) \cdot g(1)$$

Reject, if it does not hold. Otherwise, continue.

The verifier chooses a random number $r \in \mathbb{F}$ and proceeds to the next round to verify:

$$g(r) = \mathsf{Q}_{i+1} z_{i+1} \cdots \mathsf{Q}_m z_m \ \widetilde{\varphi}(r_1, \dots, r_k, r, x_{k+2}, \dots, x_n)$$

• If $Q_i z_i$ is Ex_{k+1} .

Similar to above, but the verifier checks the following.

$$t = 1 - (1 - g(0)) \cdot (1 - g(1))$$

• If $Q_i z_i$ is $L x_j$, for some $1 \leq j \leq k$.

The verifier asks for the polynomial:

$$\mathsf{Q}_{i+1}z_{i+1}\cdots \mathsf{Q}_m z_m \ \widetilde{\varphi}(r_1,\ldots,r_{j-1},x_j,r_{j+1},\ldots,r_k,x_{k+1},\ldots,x_n)$$

Suppose the prover replies with $g(x_j)$.

The verifier checks the following.

$$t = (1 - r_j)g(0) + r_j g(1)$$

Reject, if it does not hold. Otherwise, continue.

The verifier chooses a random number $r \in \mathbb{F}$ and proceeds to the next round to verify:

$$g(r) = \mathsf{Q}_{i+1} z_{i+1} \cdots \mathsf{Q}_m z_m \,\widetilde{\varphi}(r_1, \dots, r_{j-1}, r, r_{j+1}, \dots, r_k, x_{k+1}, \dots, x_n)$$

Theorem 12.3 (Shamir 1990). TQBF \in IP. Hence, IP = PSPACE.

Theorem 12.4 If $PSPACE \subseteq P_{poly}$, then PSPACE = MA.