
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 10: Toda’s theorem

Lesson 10: Toda’s theorem

Theme: Toda’s theorem which states that every language in the polynomial hierarchy can be
decided by a polynomial time DTM with oracle access to ♯SAT, i.e., PH ⊆ P♯SAT.

Theorem 10.1 (Toda, 1991) PH ⊆ P♯P.

1 Reduction from ⊕SAT to ♯SAT

In the following we will use the notations from Note 11. Recall that ♯φ denote the number of
satisfying assignments of a (Boolean) formula φ. For formulas φ and ψ, the formula φ ⊓ ψ is a
formula such that ♯(φ ⊓ ψ) = ♯φ · ♯ψ.

We define an operation + as follows. Let x1, . . . , xn and y1, . . . , ym be the variables in φ and
ψ, respectively. Let z be a new variable.

φ+ ψ
def
=

(
φ ∧ z ∧

m∧
i=1

yi

)
∨

(
ψ ∧ ¬z ∧

n∧
i=1

xi

)
Note that ♯(φ+ ψ) = ♯φ+ ♯ψ.

Lemma 10.2 There is a deterministic polynomial time algorithm T , that on input formula φ
and positive integer m (in unary), outputs a formula ψ such that the following holds.

• If φ ∈ ⊕SAT, then ♯ψ ≡ −1 (mod 2m+1).

• If φ /∈ ⊕SAT, then ♯ψ ≡ 0 (mod 2m+1).

Proof. We will use the following identity for each i ⩾ 0 and n.

(a) If n ≡ −1 (mod 22
i
), then 4n3 + 3n4 ≡ −1 (mod 22

i+1
).

(b) If n ≡ 0 (mod 22
i
), then 4n3 + 3n4 ≡ 0 (mod 22

i+1
).

On input φ and m, the algorithm T does the following.

• For each i = 0, 1, . . . , ⌈log(m+ 1)⌉, define a formula ψi as follows.

ψi
def
=

{
φ if i = 0
4ψ3

i−1 + 3ψ4
i−1 if i ⩾ 1

Here 4ψ3
i−1 + 3ψ4

i−1 denotes the formula that has 4♯(ψi−1)
3 + 3♯(ψi−1)

4 satisfying assign-
ments. Such formula can be constructed using the operators + and ⊓.

• Output the formula ψ⌈log(m+1)⌉.

It is not difficult to show that the algorithm T runs in polynomial time. Its correctness follows
directly from the identities (a) and (b).

1/2

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 10: Toda’s theorem

2 Proof of Theorem 10.1

Let L ∈ PH. We want to show that L ∈ P♯SAT. By Theorem 9.6, there is a probabilistic
polynomial time algorithm M1 that on input w, outputs a formula ψ such that the following
holds.

• If w ∈ L, then Pr[ψ ∈ ⊕SAT] ⩾ 3/4.

• If w /∈ L, then Pr[ψ ∈ ⊕SAT] ⩽ 1/4.

Using the alternative definition of PTM, we view M1 as a DTM with two input (w, r), where r
is a random string. Let ℓ be the length of the random string. Let M2 be the algorithm that on
input w and random string r, it outputs the formula:

T (M1(w, r), ℓ+ 2)

where T is the algorithm in Lemma 10.2. That is, it first runs M1(w, r) and then runs T on
input (M1(w, r), ℓ+2) Combining Theorem 9.6 and Lemma 10.2, on input w and random string
r, the algorithm M2 outputs a formula ψw,r such that the following holds.

• If w ∈ L, then Prr∈{0,1}ℓ [♯ψw,r ≡ −1 (mod 2ℓ+3)] ⩾ 3/4.

• If w /∈ L, then Prr∈{0,1}ℓ [♯ψw,r ≡ −1 (mod 2ℓ+3)] ⩽ 1/4.

This is equivalent to the following.

• If w ∈ L, the sum
∑

r∈{0,1}ℓ ♯ψw,r lies in between −2ℓ and −3
42

ℓ (modulo 2ℓ+3).

• If w /∈ L, the sum
∑

r∈{0,1}ℓ ♯ψw,r lies in between −1
42

ℓ and 0 (modulo 2ℓ+3).

The sets of values that lie in between −2ℓ and −3
42

ℓ and in between −1
42

ℓ and 0 (modulo 2ℓ+3)
are the following sets P and Q, respectively:

P
def
= {28 · 2ℓ−2, . . . , 29 · 2ℓ−2} and Q

def
= {31 · 2ℓ−2, . . . , 2ℓ+3 − 1} ∪ {0}

Note that P and Q are disjoint.
The main idea of Theorem 10.1 is that on input word w, the algorithm asks the ♯SAT oracle

for the value
∑

r∈{0,1}ℓ ♯ψw,r and checks whether the value is in P or Q. To this end, we need to
construct a formula whose number of satisfying assignments is exactly

∑
r∈{0,1}ℓ ♯ψw,r.

Consider the following NTM M′. On input word w, it does the following.

• Guess a string r ∈ {0, 1}ℓ.

• Run M2 on (w, r) to obtain a formula ψw,r.

• Guess a satisfying assignment for ψw,r.

• ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for ψw,r.

Obviously, for every w, the number of accepting runs of M′ on w is precisely
∑

r∈{0,1}ℓ ♯ψw,r.
Now, to complete our proof, we present a polynomial time DTM M decides L (with oracle

access to ♯SAT). On input w, it does the following.

• Construct a formula Ψw such that the number of satisfying assignments of Ψw is exactly
the number of accepting runs of M′ on w.
Here we use Cook-Levin construction (on w and the transitions in M′). Recall that Cook-
Levin reduction is parsimonious.

• Determine the value ♯Ψw (modulo 2ℓ+3) by querying the ♯SAT oracle.

• Determine whether ♯Ψw lies in P or Q, the answer of which implies whether w ∈ L.

2/2

	Reduction from SAT to SAT
	Proof of Theorem 10.1

