Lesson 10: Toda's theorem

Theme: Toda's theorem which states that every language in the polynomial hierarchy can be decided by a polynomial time DTM with oracle access to $\sharp SAT$, i.e., $\mathbf{PH} \subseteq \mathbf{P}^{\sharp SAT}$.

Theorem 10.1 (Toda, 1991) $PH \subseteq P^{\sharp P}$.

1 Reduction from \oplus SAT to \sharp SAT

In the following we will use the notations from Note 11. Recall that $\sharp \varphi$ denote the number of satisfying assignments of a (Boolean) formula φ . For formulas φ and ψ , the formula $\varphi \sqcap \psi$ is a formula such that $\sharp(\varphi \sqcap \psi) = \sharp \varphi \cdot \sharp \psi$.

We define an operation + as follows. Let x_1, \ldots, x_n and y_1, \ldots, y_m be the variables in φ and ψ , respectively. Let z be a new variable.

$$\varphi + \psi \qquad \stackrel{\text{\tiny def}}{=} \qquad \left(\varphi \wedge z \wedge \bigwedge_{i=1}^m y_i\right) \qquad \lor \qquad \left(\psi \wedge \neg z \wedge \bigwedge_{i=1}^n x_i\right)$$

Note that $\sharp(\varphi + \psi) = \sharp \varphi + \sharp \psi$.

Lemma 10.2 There is a deterministic polynomial time algorithm \mathcal{T} , that on input formula φ and positive integer m (in unary), outputs a formula ψ such that the following holds.

- If $\varphi \in \oplus$ SAT, then $\sharp \psi \equiv -1 \pmod{2^{m+1}}$.
- If $\varphi \notin \oplus \mathsf{SAT}$, then $\sharp \psi \equiv 0 \pmod{2^{m+1}}$.

Proof. We will use the following identity for each $i \ge 0$ and n.

- (a) If $n \equiv -1 \pmod{2^{2^i}}$, then $4n^3 + 3n^4 \equiv -1 \pmod{2^{2^{i+1}}}$.
- (b) If $n \equiv 0 \pmod{2^{2^i}}$, then $4n^3 + 3n^4 \equiv 0 \pmod{2^{2^{i+1}}}$.

On input φ and m, the algorithm \mathcal{T} does the following.

• For each $i = 0, 1, ..., \lceil \log(m+1) \rceil$, define a formula ψ_i as follows.

$$\psi_i \stackrel{\text{def}}{=} \begin{cases} \varphi & \text{if } i = 0\\ 4\psi_{i-1}^3 + 3\psi_{i-1}^4 & \text{if } i \geqslant 1 \end{cases}$$

Here $4\psi_{i-1}^3 + 3\psi_{i-1}^4$ denotes the formula that has $4\sharp(\psi_{i-1})^3 + 3\sharp(\psi_{i-1})^4$ satisfying assignments. Such formula can be constructed using the operators + and \square .

• Output the formula $\psi_{\lceil \log(m+1) \rceil}$.

It is not difficult to show that the algorithm \mathcal{T} runs in polynomial time. Its correctness follows directly from the identities (a) and (b).

2 Proof of Theorem 10.1

Let $L \in \mathbf{PH}$. We want to show that $L \in \mathbf{P}^{\sharp \mathsf{SAT}}$. By Theorem 9.6, there is a probabilistic polynomial time algorithm \mathcal{M}_1 that on input w, outputs a formula ψ such that the following holds.

- If $w \in L$, then $\Pr[\psi \in \oplus SAT] \ge 3/4$.
- If $w \notin L$, then $\mathbf{Pr}[\psi \in \oplus \mathsf{SAT}] \leq 1/4$.

Using the alternative definition of PTM, we view \mathcal{M}_1 as a DTM with two input (w, r), where r is a random string. Let ℓ be the length of the random string. Let \mathcal{M}_2 be the algorithm that on input w and random string r, it outputs the formula:

$$\mathcal{T}(\mathcal{M}_1(w,r),\ell+2)$$

where \mathcal{T} is the algorithm in Lemma 10.2. That is, it first runs $\mathcal{M}_1(w, r)$ and then runs \mathcal{T} on input $(\mathcal{M}_1(w, r), \ell + 2)$ Combining Theorem 9.6 and Lemma 10.2, on input w and random string r, the algorithm \mathcal{M}_2 outputs a formula $\psi_{w,r}$ such that the following holds.

- If $w \in L$, then $\mathbf{Pr}_{r \in \{0,1\}^{\ell}} [\sharp \psi_{w,r} \equiv -1 \pmod{2^{\ell+3}}] \ge 3/4$.
- If $w \notin L$, then $\mathbf{Pr}_{r \in \{0,1\}^{\ell}} [\ \sharp \psi_{w,r} \equiv -1 \pmod{2^{\ell+3}}] \leq 1/4.$

This is equivalent to the following.

- If $w \in L$, the sum $\sum_{r \in \{0,1\}^{\ell}} \sharp \psi_{w,r}$ lies in between -2^{ℓ} and $-\frac{3}{4}2^{\ell}$ (modulo $2^{\ell+3}$).
- If $w \notin L$, the sum $\sum_{r \in \{0,1\}^{\ell}} \sharp \psi_{w,r}$ lies in between $-\frac{1}{4}2^{\ell}$ and 0 (modulo $2^{\ell+3}$).

The sets of values that lie in between -2^{ℓ} and $-\frac{3}{4}2^{\ell}$ and in between $-\frac{1}{4}2^{\ell}$ and 0 (modulo $2^{\ell+3}$) are the following sets P and Q, respectively:

$$P \stackrel{\text{def}}{=} \{28 \cdot 2^{\ell-2}, \dots, 29 \cdot 2^{\ell-2}\} \quad \text{and} \quad Q \stackrel{\text{def}}{=} \{31 \cdot 2^{\ell-2}, \dots, 2^{\ell+3} - 1\} \cup \{0\}$$

Note that P and Q are disjoint.

The main idea of Theorem 10.1 is that on input word w, the algorithm asks the $\sharp SAT$ oracle for the value $\sum_{r \in \{0,1\}^{\ell}} \sharp \psi_{w,r}$ and checks whether the value is in P or Q. To this end, we need to construct a formula whose number of satisfying assignments is exactly $\sum_{r \in \{0,1\}^{\ell}} \sharp \psi_{w,r}$.

Consider the following NTM \mathcal{M}' . On input word w, it does the following.

- Guess a string $r \in \{0, 1\}^{\ell}$.
- Run \mathcal{M}_2 on (w, r) to obtain a formula $\psi_{w,r}$.
- Guess a satisfying assignment for $\psi_{w,r}$.
- ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for $\psi_{w,r}$.

Obviously, for every w, the number of accepting runs of \mathcal{M}' on w is precisely $\sum_{r \in \{0,1\}^{\ell}} \sharp \psi_{w,r}$. Now, to complete our proof, we present a polynomial time DTM \mathcal{M} decides L (with oracle access to $\sharp SAT$). On input w, it does the following.

- Construct a formula Ψ_w such that the number of satisfying assignments of Ψ_w is exactly the number of accepting runs of \mathcal{M}' on w.
 - Here we use Cook-Levin construction (on w and the transitions in \mathcal{M}'). Recall that Cook-Levin reduction is parsimonious.
 - Determine the value $\#\Psi_w$ (modulo $2^{\ell+3}$) by querying the #SAT oracle.
 - Determine whether $\sharp \Psi_w$ lies in P or Q, the answer of which implies whether $w \in L$.