Lesson 10: Toda's theorem

Theme: Toda's theorem which states that every language in the polynomial hierarchy can be decided by a polynomial time DTM with oracle access to $\sharp S A T$, i.e., $\mathbf{P H} \subseteq \mathbf{P}^{\sharp S A T}$.

Theorem 10.1 (Toda, 1991) $\mathrm{PH} \subseteq \mathrm{P}^{\sharp \mathrm{P}}$.

1 Reduction from \oplus SAT to \sharp SAT

In the following we will use the notations from Note 11. Recall that $\sharp \varphi$ denote the number of satisfying assignments of a (Boolean) formula φ. For formulas φ and ψ, the formula $\varphi \sqcap \psi$ is a formula such that $\sharp(\varphi \sqcap \psi)=\sharp \varphi \cdot \sharp \psi$.

We define an operation + as follows. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} be the variables in φ and ψ, respectively. Let z be a new variable.

$$
\varphi+\psi \quad \stackrel{\text { def }}{=} \quad\left(\varphi \wedge z \wedge \bigwedge_{i=1}^{m} y_{i}\right) \quad \vee \quad\left(\psi \wedge \neg z \wedge \bigwedge_{i=1}^{n} x_{i}\right)
$$

Note that $\sharp(\varphi+\psi)=\sharp \varphi+\sharp \psi$.
Lemma 10.2 There is a deterministic polynomial time algorithm \mathcal{T}, that on input formula φ and positive integer m (in unary), outputs a formula ψ such that the following holds.

- If $\varphi \in \oplus \mathrm{SAT}$, then $\sharp \psi \equiv-1\left(\bmod 2^{m+1}\right)$.
- If $\varphi \notin \oplus \mathrm{SAT}$, then $\sharp \psi \equiv 0\left(\bmod 2^{m+1}\right)$.

Proof. We will use the following identity for each $i \geqslant 0$ and n.
(a) If $n \equiv-1\left(\bmod 2^{2^{i}}\right)$, then $4 n^{3}+3 n^{4} \equiv-1\left(\bmod 2^{2^{i+1}}\right)$.
(b) If $n \equiv 0\left(\bmod 2^{2^{i}}\right)$, then $4 n^{3}+3 n^{4} \equiv 0\left(\bmod 2^{2^{i+1}}\right)$.

On input φ and m, the algorithm \mathcal{T} does the following.

- For each $i=0,1, \ldots,\lceil\log (m+1)\rceil$, define a formula ψ_{i} as follows.

$$
\psi_{i} \stackrel{\text { def }}{=} \begin{cases}\varphi & \text { if } i=0 \\ 4 \psi_{i-1}^{3}+3 \psi_{i-1}^{4} & \text { if } i \geqslant 1\end{cases}
$$

Here $4 \psi_{i-1}^{3}+3 \psi_{i-1}^{4}$ denotes the formula that has $4 \sharp\left(\psi_{i-1}\right)^{3}+3 \sharp\left(\psi_{i-1}\right)^{4}$ satisfying assignments. Such formula can be constructed using the operators + and \sqcap.

- Output the formula $\psi_{\lceil\log (m+1)\rceil}$.

It is not difficult to show that the algorithm \mathcal{T} runs in polynomial time. Its correctness follows directly from the identities (a) and (b).

2 Proof of Theorem 10.1

Let $L \in \mathbf{P H}$. We want to show that $L \in \mathbf{P}^{\sharp S A T}$. By Theorem 9.6 , there is a probabilistic polynomial time algorithm \mathcal{M}_{1} that on input w, outputs a formula ψ such that the following holds.

- If $w \in L$, then $\operatorname{Pr}[\psi \in \oplus$ SAT $] \geqslant 3 / 4$.
- If $w \notin L$, then $\operatorname{Pr}[\psi \in \oplus$ SAT $] \leqslant 1 / 4$.

Using the alternative definition of PTM, we view \mathcal{M}_{1} as a DTM with two input (w, r), where r is a random string. Let ℓ be the length of the random string. Let \mathcal{M}_{2} be the algorithm that on input w and random string r, it outputs the formula:

$$
\mathcal{T}\left(\mathcal{M}_{1}(w, r), \ell+2\right)
$$

where \mathcal{T} is the algorithm in Lemma 10.2 . That is, it first runs $\mathcal{M}_{1}(w, r)$ and then runs \mathcal{T} on input $\left(\mathcal{M}_{1}(w, r), \ell+2\right)$ Combining Theorem 9.6 and Lemma 10.2 , on input w and random string r, the algorithm \mathcal{M}_{2} outputs a formula $\psi_{w, r}$ such that the following holds.

- If $w \in L$, then $\operatorname{Pr}_{r \in\{0,1\}^{\ell}}\left[\sharp \psi_{w, r} \equiv-1\left(\bmod 2^{\ell+3}\right)\right] \geqslant 3 / 4$.
- If $w \notin L$, then $\mathbf{P r}_{r \in\{0,1\}^{\ell}}\left[\sharp \psi_{w, r} \equiv-1\left(\bmod 2^{\ell+3}\right)\right] \leqslant 1 / 4$.

This is equivalent to the following.

- If $w \in L$, the sum $\sum_{r \in\{0,1\}^{\ell} \sharp \psi_{w, r}}$ lies in between -2^{ℓ} and $-\frac{3}{4} 2^{\ell}$ (modulo $2^{\ell+3}$).
- If $w \notin L$, the sum $\sum_{r \in\{0,1\}^{\ell} \sharp \psi_{w, r}}$ lies in between $-\frac{1}{4} 2^{\ell}$ and 0 (modulo $2^{\ell+3}$).

The sets of values that lie in between -2^{ℓ} and $-\frac{3}{4} 2^{\ell}$ and in between $-\frac{1}{4} 2^{\ell}$ and 0 (modulo $2^{\ell+3}$) are the following sets P and Q, respectively:

$$
P \stackrel{\text { def }}{=}\left\{28 \cdot 2^{\ell-2}, \ldots, 29 \cdot 2^{\ell-2}\right\} \quad \text { and } \quad Q \stackrel{\text { def }}{=}\left\{31 \cdot 2^{\ell-2}, \ldots, 2^{\ell+3}-1\right\} \cup\{0\}
$$

Note that P and Q are disjoint.
The main idea of Theorem 10.1 is that on input word w, the algorithm asks the \sharp SAT oracle for the value $\sum_{r \in\{0,1\}^{\ell}} \sharp \psi_{w, r}$ and checks whether the value is in P or Q. To this end, we need to construct a formula whose number of satisfying assignments is exactly $\sum_{r \in\{0,1\}^{\ell}} \sharp \psi_{w, r}$.

Consider the following NTM \mathcal{M}^{\prime}. On input word w, it does the following.

- Guess a string $r \in\{0,1\}^{\ell}$.
- Run \mathcal{M}_{2} on (w, r) to obtain a formula $\psi_{w, r}$.
- Guess a satisfying assignment for $\psi_{w, r}$.
- ACCEPT if and only if the guessed assignment is indeed a satisfying assignment for $\psi_{w, r}$. Obviously, for every w, the number of accepting runs of \mathcal{M}^{\prime} on w is precisely $\sum_{r \in\{0,1\}^{\ell}} \sharp \psi_{w, r}$.

Now, to complete our proof, we present a polynomial time DTM \mathcal{M} decides L (with oracle access to $\sharp S A T)$. On input w, it does the following.

- Construct a formula Ψ_{w} such that the number of satisfying assignments of Ψ_{w} is exactly the number of accepting runs of \mathcal{M}^{\prime} on w.
Here we use Cook-Levin construction (on w and the transitions in \mathcal{M}^{\prime}). Recall that CookLevin reduction is parsimonious.
- Determine the value $\sharp \Psi_{w}$ (modulo $2^{\ell+3}$) by querying the \sharp SAT oracle.
- Determine whether $\sharp \Psi_{w}$ lies in P or Q, the answer of which implies whether $w \in L$.

