
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

Lesson 9: Probabilistic reductions

Theme: Probabilistic reductions and preliminary to Toda’s theorem.

1 Probabilistic reduction from SAT to USAT

Let USAT be the following language.

USAT def
= {ϕ : ϕ is a boolean formula with unique satisfying assignment}

Theorem 9.1 (Valiant and Vazirani, 1986) There is a probabilistic polynomial time algo-
rithm M such that on input (Boolean) formula ϕ, the output of M, denoted by M(ϕ), satisfies
the following.

• If ϕ ∈ SAT, then Pr[M(ϕ) ∈ USAT] > 3/(16n), where n is the number of variables in ϕ.

• If ϕ /∈ SAT, then Pr[M(ϕ) ∈ SAT] = 0.

Proof. The algorithmM works as follows. On input formula ϕ, do the following.

• Let x1, . . . , xn be the variables in ϕ.

• Let x def
= (x1, . . . , xn).

• Randomly choose k ∈ {2, . . . , n+ 1}.

• Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

• Output the formula ϕ(x) ∧ (h(x) = 0), where 0 is a column vector of zeroes of size k.

Note that the part h(x) = 0 can be stated as a boolean formula. If we use the collection Hn,k as
in Theorem 9.9, h(x) = 0 is of the form: Ax+ b = 0, which is equivalent to Ax = b. This can be
written into the following form:

k∧
i=1

((
Ai,1x1 ⊕ · · · ⊕Ai,nxn

)
↔ bi

)
Here ⊕ denotes the XOR operation. Note that each Ai,1x1 ⊕ · · · ⊕ Ai,nxn can be rewritten into
formulas using only ∧,∨,¬ in quadratic time as follows. Divide it into two halves, rewrite each
half (recursively) and combine them with the standard definition of XOR.

Now, we prove the correctness of our algorithm. Obviously, if the input formula ϕ is not
satisfiable, so is the output formula. Suppose ϕ is satisfiable. Let S be the set of satisfying
assignments of ϕ. With probability 1/n, the algorithm chooses a value k such that 2k−2 6 |S| 6
2k−1. By Lemma 9.11, the probability that there is a unique x ∈ S such that h(x) = 0 is > 3/16.
Thus, the probability thatM(ϕ) ∈ USAT is at least 3/(16n).

1/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

2 The language ⊕SAT and the class ⊕P

The language ⊕SAT is defined as follows.

⊕SAT def
= {ϕ : ϕ is a Boolean formula with odd number of satisfying assignments}

The class ⊕P is defined as follows. A language L ∈ ⊕P, if there is a polynomial time NTMM
such that for every input word w, w ∈ L if and only if the number of accepting runs ofM on w
is odd number.

We define a few terminology and notations. Let]ϕ denote the number of satisfying assign-
ments of a (Boolean) formula ϕ. We will define operations ∼, u and t on formulas such that the
following holds.

](∼ ϕ) =]ϕ+ 1](ϕ u φ) =]ϕ ·]φ](ϕ t φ) = (]ϕ+ 1) · (]φ+ 1) + 1

Obviously the following holds.

∼ ϕ ∈ ⊕SAT if and only if ϕ /∈ ⊕SAT
ϕ u φ ∈ ⊕SAT if and only if both ϕ, φ ∈ ⊕SAT
ϕ t φ ∈ ⊕SAT if and only if at least one of ϕ, φ ∈ ⊕SAT

These operations are defined as follows.

• For ϕ with variables x1, . . . , xn, we pick a “new” variable z and define ∼ ϕ as follows.

∼ ϕ def
=

(
¬z ∧ ϕ

)
∨
(
z ∧

n∧
i=1

xi
)

• For two formulas ϕ and ψ, we rename the variables so that the variables in ϕ and φ are
disjoint, and define ϕ u ψ as follows.

ϕ u φ def
= ϕ ∧ φ

• For two formulas ϕ and ψ, we rename the variables so that the variables in ϕ and φ are
disjoint, and define ϕ t ψ as follows.

ϕ t φ def
= ∼ (∼ ϕ u ∼ φ)

3 Probabilistic reductions from SAT and SAT to ⊕SAT

Theorem 9.1 can be easily extended to obtain reductions from SAT and SAT to ⊕SAT.

Lemma 9.2 (Reduction from SAT to ⊕SAT) There is a polynomial time PTM M that on
input formula ϕ and a positive integer m (in unary), outputs a formula, denoted by M(ϕ,m),
such that the following holds.

• If ϕ ∈ SAT, then Pr[M(ϕ,m) ∈ ⊕SAT] > 1− 2−m.

• If ϕ /∈ SAT, then Pr[M(ϕ,m) ∈ ⊕SAT] = 0.

Moreover, the outputM(ϕ,m) uses O(mn2) variables, where n is the number of variables in ϕ.∗

∗Abusing the notation, O(mn2) denotes 6 cmn2, for some constant c.

2/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

Proof. On input ϕ with n variables, the algorithmM first runs the reduction in Theorem 9.1
on ϕ for 8mn times to obtain formulas ψ1, . . . , ψ8mn. Then, it outputs ∼ (∼ ψ1u · · · u ∼ ψ8mn).†

Obviously,M runs in polynomial time. Note also that the output formula uses 8mn(n+1)+1 =
O(mn2) variables.

Recall that on input ϕ with n variables, the reduction in Theorem 9.1 outputs a formula ψ
such that the following holds.

• If ϕ ∈ SAT, then Pr[ψ ∈ USAT] > 1/(8n).

• If ϕ /∈ SAT, then Pr[ψ ∈ SAT] = 0.

Note the following.

• If ψ /∈ ⊕SAT, then ψ /∈ USAT. Thus, Pr[ψ /∈ ⊕SAT] 6 Pr[ψ /∈ USAT].

•
⊔8mn

i=1 ψi ∈ ⊕SAT if and only if one of ψi ∈ ⊕SAT.

Thus, on input ϕ, the output
⊔8mn

i=1 ψi satisfies the following.

• If ϕ /∈ SAT, then none of the ψi is satisfiable. Thus,
⊔8mn

i=1 ψi /∈ ⊕SAT. Therefore,

Pr
[8mn⊔

i=1

ψi ∈ ⊕SAT
]

= 0

• If ϕ ∈ SAT, the following holds.

Pr
[8mn⊔

i=1

ψi /∈ ⊕SAT
]

=

8mn∏
i=1

Pr[ψi /∈ ⊕SAT] 6
(

1− 1

8n

)8mn
6 (1/e)m 6 (1/2)m

Therefore, Pr[
⊔8mn

i=1 ψi ∈ ⊕SAT] > 1− (1/2)m.

This completes the proof of Lemma 9.2.

Lemma 9.3 (Reduction from SAT to ⊕SAT) There is a polynomial time PTM M that on
input formula ϕ and a positive integer m (in unary), outputs a formula, denoted by M(ϕ,m),
such that the following holds.

• If ϕ ∈ SAT, then Pr[M(ϕ,m) ∈ ⊕SAT] = 1.

• If ϕ /∈ SAT, then Pr[M(ϕ,m) ∈ ⊕SAT] 6 (1/2)m.

Proof. The PTMM works as follows. On input ϕ and m, it runs the reduction in Lemma 9.2
to obtain a formula ψ, and then outputs ∼ ψ.

If ϕ ∈ SAT, then Pr[ψ /∈ ⊕SAT] = 1, and hence, Pr[∼ ψ ∈ ⊕SAT] = 1.
If ϕ /∈ SAT, then Pr[∼ ψ ∈ ⊕SAT] = Pr[ψ /∈ ⊕SAT] 6 (1/2)m.

Combining Lemmas 9.2 and 9.3 and Cook-Levin reduction, we have the following.

Theorem 9.4 (Reductions from languages in NP ∪ coNP to ⊕SAT) For every language
L ∈ NP∪ coNP, there is a polynomial time PTMM that on input word w and a number m (in
unary), outputs a formulaM(w,m) such that the following holds.

• If w ∈ L, then Pr[M(w,m) ∈ ⊕SAT] > 1− (1/2)m.

• If w /∈ L, then Pr[M(w,m) ∈ ⊕SAT] 6 (1/2)m.
†Note that ∼ (∼ ψ1 u · · · u ∼ ψ8mn) is equivalent to ψ1 t · · · t ψ8mn.

3/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

4 Probabilistic reductions from languages in PH to ⊕SAT

In this section we will show how to extend Theorem 9.4 to all languages in PH. We need some
terminology and notations. We write x̄, ȳ or z̄ to denote a sequence of variables, and the length
is denoted by |x̄|, |ȳ| or |z̄|, respectively.

Recall that a QBF is formula of the form: Q1z̄1 · · ·Qkz̄k φ where each Qi ∈ {∀, ∃} and
Qi 6= Qi+1, each z̄i is a vector of variables and φ is a formula that uses variables z̄1, . . . , z̄k. Note
that all variables used in ψ are “quantified.”

QBF with free variables. A QBF with free variables is a QBF formula that has variables
that are not quantified, i.e., of the form:

ϕ
def
= Q1z̄1 · · ·Qkz̄k φ

where φ uses some variables ȳ that are “free,” i.e., not quantified by any quantifiers, in addition
to the variables z̄1, . . . , z̄k. In this case, we write ϕ(ȳ) to indicate that ȳ are free. For example,
in the formula ∀x∃z(x ∨ y ∨ z), variables x, z are quantified, but variable y is free.

We usually denote an assignment that assigns variables in ȳ as a string ā ∈ {0, 1}n with the
same length as ȳ. For a QBF ϕ(ȳ) with free variable ȳ and ā be an assignment on ȳ, we write
ϕ(ā) to denote the QBF (without free variables) obtained by substituting every variable in ȳ
according to ā.

In the following the term “QBF” means a QBF which may or may not contain free variables.
A k-QBF is a QBF in which there are k alternating quantifiers, i.e., Q1z̄1 · · ·Qkz̄k ψ, where each
Qi 6= Qi+1.

The operations ∼, u and t with formulas with “free” variables. In the following we
will deal with boolean formulas ϕ with “free” variables. Intuitively, free variables in a boolean
formula are variables that cannot be renamed. We write ϕ(ȳ) to indicate that ȳ are the free
variables in ϕ.

• ∼ ϕ(ȳ) is defined as before and the resulting formula ∼ (ϕ(ȳ)) also have free variables ȳ.

• For ϕ(ȳ) and φ(ȳ), we rename the variables so that ȳ are the only common variables in ϕ
and φ and define ϕ(ȳ) u φ(ȳ)

def
= ϕ(ȳ) ∧ φ(ȳ) with free variables ȳ.

• For ϕ(ȳ) and φ(ȳ), we define ϕ(ȳ) t φ(ȳ)
def
= ∼ (∼ ϕ(ȳ) u ∼ φ(ȳ)) with free variables ȳ.

Lemma 9.5 (Reductions from Σk-SAT and Πk-SAT to ⊕SAT) For every k > 1, there is a
probabilistic polynomial time algorithmM that on input a k-QBF ϕ(ȳ) and a positive integer m
(in unary), outputs a formula ψ(ȳ) such that

Pr[ψ(ȳ) is “correct”] > 1− (1/2)m

Here we define a formula ψ(ȳ) to be “correct” when ϕ(ā) is a true QBF if and only if ψ(ā) ∈ ⊕SAT,
for every assignment ā on ȳ.

Proof. The proof is by induction on k. The base case k = 1 is similar to Lemmas 9.2 and 9.3.
On input 1-QBF ϕ(ȳ) and integer m, the algorithmM works as follows.

• If ϕ(ȳ) is of the form ∃x̄ ψ(x̄, ȳ), where x̄ contains n variables, do the following.

For each i = 1, . . . , 8mn, construct formula αi(ȳ) as follows.

4/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula ψ(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ) is the formula
⊔8mn

i=1 αi(ȳ).

• If ϕ(ȳ) is of the form ∀x̄ ψ(x̄, ȳ), where x̄ contains n variables, do the following

For each i = 1, . . . , 8mn, construct formula αi(ȳ) as follows.

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula ¬ψ(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ), where ψ(ȳ) is the formula ∼
⊔8mn

i=1 αi(ȳ).

The proof that Pr[ψ(ȳ) is correct] > 1− (1/2)m is similar to Lemmas 9.2 and 9.3.
For the induction hypothesis, we assume Lemma 9.5 holds for k, i.e., there is a probabilistic

algorithmM0 that on input a k-QBF ϕ(ȳ) and a positive integerm (in unary), outputs a formula
ψ(ȳ) such that Pr[ψ(ȳ) is correct] > 1− (1/2)m.

For the induction step, on input (k+ 1)-QBF ϕ(ȳ) and m, the algorithmM works as follows.

• ϕ(ȳ) is of the form ∃x̄ φ(x̄, ȳ), where x̄ contains n variables.

For each i = 1, . . . , 8mn, construct a formula αi(ȳ) as follows.

– Let βi(x̄, ȳ) be the output ofM0 on input φ(x̄, ȳ) and (m+ 1).

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) denote the formula βi(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ)
def
=
⊔8mn

i=1 αi(ȳ).

• ϕ(ȳ) is of the form ∀x̄ ψ(x̄, ȳ), where x̄ contains n variables.

For each i = 1, . . . , 8mn, construct a formula αi, as follows.

– Let βi(x̄, ȳ) be the output ofM0 on input ¬ψ(x̄, ȳ) and (m+ 1).

– Randomly choose k ∈ {2, . . . , n+ 1}.
– Randomly choose a hash function h ∈ Hn,k, where Hn,k is pair-wise independent.

– Let αi(ȳ) be the formula βi(x̄, ȳ) ∧ (h(x̄) = 0).

Then, output the formula ψ(ȳ) where ψ(ȳ)
def
=∼

⊔8mn
i=1 αi(ȳ).

We now calculate the probability of the event that ψ(ȳ) is correct.
We first consider the case that ϕ(ȳ) is of the form ∃x̄φ(x̄, ȳ). By the induction hypothesis,

Pr[βi(x̄, ȳ) is correct] > 1− (1/2)m+1, for each i = 1, . . . , 8mn. Note that βi(x̄, ȳ) is correct, if
for every assignment ā and b̄ on x̄ and ȳ, respectively, βi(ā, b̄) ∈ ⊕SAT if and only if φ(ā, b̄) is a
true QBF.

Assume that βi(x̄, ȳ) is correct. Let b̄ : ȳ → {0, 1} be such that ϕ(b̄) is true QBF. Thus, for
every assignment ā : x̄ → {0, 1}, if ϕ(ā, b̄) is true QBF, βi(ā, b̄) ∈ ⊕SAT. Otherwise, βi(ā, b̄) /∈
⊕SAT. So, we only need to consider all those assignments ā such that φi(ā, b̄) is true, which by

5/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

the induction hypothesis, is equivalent to saying that βi(ā, b̄) ∈ ⊕SAT. By applying the same
technique as in Lemma 9.11 on the set of ā such that βi(ā, b̄) ∈ ⊕SAT, we randomly “choose” the
hash function h such that there is unique assignment ā such that h(ā) = 0, and the probability
that we choose such h is > 3/(16n). Thus, we have:

Pr[βi(x̄, ȳ) ∧ h(x̄) = 0 is correct | βi(x̄, ȳ) is correct] >
3

16n

Thus,

Pr[ψi(x̄, ȳ) is correct] = Pr[βi(x̄, ȳ) ∧ h(x̄) = 0 is correct] >
3

16n

(
1− (1/2)m+1

)
>

1

8n

where in the last inequality we assume that m > 1.
Note also that if b̄ : ȳ → {0, 1} is an assignment such that ϕ(b̄) is false QBF, then βi(ā, b̄) /∈

⊕SAT, for every assignment ā (since βi(x̄, ȳ) is a correct formula). Thus, for any choice of h,
βi(x̄, b̄) ∧ h(x̄) = 0 /∈ ⊕SAT.

Finally, note that
⊔8mn

i=1 αi(ȳ) is correct if and only if one of αi(ȳ) is correct. Therefore,

Pr
[8mn⊔

i=1

αi(ȳ) is not correct
]

= Pr[αi(ȳ) is not correct, for each i = 1, . . . , 8mn]

6
(

1− 1/(8n)
)8mn

6 (1/2)m

The proof for the case where ϕ(ȳ) is of the form ∀x̄ φ(x̄, ȳ) is similar.

Combining Lemma 9.5 and the fact that Σk-SAT and Πk-SAT are Σp
k- and Πp

k-complete, for
each k > 1, we have the following theorem.

Theorem 9.6 (Reductions from languages in PH to ⊕SAT) For every language L ∈ PH,
there is a probabilistic polynomial time algorithm M that on input w, outputs a formula ψ such
that the following holds, where n = |w|.

• If w ∈ L, then Pr[ψ ∈ ⊕SAT] > 1− (1/2)n.

• If w /∈ L, then Pr[ψ ∈ ⊕SAT] 6 (1/2)n.

Appendix

A Pair-wise independent collection of hash functions

Definition 9.7 For n, k > 1, let Hn,k be a collection of functions from {0, 1}n to {0, 1}k. We
say that Hn,k is pair-wise independent, if for every x, x′ ∈ {0, 1}n where x 6= x′ and for every
y, y′ ∈ {0, 1}k, the following holds.

Prh∈Hn,k
[h(x) = y ∧ h(x′) = y′] = 2−2k

In the following we show that Hn,k exists. First, we show that Hn,n exists. For every n > 1,
for every a, b ∈ GF(2n), define a function ha,b from {0, 1}n to {0, 1}n as follows.‡

ha,b(x)
def
= xa+ b

‡GF(2n) denotes a finite field with 2n elements, where each element can be encoded as a 0-1 string of length n.

6/7

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 9: Probabilistic reductions

Theorem 9.8 The collection Hn,n
def
= {ha,b : a, b ∈ GF(2n)} is pair-wise independent.

We have another candidate for pair-wise independent collection. For every n > 1, for every
A ∈ {0, 1}n×n and b ∈ {0, 1}n×1, define a function hA,b from {0, 1}n×1 to {0, 1}n×1 as follows.§

hA,b(x)
def
= Ax+ b

Theorem 9.9 The collection Hn,n
def
= {hA,b : A ∈ {0, 1}n×n and b ∈ {0, 1}n×1} is pair-wise

independent.

Remark 9.10 Note that the existence of Hn,n implies the existence of Hn,k. If n < k, then we
can use Hk,k and extend n bit inputs to k by padding with zeros. If n > k, then we can use Hn,n

and reduce n bit outputs to k by truncating the last (n− k) bits.

Lemma 9.11 (Valiant and Vazirani, 1986) Let Hn,k be a pair-wise independent hash function
collection. Let S ⊆ {0, 1}n such that 2k−2 6 |S| 6 2k−1. Then, the following holds.

Prh∈Hn,k
[there is a unique x ∈ S such that h(x) = 0k] >

3

16

Proof. Let N denote the number of x’s such that h(x) = 0, where h is randomly chosen from
Hn,k (with uniform distribution). We will calculate Pr[N = 1]. Note that:

Pr[N = 1] = Pr[N > 1] − Pr[N > 2]

= Pr
[⋃

x∈S
Ex
]
− Pr

[⋃
x,x′∈S and x 6=x′

Ex ∩ Ex′
]

where Ex denotes the event that h(x) = 0. In the following, we let p = 2−k.
Since Hn,k is pairwise independent, Pr[Ex] = p and Pr[Ex ∩ Ex′] = p2, whenever x 6= x′.
By the inclusion-exclusion principle, we have:

Pr
[⋃

x∈S
Ex
]

>
∑
x∈S

Pr[Ex] −
∑

x,x′∈S and x 6=x′

Pr[Ex ∩ Ex′] = |S|p −
(
|S|
2

)
· p2

By union bound, we have:

Pr
[⋃

x,x′∈S and x 6=x′

Ex ∩ Ex′
]

6
∑

x,x′∈S and x 6=x′

Pr[Ex ∩ Ex′] 6

(
|S|
2

)
· p2

Combining both, we have:

Pr[N = 1] = Pr[N > 1]−Pr[N > 2] > |S|p − |S|2p2

Since 1/4 6 |S|p 6 1/2, a straightforward calculation shows that |S|p− |S|2p2 > 3/16.

§{0, 1}n×n denotes the set of 0-1 matrices with n rows and n columns and {0, 1}n×1 denotes the set of 0-1
column vectors of n rows. Here the addition + and multiplication · are defined over Z2.

7/7

	Probabilistic reduction from SAT to USAT
	The language SAT and the class P
	Probabilistic reductions from SAT and SAT to SAT
	Probabilistic reductions from languages in PH to SAT
	Pair-wise independent collection of hash functions

