Lesson 8: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.

Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system $\mathcal{M} = \langle \Sigma, \Gamma, Q, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}, \delta \rangle$ defined like the NTM, with the difference that $\delta \subseteq (Q - \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}) \times \Gamma \times Q \times \Gamma \times \{\mathsf{Left}, \mathsf{Right}\}$ is now a relation such that for every $(p, \sigma) \in (Q - \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}) \times \Gamma$, there are exactly two transitions that can be applied:

$$(p,\sigma) \to (q_1,\sigma_1,\mathtt{Move}_1)$$
 and $(p,\sigma) \to (q_2,\sigma_2,\mathtt{Move}_2)$

and the probability that each transition is applied is 1/2. Intuitively, when it is in state p reading symbol σ , \mathcal{M} tosses an unbiased coin to decide whether to apply $(q_1, \sigma_1, \mathtt{Move}_1)$ or $(q_2, \sigma_2, \mathtt{Move}_2)$. On an input word w, the probability that \mathcal{M} accepts/rejects w is defined over all possible coin tossing.

Similar to DTM/NTM, we say that \mathcal{M} runs in time f(n), if for every word w, every run of \mathcal{M} on w has length $\leqslant f(|w|)$. We say that \mathcal{M} runs in polynomial time, if there is a polynomial $p(n) = \mathsf{poly}(n)$ such that \mathcal{M} runs in time p(n). In this case we also say that \mathcal{M} is a polynomial time PTM.

The class **BPP** is defined as follows. A language L is in the class **BPP**, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

$$\mathbf{Pr}[\ \mathcal{M}(x) = L(x)\] \geqslant 2/3$$

Here we treat a language L as a function $L: \{0,1\}^* \to \{0,1\}$, where L(x) = 1, if $x \in L$, and L(x) = 0, if $x \notin L$. Similarly, we treat TM \mathcal{M} as a function $\mathcal{M}: \{0,1\}^* \to \{0,1\}$, where $\mathcal{M}(x) = 1$, if \mathcal{M} accepts x, and $\mathcal{M}(x) = 0$, if \mathcal{M} rejects x.

Note that **BPP** is closed under complement, union and intersection.

Remark 8.1 Alternatively, we can define the class **BPP** as follows. A language L is in the class **BPP**, if there is a polynomial q(n) and a polynomial time DTM \mathcal{M} such that for every $x \in \{0,1\}^*$, the following holds.

$$\mathbf{Pr}_{r \in \{0,1\}^{q(|x|)}} [\mathcal{M}(x,r) = L(x)] \geqslant 2/3$$

Note that the DTM \mathcal{M} takes as input (x, r). Intuitively, it can be viewed as a PTM that on input x, first randomly choose a string r of length q(|x|), then run DTM \mathcal{M} on (x, r).

Note the similarity with the alternative definition of **NP** (Def. 2.2), where an NTM first guesses a certificate string r, and then runs a DTM for verification.

Theorem 8.2 (Error reduction) Let $L \in \mathbf{BPP}$. Then, for every $d \geqslant 1$, there is a polynomial time $PTM \ \mathcal{M}$ such that for every input word x:

$$\mathbf{Pr}[\ \mathcal{M}(x) = L(x)\] \geqslant 1 - 2^{-\alpha|x|^d}$$
 (for some fixed $\alpha > 0$)

Theorem 8.3 (Adleman 1978) BPP $\subseteq P_{\text{poly}}$.

Theorem 8.3 and Theorem 7.4 imply that if $SAT \in BPP$, then PH collapses to Σ_2^p

Theorem 8.4 (Sipser, Gács, Lautemann 1983) BPP $\subseteq \Sigma_2^p \cap \Pi_2^p$.

One-sided error PTM. The class **RP** is defined as follows. A language L is in the class **RP**, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

- If $x \in L$, then $\Pr[\mathcal{M}(x) = 1] \geqslant 2/3$.
- If $x \notin L$, then $\Pr[\mathcal{M}(x) = 0] = 1$.

Note that \mathcal{M} is never wrong when the input $x \notin L$, hence, the name *one-sided*. The class **coRP** is defined as $\mathbf{coRP} \stackrel{\mathsf{def}}{=} \{L : \{0,1\}^* \setminus L \in \mathbf{RP}\}.$

Zero error PTM. A PTM \mathcal{M} for a language L is a zero error PTM, if it never errs, i.e., for every input word x, $\mathbf{Pr}[\mathcal{M}(x) = L(x)] = 1$. Now for a PTM \mathcal{M} and input word x, we can define a random variable $T_{\mathcal{M},x}$ to denote the run time of \mathcal{M} on x, where the probability distribution is $\mathbf{Pr}[T_{\mathcal{M},x} = t] = p$, if with probability p over the random strings of \mathcal{M} on input x, it halts in t steps.

The class **ZPP** is defined as follows. A language L is in **ZPP**, if there is a polynomial q(n) = poly(n) and a zero error PTM \mathcal{M} for L such that for every input word x, $\text{Exp}[T_{\mathcal{M},x}] \leq q(|x|)$.

The algorithms for languages in $\mathbf{BPP/RP/coRP}$ are also called *Monte Carlo* algorithms, and those for languages in \mathbf{ZPP} are called *Las Vegas* algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let $\mathcal{E}_1, \dots, \mathcal{E}_m$ be some m events. Then, the following holds.

$$\mathbf{Pr}\Big[\bigcup_{i=1}^{m} \mathcal{E}_i\Big] = \sum_{i=1}^{m} \mathbf{Pr}[\ \mathcal{E}_i\] - \sum_{1 \leqslant i_1 < i_2 \leqslant m} \mathbf{Pr}[\ \mathcal{E}_{i_1} \cap \mathcal{E}_{i_2}\] + \sum_{1 \leqslant i_1 < i_2 < i_3 \leqslant m} \mathbf{Pr}[\ \mathcal{E}_{i_1} \cap \mathcal{E}_{i_2} \cap \mathcal{E}_{i_3}\] - \cdots$$

From here, we also obtain the so called *union bound*:

$$\mathbf{Pr} \Big[igcup_{i=1}^m \mathcal{E}_i\Big] \;\;\leqslant\;\; \sum_{i=1}^m \mathbf{Pr}[\;\mathcal{E}_i\;]$$

Markov inequality: Let X be a non-negative random variable with expectation μ . Then, for every real c > 0, the following holds.

$$\Pr[X \geqslant c\mu] \leqslant 1/c$$

Markov inequality is often also called averaging argument.

Chebyshev inequality: Let X be a random variable with expectation μ and variance σ^2 . Then, for every real c > 0, the following holds.

$$\Pr[|X - \mu| \geqslant c\sigma] \leqslant 1/c^2$$

Chernoff inequality: Let X_1, \ldots, X_m be (independent) 0,1 random variables. Suppose for every $1 \leq i \leq m$, $\Pr[X_i = 1] = p$, for some p > 1/2. Let $X \stackrel{\mathsf{def}}{=} \sum_{i=1}^m X_i$. Then, the following holds.

$$\mathbf{Pr}\left[\ X > \lfloor m/2 \rfloor \ \right] \ \geqslant \ 1 - 2^{-\alpha m}$$
 where $\alpha = \frac{\log_2 e}{2p} \left(p - \frac{1}{2} \right)^2$