Lesson 8: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.
Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system $\mathcal{M}=$ $\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\text {acc }}, q_{\mathrm{rej}}, \delta\right\rangle$ defined like the NTM, with the difference that $\delta \subseteq\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma \times$ $Q \times \Gamma \times\{$ Left, Right $\}$ is now a relation such that for every $(p, \sigma) \in\left(Q-\left\{q_{\mathrm{acc}}, q_{\mathrm{rej}}\right\}\right) \times \Gamma$, there are exactly two transitions that can be applied:

$$
(p, \sigma) \rightarrow\left(q_{1}, \sigma_{1}, \text { Move }_{1}\right) \quad \text { and } \quad(p, \sigma) \rightarrow\left(q_{2}, \sigma_{2}, \text { Move }_{2}\right)
$$

and the probability that each transition is applied is $1 / 2$. Intuitively, when it is in state p reading symbol σ, \mathcal{M} tosses an unbiased coin to decide whether to apply $\left(q_{1}, \sigma_{1}\right.$, Move $\left._{1}\right)$ or $\left(q_{2}, \sigma_{2}\right.$, Move $\left._{2}\right)$. On an input word w, the probability that \mathcal{M} accepts/rejects w is defined over all possible coin tossing.

Similar to DTM/NTM, we say that \mathcal{M} runs in time $f(n)$, if for every word w, every run of \mathcal{M} on w has length $\leqslant f(|w|)$. We say that \mathcal{M} runs in polynomial time, if there is a polynomial $p(n)=\operatorname{poly}(n)$ such that \mathcal{M} runs in time $p(n)$. In this case we also say that \mathcal{M} is a polynomial time PTM.

The class BPP is defined as follows. A language L is in the class BPP, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

$$
\operatorname{Pr}[\mathcal{M}(x)=L(x)] \geqslant 2 / 3
$$

Here we treat a language L as a function $L:\{0,1\}^{*} \rightarrow\{0,1\}$, where $L(x)=1$, if $x \in L$, and $L(x)=0$, if $x \notin L$. Similarly, we treat $\operatorname{TM} \mathcal{M}$ as a function $\mathcal{M}:\{0,1\}^{*} \rightarrow\{0,1\}$, where $\mathcal{M}(x)=1$, if \mathcal{M} accepts x, and $\mathcal{M}(x)=0$, if \mathcal{M} rejects x.

Note that BPP is closed under complement, union and intersection.
Remark 8.1 Alternatively, we can define the class BPP as follows. A language L is in the class BPP, if there is a polynomial $q(n)$ and a polynomial time DTM \mathcal{M} such that for every $x \in\{0,1\}^{*}$, the following holds.

$$
\mathbf{P r}_{r \in\{0,1\}^{q(|x|)}}[\mathcal{M}(x, r)=L(x)] \geqslant 2 / 3
$$

Note that the DTM \mathcal{M} takes as input (x, r). Intuitively, it can be viewed as a PTM that on input x, first randomly choose a string r of length $q(|x|)$, then run DTM \mathcal{M} on (x, r).

Note the similarity with the alternative definition of NP (Def. 2.2), where an NTM first guesses a certificate string r, and then runs a DTM for verification.

Theorem 8.2 (Error reduction) Let $L \in \mathbf{B P P}$. Then, for every $d \geqslant 1$, there is a polynomial time PTM \mathcal{M} such that for every input word x :

$$
\operatorname{Pr}[\mathcal{M}(x)=L(x)] \geqslant 1-2^{-\alpha|x|^{d}}
$$

(for some fixed $\alpha>0$)
Theorem 8.3 (Adleman 1978) $\mathrm{BPP} \subseteq \mathrm{P}_{/ \text {poly }}$.
Theorem 8.3 and Theorem 7.4 imply that if SAT $\in \mathbf{B P P}$, then $\mathbf{P H}$ collapses to $\boldsymbol{\Sigma}_{2}^{p}$.
Theorem 8.4 (Sipser, Gács, Lautemann 1983) BPP $\subseteq \Sigma_{2}^{p} \cap \Pi_{2}^{p}$.

One-sided error PTM. The class RP is defined as follows. A language L is in the class $\mathbf{R P}$, if there a polynomial time PTM \mathcal{M} such that for every input word x, the following holds.

- If $x \in L$, then $\operatorname{Pr}[\mathcal{M}(x)=1] \geqslant 2 / 3$.
- If $x \notin L$, then $\operatorname{Pr}[\mathcal{M}(x)=0]=1$.

Note that \mathcal{M} is never wrong when the input $x \notin L$, hence, the name one-sided. The class coRP is defined as coRP $\stackrel{\text { def }}{=}\left\{L:\{0,1\}^{*} \backslash L \in \mathbf{R P}\right\}$.

Zero error PTM. A PTM \mathcal{M} for a language L is a zero error PTM, if it never errs, i.e., for every input word $x, \operatorname{Pr}[\mathcal{M}(x)=L(x)]=1$. Now for a PTM \mathcal{M} and input word x, we can define a random variable $T_{\mathcal{M}, x}$ to denote the run time of \mathcal{M} on x, where the probability distribution is $\operatorname{Pr}\left[T_{\mathcal{M}, x}=t\right]=p$, if with probability p over the random strings of \mathcal{M} on input x, it halts in t steps.

The class ZPP is defined as follows. A language L is in $\mathbf{Z P P}$, if there is a polynomial $q(n)=$ poly (n) and a zero error PTM \mathcal{M} for L such that for every input word $x, \operatorname{Exp}\left[T_{\mathcal{M}, x}\right] \leqslant q(|x|)$.

The algorithms for languages in $\mathbf{B P P} / \mathbf{R P} / \mathbf{c o R P}$ are also called Monte Carlo algorithms, and those for languages in ZPP are called Las Vegas algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let $\mathcal{E}_{1}, \ldots, \mathcal{E}_{m}$ be some m events. Then, the following holds.

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{m} \mathcal{E}_{i}\right]=\sum_{i=1}^{m} \operatorname{Pr}\left[\mathcal{E}_{i}\right]-\sum_{1 \leqslant i_{1}<i_{2} \leqslant m} \operatorname{Pr}\left[\mathcal{E}_{i_{1}} \cap \mathcal{E}_{i_{2}}\right]+\sum_{1 \leqslant i_{1}<i_{2}<i_{3} \leqslant m} \operatorname{Pr}\left[\mathcal{E}_{i_{1}} \cap \mathcal{E}_{i_{2}} \cap \mathcal{E}_{i_{3}}\right]-\cdots
$$

From here, we also obtain the so called union bound:

$$
\operatorname{Pr}\left[\bigcup_{i=1}^{m} \mathcal{E}_{i}\right] \leqslant \sum_{i=1}^{m} \operatorname{Pr}\left[\mathcal{E}_{i}\right]
$$

Markov inequality: Let X be a non-negative random variable with expectation μ. Then, for every real $c>0$, the following holds.

$$
\operatorname{Pr}[X \geqslant c \mu] \leqslant 1 / c
$$

Markov inequality is often also called averaging argument.
Chebyshev inequality: Let X be a random variable with expectation μ and variance σ^{2}. Then, for every real $c>0$, the following holds.

$$
\operatorname{Pr}[|X-\mu| \geqslant c \sigma] \leqslant 1 / c^{2}
$$

Chernoff inequality: Let X_{1}, \ldots, X_{m} be (independent) 0,1 random variables. Suppose for every $1 \leqslant i \leqslant m, \operatorname{Pr}\left[X_{i}=1\right]=p$, for some $p>1 / 2$. Let $X \stackrel{\text { def }}{=} \sum_{i=1}^{m} X_{i}$. Then, the following holds.

$$
\operatorname{Pr}[X>\lfloor m / 2\rfloor] \geqslant 1-2^{-\alpha m} \quad \text { where } \alpha=\frac{\log _{2} e}{2 p}\left(p-\frac{1}{2}\right)^{2}
$$

