Lesson 7: Boolean circuits

Theme: Some classical results on boolean circuits.

1 Some basics

Let $n \in \mathbb{N}$, where $n \geqslant 1$. An n-input Boolean circuit C is a directed acyclic graph with n source vertices (i.e., vertices with no incoming edges) and $1 \operatorname{sink}$ vertex (i.e., vertex with no outgoing edge).

The source vertices are labelled with x_{1}, \ldots, x_{n}. The non-source vertices, called gates, are labelled with one of \wedge, \vee, \neg. The vertices labelled with \wedge and \vee have two incoming edges, whereas the vertices labelled with \neg have one incoming edge. The size of C, denoted by $|C|$, is the number of vertices in C.

On input $w=x_{1} \cdots x_{n}$, where each $x_{i} \in\{0,1\}$, we write $C(w)$ to denote the output of C on w, where \wedge, \vee, \neg are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as fan-in and fan-out, respectively. In our definition above, we require fan-in 2 .

- A circuit family is a sequence $\left\{C_{n}\right\}_{n \in \mathbb{N}}$ such that every C_{n} has input n inputs and a single output.
To avoid clutter, we write $\left\{C_{n}\right\}$ to denote a circuit family.
- We say that $\left\{C_{n}\right\}$ decides a language L, if for every $n \in \mathbb{N}$, for every $w \in\{0,1\}^{n}, w \in L$ if and only if $C_{n}(w)=1$.
- We say that $\left\{C_{n}\right\}$ is of size $T(n)$, where $T: \mathbb{N} \rightarrow \mathbb{N}$ is a function, if $\left|C_{n}\right| \leqslant T(n)$, for every $n \in \mathbb{N}$.

We define the following class.

$$
\mathbf{P}_{/ \text {poly }} \stackrel{\text { def }}{=}\left\{L: L \text { is decided by }\left\{C_{n}\right\} \text { of size } q(n) \text { for some polynomial } q(n)\right\}
$$

That is, the class of languages decided by a circuit family of polynomial size.
Remark 7.1 It is not difficult to show that every unary language L is in $\mathbf{P}_{\text {poly }}$. Thus, $\mathbf{P}_{\text {/poly }}$ contains some undecidable language.

Definition 7.2 A circuit family $\left\{C_{n}\right\}$ is \mathbf{P}-uniform, if there is a polynomial time DTM that on input 1^{n}, output the description of the circuit C_{n}.

Theorem 7.3 A language L is in \mathbf{P} if and only if it is decided by a \mathbf{P}-uniform circuit family.
Theorem 7.4 (Karp and Lipton 1980) If $\mathbf{N P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{P H}=\boldsymbol{\Sigma}_{2}^{p}$.
Theorem 7.5 (Meyer 1980) If $\mathbf{E X P} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{E X P}=\boldsymbol{\Sigma}_{2}^{p}$.
Theorem 7.6 (Shannon 1949) For every $n>1$, there is a function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ that cannot be computed by a circuit of size $2^{n} /(10 n)$.

The classes NC and AC. For a circuit C, the depth of C is the length of the longest directed path from an input vertex to the output vertex ${ }^{*}$ For a function $T: \mathbb{N} \rightarrow \mathbb{N}$, we say that a circuit family $\left\{C_{n}\right\}$ has depth $T(n)$, if for every n, the depth of C_{n} is $\leqslant T(n)$.

For every i, the classes $\mathbf{N C}^{i}$ and $\mathbf{A C}^{i}$ are defined as follows.

- A language L is in $\mathbf{N C}^{i}$, if there is $f(n)=\operatorname{poly}(n)$ such that L is decided by a circuit family of size $f(n)$ and depth $O\left(\log ^{i} n\right)$.
- The class $\mathbf{A C}^{i}$ is defined analogously, except that gates in the circuits are allowed to have unbounded fan-in.

The classes NC and AC are defined as follows.

$$
\mathbf{N C} \stackrel{\text { def }}{=} \bigcup_{i \geqslant 0} \mathbf{N C}^{i} \quad \text { and } \quad \mathbf{A C} \stackrel{\text { def }}{=} \bigcup_{i \geqslant 0} \mathbf{A C}^{i}
$$

Note that $\mathbf{N C}^{i} \subseteq \mathbf{A C}^{i} \subseteq \mathbf{N C}^{i+1}$.

2 The switching lemma - Decision tree version

This section is based on Sect. 13.1 in N. Immerman's textbook "Descriptive Complexity" (1998). See also P. Beame's note "A switching lemma primer" (1994).

2.1 Some useful notations and definitions

We will consider circuits with unbounded fan-in. We will often use the terms "boolean formula" and "boolean function" interchangeably. Recall that a literal is either a (boolean) variable or its negation.

A term is a conjunction of some literals. The length of a term is the number of literals in it. A k-term is a term of length k. A formula is a DNF formula if it is a disjunction of terms. It is k-DNF, if all its terms have length at most k.

Decision tree. Let F be a boolean function with variables x_{1}, \ldots, x_{n}. A decision tree of F is a tree constructed inductively as follows.

- If F already evaluates to a constant 0 or 1 , the decision tree has only one node labelled with 0 or 1 , respectively.
- If F is not a constant, its decision tree has a root with two children, where the left and right children are decision trees for $F\left[x_{1} \mapsto 0\right]$ and $F\left[x_{1} \mapsto 1\right]$, respectively.
Here $F\left[x_{1} \mapsto b\right]$ denotes the resulting formula obtained by assigning x_{1} with b.
Note that a decision tree depends on the ordering of the variables x_{1}, \ldots, x_{n}.
Canonical decision tree for DNF formulas. Let $F=C_{1} \vee C_{2} \vee \cdots \vee C_{m}$ be a DNF formula, i.e., each C_{i} is a term. The canonical decision tree of F, denoted by $\mathcal{T}(F)$, is the decision tree obtained with the variables being ordered as follows: All the variables in C_{1} appear first, followed by all the variables in C_{2} (which haven't appeared yet), and so on. Let $\operatorname{depth}(\mathcal{T}(F))$ denote the depth of the canonical decision tree of F.

[^0]Restriction. Let F be a formula with variables x_{1}, \ldots, x_{n}. A restriction (on x_{1}, \ldots, x_{n}) is a function $\rho:\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow\{0,1, *\}$. Intuitively, $\rho\left(x_{i}\right)=*$ means variable x_{i} is not assigned. We denote by $\left.F\right|_{\rho}$ the resulting formula where we assign the variables in F according to ρ. Note that if the formula F is DNF, the formula $\left.F\right|_{\rho}$ is also DNF. For $\ell \leqslant n, \mathcal{R}_{n}^{\ell}$ denotes the set of restrictions (on n variables) where exactly ℓ variables are unassigned.

For two restrictions ρ_{1} and ρ_{2} whose sets of assigned variables are disjoint, we denote by $\rho_{1} \rho_{2}$ the restriction obtained by combining both restrictions. That is, for every variable x, if x is assigned according to ρ_{1} (or ρ_{2}), then $\rho_{1} \rho_{2}$ assigns x according to ρ_{1} (or ρ_{2}).

2.2 The switching lemma

Lemma 7.7 (Switching lemma - Håstad 1986) Let F be a k-DNF formula with n variables. For every $s \geqslant 0$ and every $p \leqslant 1 / 7$, the following holds.

$$
\begin{equation*}
\frac{\left|\left\{\rho \in \mathcal{R}_{n}^{p n}: \operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s\right\}\right|}{\left|\mathcal{R}_{n}^{p m}\right|}<(7 p k)^{s} \tag{1}
\end{equation*}
$$

One can also write Eq. (11) as $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{p n}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s\right]<(7 p k)^{s}$. Here $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{p n}}[\mathcal{E}]$ denotes the probability of event \mathcal{E} where ρ is randomly chosen from $\mathcal{R}_{n}^{p n}$.

Let $\operatorname{stars}(k, s)$ be the set that contains a sequence $\bar{Z} \stackrel{\text { def }}{=}\left(Z_{1}, \ldots, Z_{t}\right)$ where $\sum_{i=1}^{t}\left|Z_{i}\right|=s$ and each Z_{i} is a non-empty subset of $\{1, \ldots, k\}$. When $s=0$, we define $\operatorname{stars}(k, s)$ to be $\{\varepsilon\}$, where ε denotes the "empty sequence". That is, $|\operatorname{stars}(k, 0)|=1$.

Lemma 7.8 For every $k, s \geqslant 1$, $|\operatorname{stars}(k, s)| \leqslant \gamma^{s}$, where γ is such that $\left(1+\frac{1}{\gamma}\right)^{k}=2$. Hence, $|\operatorname{stars}(k, s)|<(k / \ln 2)^{s}$.

Proof. The proof is by induction on s. Base case $s=0$ is trivial.
For the induction hypothesis, we assume that the lemma holds for every $s^{\prime}<s$. The induction step is as follows. Observe that if Z_{0} is a non-empty subset of $\{1, \ldots, k\}$ and $\bar{Z} \in \operatorname{stars}\left(k, s-\left|Z_{0}\right|\right)$, then $\left(Z_{0}, \bar{Z}\right) \in \operatorname{stars}(k, s)$. From here, we have:

$$
\begin{aligned}
|\operatorname{stars}(k, s)|=\sum_{i=1}^{\min (k, s)}\binom{k}{i}|\operatorname{stars}(k, s-i)| & \leqslant \sum_{i=1}^{k}\binom{k}{i}|\operatorname{stars}(k, s-i)| \\
& \leqslant \sum_{i=1}^{k}\binom{k}{i} \gamma^{s-i} \\
& =\gamma^{s} \sum_{i=1}^{k}\binom{k}{i}(1 / \gamma)^{i} \\
& =\gamma^{s}\left((1+1 / \gamma)^{k}-1\right) \\
& =\gamma^{s}
\end{aligned}
$$

Proof of Switching lemma: Let F be a k-DNF formula with n variables. Let $s \geqslant 0$ and $p \leqslant 1 / 7$. Let $\ell=p n$. Let X be the set of restrictions ρ such that $\operatorname{depth}(\mathcal{T}(F \mid \rho)) \geqslant s$. We will show that there is an injective function ξ :

$$
\xi: X \rightarrow \mathcal{R}^{\ell-s} \times \operatorname{stars}(k, s) \times\{0,1\}^{s}
$$

The existence of ξ implies $|X| \leqslant\left|\mathcal{R}^{\ell-s}\right| \cdot|\operatorname{stars}(k, s)| \cdot 2^{s}$ and Switching lemma follows immediately from Lemma 7.8 and the fact that $\left|\mathcal{R}_{n}^{\ell}\right|=\binom{n}{\ell} 2^{n-\ell}$.

Let $F \stackrel{\text { def }}{=} C_{1} \vee C_{2} \vee \cdots$, where each C_{i} is a term of length at most k. Let $\rho \in X$, i.e., $\operatorname{depth}\left(\mathcal{T}\left(\left.F\right|_{\rho}\right)\right) \geqslant s$. Consider the lexicographically first branch in $\mathcal{T}\left(\left.F\right|_{\rho}\right)$ with length $\geqslant s$ and let b be the first s steps in this branch. To define $\xi(\rho)$, we do the following.

- Let $C_{i_{1}}$ be the first term that is not set to 0 in $\left.F\right|_{\rho}$.

Let V_{1} be the set of variables in $\left.C_{i_{1}}\right|_{\rho}$. (Note that by the definition of the canonical decision tree, this means the variables in V_{1} are assigned at the beginning of $\mathcal{T}\left(\left.F\right|_{\rho}\right)$.)
Let a_{1} be the (unique) assignment that makes $\left.C_{i_{1}}\right|_{\rho}$ true.
Let b_{1} be the "initial" assignment of b that assigns variables in V_{1}.
(If b ends before all the variables in V_{1} is used, let $b_{1}=b$ and "shorten" a_{1} so that both a_{1} and b_{1} assign the same set of variables.)
Let $S_{1} \subseteq\{1, \ldots, k\}$ be the set of index j where the $j^{\text {th }}$ variable in $C_{i_{1}}$ is assigned by a_{1}. (Note that from the term $C_{i_{1}}$ and the set S_{1}, we can reconstruct a_{1}.)

- Repeat the above process but with $b \backslash b_{1}$, and we obtain a_{2}, b_{2} and the set S_{2},

Performing the process above, we obtain $a_{1} \cdots a_{t}, b_{1} \cdots b_{t}$ and $\left(S_{1}, \ldots, S_{t}\right)$. Note that $b=b_{1} \cdots b_{t}$. Let a denote $a_{1} \cdots a_{t}$. Note also that the number of variables assigned by both a and b is exactly s. Thus, the sum $\left|S_{1}\right|+\cdots+\left|S_{t}\right|=s$, and hence, $\left(S_{1}, \ldots, S_{t}\right) \in \operatorname{stars}(k, s)$.

Let $\delta:\{1, \ldots, s\} \rightarrow\{0,1\}$ be a function defined as follows.

$$
\delta(j) \stackrel{\text { def }}{=} \begin{cases}1, & \text { if } a \text { and } b \text { assign the same value to the variable in the } j^{\text {th }} \text { step } \\ 0, & \text { otherwise }\end{cases}
$$

Note that δ can be viewed as a $0-1$ string of length s.
Now we define the mapping ξ as follows.

$$
\xi(\rho) \stackrel{\text { def }}{=}\left(\rho a,\left(S_{1}, \ldots, S_{t}\right), \delta\right)
$$

where $a,\left(S_{1}, \ldots, S_{t}\right)$ and δ are defined as above.
We need to show that ξ is injective. We will show that if $\left(\rho^{\prime},\left(S_{1}, \ldots, S_{t}\right), \delta\right)$ is in the range of ξ, we can construct a unique ρ such that $\xi(\rho)=\rho^{\prime}$. Note that if $\left(\rho^{\prime},\left(S_{1}, \ldots, S_{t}\right), \delta\right)$ is in the range of ξ, there is $a_{1} \cdots a_{t}$ such that $\rho^{\prime}=\rho a$ and $\left(S_{1}, \ldots, S_{t}\right)$ and δ satisfy the property imposed by the definition of ξ above. Thus, to reconstruct ρ, it suffices to reconstruct $a_{1} \cdots a_{t}$.

We denote ρ^{\prime} by $\rho a_{1} \cdots a_{t}$ for some $a_{1} \cdots a_{t}$ (which at this point is not known yet). We will construct a_{1}, \ldots, a_{t} by doing the following.

- Find out the term $C_{i_{1}}$ which is the first term in F that evaluates to 1 under ρ^{\prime}.

From $C_{i_{1}}$ and S_{1}, we reconstruct a_{1}.
From a_{1} and δ, we reconstruct b_{1}.

- Repeat the same process but replacing ρ^{\prime} with $\left(\rho^{\prime} \backslash a_{1}\right) b_{1}$. (Here note that $\left(\rho^{\prime} \backslash a_{1}\right) b_{1}$ is the same as $\rho b_{1} a_{2} \cdots a_{t}$)
From this step, we figure out a_{2} and b_{2}.
We repeat the same process until we figure out all a_{1}, \cdots, a_{t} and hence the restriction ρ. This completes the proof of Lemma 7.7 .

3 Applications of the switching lemma

By the equivalence $p_{1} \wedge \cdots \wedge p_{m} \equiv \neg\left(\neg p_{1} \vee \cdots \vee \neg p_{m}\right)$, we can transform a circuit C into another circuit C^{\prime} that uses only \neg and \vee gates. Moreover, depth $\left(C^{\prime}\right) \leqslant 3 \cdot \operatorname{depth}(C)$. In this section we always assume that circuits only use \neg and \vee gates.

Note that every gate g in a circuit defines a boolean formula. Abusing the notation, we will often treat every gate as a formula too. For every vertex u in a circuit C, we define the height of u, denoted by height (u), as follows.

- The height of a source vertex (i.e., the input vertex) is 0 .
- The height of a gate vertex u is the maximum of height $(v)+1$, where v ranges over all edges (u, v) in C.

So, a circuit of depth d has vertices of height from 0 to d.
In the following, log has base 2 .
Lemma 7.9 Let C be a circuit with n variables, size m and depth d. For every $1 \leqslant j \leqslant d$, let $n_{j} \stackrel{\text { def }}{=} \frac{n}{14(14 \log m)^{j-1}}$. Assume that $\log m>1$. Then, the following holds.

For every $1 \leqslant j \leqslant d$, there is a restriction $\rho_{j} \in \mathcal{R}_{n}^{n_{j}}$ such that for every gate f of height j in C, the formula $\left.f\right|_{\rho_{j}}$ has a decision tree with height $<\log m$.

Proof. The proof is by induction on j. The base case is $j=1$, where $n_{1} \stackrel{\text { def }}{=} n / 14$. We randomly choose (with equal probability) a restriction ρ from $\mathcal{R}_{n}^{n_{1}}$. For a gate f of height 1 , let \mathcal{E}_{f} denote the event that "depth $\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right) \geqslant \log m$." Let \mathcal{E} denote the event that "there is a gate f of height 1 such that $\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right) \geqslant \log m$."

We will first show that $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]<1 / m$, for every gate f of height 1 . Let f be a gate of height 1. If f is a \neg-gate, then the depth of its decision tree is 1 . Since $\log m>1$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]=0<1 / m
$$

If f is an \vee-gate, we can view f as $1-D N F$, i.e., every term has length 1 . By Lemma 7.7 where $p=1 / 14, k=1$ and $s=\log m$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]<(7 \cdot(1 / 14) \cdot 1)^{\log m}=(1 / 2)^{\log m}=1 / m
$$

Then,

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}[\mathcal{E}]=\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\bigcup_{f \text { has height } 1} \mathcal{E}_{f}\right] \leqslant \sum_{f \text { has height } 1} \operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}\left[\mathcal{E}_{f}\right]<m \cdot(1 / m)=1
$$

This means $\operatorname{Pr}_{\rho \in \mathcal{R}_{n}^{n_{1}}}[\overline{\mathcal{E}}]>0$, which means there is a restriction $\rho \in \mathcal{R}_{n}^{n_{1}}$ such that for all gate f of height 1 , $\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho}\right)\right)<\log m$, i.e., $\left.f\right|_{\rho}$ has a decision tree with depth $<\log m$.

For the induction hypothesis, we assume Lemma 7.9 holds for $j-1$. Let $\rho_{0} \in \mathcal{R}_{n}^{n_{j-1}}$ be a restriction such that every gate g of height $j-1$ has decision tree with depth $<\log m$. Applying ρ_{0} on all gates of height $j-1$, we can view each gate of height $j-1$ as DNF where each term has length $<\log m$.

Similar to above, we randomly choose a restriction ρ from $\mathcal{R}_{n_{j-1}}^{n_{j}}$. For a gate f of height j, let \mathcal{E}_{f}^{\prime} denote the event that "every decision tree of $\left.f\right|_{\rho_{0} \rho}$ has depth $\geqslant \log m$." Let \mathcal{E}^{\prime} denote the event that "there is a gate f of height j such that every decision tree of $\left.f\right|_{\rho_{0} \rho}$ has depth $\geqslant \log m$."

We will show that $\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]<1 / m$, for every gate f of height j. Let f be a gate of height j. If f is a \neg-gate, let $f=\neg g$, where g is of height $j-1$. Since $\left.g\right|_{\rho_{0}}$ has decision tree with depth $<\log m$, so does $\left.f\right|_{\rho_{0}}$. Thus,

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]=0<1 / m
$$

If f is an \vee-gate, we can view f as k-DNF, where $k=\log m$. By Lemma 7.7 with $p=1 /(14 \log m)$, $k=\log m$ and $s=\log m$, we have:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho_{0} \rho}\right)\right) \geqslant \log m\right]<\left(7 \cdot \frac{1}{14 \log m} \cdot \log m\right)^{\log m}=(1 / 2)^{\log m}=1 / m
$$

Now, note that:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right] \leqslant \operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\operatorname{depth}\left(\mathcal{T}\left(\left.f\right|_{\rho_{0} \rho}\right)\right) \geqslant \log m\right]
$$

Thus,

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}_{f}^{\prime}\right]<1 / m
$$

Applying similar argument as above, we obtain:

$$
\operatorname{Pr}_{\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}}\left[\mathcal{E}^{\prime}\right]<1
$$

Hence, there is a restriction $\rho \in \mathcal{R}_{n_{j-1}}^{n_{j}}$ such that for every gate f of height $j,\left.f\right|_{\rho_{\rho \rho} \rho}$ has a decision tree with depth $<\log m$. Now, $\rho_{0} \rho \in \mathcal{R}_{n}^{n_{j}}$. This completes the proof of Lemma 7.9 .

Consider the following language PARITY $\subseteq\{0,1\}^{*}$.

$$
\text { PARITY def }\{w \text { : the number of } 1 \text { 's in } w \text { is odd }\}
$$

Obviously, it can be viewed as a family of boolean functions $\left\{f_{n}\right\}_{n \in \mathbb{N}}$, where each f_{n} has n variables x_{1}, \ldots, x_{n} and $f_{n}\left(x_{1}, \ldots, x_{n}\right) \stackrel{\text { def }}{=} \sum_{i=1}^{n} x_{i}(\bmod 2)$.

Applying Lemma 7.9, we immediately obtain that PARITY is not in $\mathbf{A C}^{0}$.
Theorem 7.10 (Furst, Saxe and Sipser 1981, Ajtai 1983, Yao 1985) PARITY \notin AC 0.

[^0]: *Here we take the length of a path as the number of edges in it.

