
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

Lesson 7: Boolean circuits

Theme: Some classical results on boolean circuits.

1 Some basics

Let n ∈ N, where n > 1. An n-input Boolean circuit C is a directed acyclic graph with n source
vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no outgoing
edge).

The source vertices are labelled with x1, . . . , xn. The non-source vertices, called gates, are
labelled with one of ∧,∨,¬. The vertices labelled with ∧ and ∨ have two incoming edges, whereas
the vertices labelled with ¬ have one incoming edge. The size of C, denoted by |C|, is the number
of vertices in C.

On input w = x1 · · ·xn, where each xi ∈ {0, 1}, we write C(w) to denote the output of C on
w, where ∧,∨,¬ are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as fan-in and fan-out, respec-
tively. In our definition above, we require fan-in 2.

• A circuit family is a sequence {Cn}n∈N such that every Cn has input n inputs and a single
output.

To avoid clutter, we write {Cn} to denote a circuit family.

• We say that {Cn} decides a language L, if for every n ∈ N, for every w ∈ {0, 1}n, w ∈ L if
and only if Cn(w) = 1.

• We say that {Cn} is of size T (n), where T : N→ N is a function, if |Cn| 6 T (n), for every
n ∈ N.

We define the following class.

P/poly
def
=

{
L : L is decided by {Cn} of size q(n) for some polynomial q(n)

}
That is, the class of languages decided by a circuit family of polynomial size.

Remark 7.1 It is not difficult to show that every unary language L is in P/poly. Thus, P/poly
contains some undecidable language.

Definition 7.2 A circuit family {Cn} is P-uniform, if there is a polynomial time DTM that on
input 1n, output the description of the circuit Cn.

Theorem 7.3 A language L is in P if and only if it is decided by a P-uniform circuit family.

Theorem 7.4 (Karp and Lipton 1980) If NP ⊆ P/poly, then PH = Σp
2.

Theorem 7.5 (Meyer 1980) If EXP ⊆ P/poly, then EXP = Σp
2.

Theorem 7.6 (Shannon 1949) For every n > 1, there is a function f : {0, 1}n → {0, 1} that
cannot be computed by a circuit of size 2n/(10n).

1/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

The classes NC and AC. For a circuit C, the depth of C is the length of the longest directed
path from an input vertex to the output vertex.∗ For a function T : N→ N, we say that a circuit
family {Cn} has depth T (n), if for every n, the depth of Cn is 6 T (n).

For every i, the classes NCi and ACi are defined as follows.

• A language L is in NCi, if there is f(n) = poly(n) such that L is decided by a circuit family
of size f(n) and depth O(logi n).

• The class ACi is defined analogously, except that gates in the circuits are allowed to have
unbounded fan-in.

The classes NC and AC are defined as follows.

NC def
=
⋃
i>0

NCi and AC def
=
⋃
i>0

ACi

Note that NCi ⊆ ACi ⊆ NCi+1.

2 The switching lemma – Decision tree version

This section is based on Sect. 13.1 in N. Immerman’s textbook “Descriptive Complexity” (1998).
See also P. Beame’s note “A switching lemma primer” (1994).

2.1 Some useful notations and definitions

We will consider circuits with unbounded fan-in. We will often use the terms “boolean formula”
and “boolean function” interchangeably. Recall that a literal is either a (boolean) variable or its
negation.

A term is a conjunction of some literals. The length of a term is the number of literals in it.
A k-term is a term of length k. A formula is a DNF formula if it is a disjunction of terms. It is
k-DNF, if all its terms have length at most k.

Decision tree. Let F be a boolean function with variables x1, . . . , xn. A decision tree of F is
a tree constructed inductively as follows.

• If F already evaluates to a constant 0 or 1, the decision tree has only one node labelled
with 0 or 1, respectively.

• If F is not a constant, its decision tree has a root with two children, where the left and
right children are decision trees for F [x1 7→ 0] and F [x1 7→ 1], respectively.

Here F [x1 7→ b] denotes the resulting formula obtained by assigning x1 with b.

Note that a decision tree depends on the ordering of the variables x1, . . . , xn.

Canonical decision tree for DNF formulas. Let F = C1∨C2∨· · ·∨Cm be a DNF formula,
i.e., each Ci is a term. The canonical decision tree of F , denoted by T (F), is the decision tree
obtained with the variables being ordered as follows: All the variables in C1 appear first, followed
by all the variables in C2 (which haven’t appeared yet), and so on. Let depth(T (F)) denote the
depth of the canonical decision tree of F .

∗Here we take the length of a path as the number of edges in it.

2/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

Restriction. Let F be a formula with variables x1, . . . , xn. A restriction (on x1, . . . , xn) is a
function ρ : {x1, . . . , xn} → {0, 1, ∗}. Intuitively, ρ(xi) = ∗ means variable xi is not assigned.
We denote by F |ρ the resulting formula where we assign the variables in F according to ρ. Note
that if the formula F is DNF, the formula F |ρ is also DNF. For ` 6 n, R`n denotes the set of
restrictions (on n variables) where exactly ` variables are unassigned.

For two restrictions ρ1 and ρ2 whose sets of assigned variables are disjoint, we denote by
ρ1ρ2 the restriction obtained by combining both restrictions. That is, for every variable x, if x
is assigned according to ρ1 (or ρ2), then ρ1ρ2 assigns x according to ρ1 (or ρ2).

2.2 The switching lemma

Lemma 7.7 (Switching lemma – Håstad 1986) Let F be a k-DNF formula with n variables.
For every s > 0 and every p 6 1/7, the following holds.

|{ρ ∈ Rpnn : depth(T (F |ρ)) > s}|
|Rpnn |

< (7pk)s (1)

One can also write Eq. (1) as Prρ∈Rpn
n

[depth(T (F |ρ)) > s] < (7pk)s. Here Prρ∈Rpn
n

[E] denotes
the probability of event E where ρ is randomly chosen from Rpnn .

Let stars(k, s) be the set that contains a sequence Z̄ def
= (Z1, . . . , Zt) where

∑t
i=1 |Zi| = s and

each Zi is a non-empty subset of {1, . . . , k}. When s = 0, we define stars(k, s) to be {ε}, where
ε denotes the “empty sequence”. That is, |stars(k, 0)| = 1.

Lemma 7.8 For every k, s > 1, |stars(k, s)| 6 γs, where γ is such that (1 + 1
γ)k = 2. Hence,

|stars(k, s)| < (k/ ln 2)s.

Proof. The proof is by induction on s. Base case s = 0 is trivial.
For the induction hypothesis, we assume that the lemma holds for every s′ < s. The induction

step is as follows. Observe that if Z0 is a non-empty subset of {1, . . . , k} and Z̄ ∈ stars(k, s−|Z0|),
then (Z0, Z̄) ∈ stars(k, s). From here, we have:

|stars(k, s)| =

min(k,s)∑
i=1

(
k

i

)
|stars(k, s− i)| 6

k∑
i=1

(
k

i

)
|stars(k, s− i)|

6
k∑
i=1

(
k

i

)
γs−i

= γs
k∑
i=1

(
k

i

)
(1/γ)i

= γs
(
(1 + 1/γ)k − 1

)
= γs

Proof of Switching lemma: Let F be a k-DNF formula with n variables. Let s > 0 and
p 6 1/7. Let ` = pn. Let X be the set of restrictions ρ such that depth(T (F |ρ)) > s. We will
show that there is an injective function ξ:

ξ : X → R`−s × stars(k, s)× {0, 1}s

3/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

The existence of ξ implies |X| 6 |R`−s| · |stars(k, s)| ·2s and Switching lemma follows immediately
from Lemma 7.8 and the fact that |R`n| =

(
n
`

)
2n−`.

Let F def
= C1 ∨ C2 ∨ · · · , where each Ci is a term of length at most k. Let ρ ∈ X, i.e.,

depth(T (F |ρ)) > s. Consider the lexicographically first branch in T (F |ρ) with length > s and
let b be the first s steps in this branch. To define ξ(ρ), we do the following.

• Let Ci1 be the first term that is not set to 0 in F |ρ.
Let V1 be the set of variables in Ci1 |ρ. (Note that by the definition of the canonical decision
tree, this means the variables in V1 are assigned at the beginning of T (F |ρ).)
Let a1 be the (unique) assignment that makes Ci1 |ρ true.

Let b1 be the “initial” assignment of b that assigns variables in V1.
(If b ends before all the variables in V1 is used, let b1 = b and “shorten” a1 so that both a1
and b1 assign the same set of variables.)

Let S1 ⊆ {1, . . . , k} be the set of index j where the jth variable in Ci1 is assigned by a1.
(Note that from the term Ci1 and the set S1, we can reconstruct a1.)

• Repeat the above process but with b \ b1, and we obtain a2, b2 and the set S2,

Performing the process above, we obtain a1 · · · at, b1 · · · bt and (S1, . . . , St). Note that b = b1 · · · bt.
Let a denote a1 · · · at. Note also that the number of variables assigned by both a and b is exactly s.
Thus, the sum |S1|+ · · ·+ |St| = s, and hence, (S1, . . . , St) ∈ stars(k, s).

Let δ : {1, . . . , s} → {0, 1} be a function defined as follows.

δ(j)
def
=

{
1, if a and b assign the same value to the variable in the jth step
0, otherwise

Note that δ can be viewed as a 0-1 string of length s.
Now we define the mapping ξ as follows.

ξ(ρ)
def
= (ρa, (S1, . . . , St), δ)

where a, (S1, . . . , St) and δ are defined as above.
We need to show that ξ is injective. We will show that if (ρ′, (S1, . . . , St), δ) is in the range

of ξ, we can construct a unique ρ such that ξ(ρ) = ρ′. Note that if (ρ′, (S1, . . . , St), δ) is in the
range of ξ, there is a1 · · · at such that ρ′ = ρa and (S1, . . . , St) and δ satisfy the property imposed
by the definition of ξ above. Thus, to reconstruct ρ, it suffices to reconstruct a1 · · · at.

We denote ρ′ by ρa1 · · · at for some a1 · · · at (which at this point is not known yet). We will
construct a1, . . . , at by doing the following.

• Find out the term Ci1 which is the first term in F that evaluates to 1 under ρ′.

From Ci1 and S1, we reconstruct a1.

From a1 and δ, we reconstruct b1.

• Repeat the same process but replacing ρ′ with (ρ′ \ a1)b1. (Here note that (ρ′ \ a1)b1 is the
same as ρb1a2 · · · at)
From this step, we figure out a2 and b2.

We repeat the same process until we figure out all a1, · · · , at and hence the restriction ρ. This
completes the proof of Lemma 7.7.

4/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

3 Applications of the switching lemma

By the equivalence p1 ∧ · · · ∧ pm ≡ ¬(¬p1 ∨ · · · ∨¬pm), we can transform a circuit C into another
circuit C ′ that uses only ¬ and ∨ gates. Moreover, depth(C ′) 6 3 · depth(C). In this section we
always assume that circuits only use ¬ and ∨ gates.

Note that every gate g in a circuit defines a boolean formula. Abusing the notation, we will
often treat every gate as a formula too. For every vertex u in a circuit C, we define the height of
u, denoted by height(u), as follows.

• The height of a source vertex (i.e., the input vertex) is 0.

• The height of a gate vertex u is the maximum of height(v) + 1, where v ranges over all
edges (u, v) in C.

So, a circuit of depth d has vertices of height from 0 to d.
In the following, log has base 2.

Lemma 7.9 Let C be a circuit with n variables, size m and depth d. For every 1 6 j 6 d, let
nj

def
= n

14(14 logm)j−1 . Assume that logm > 1. Then, the following holds.
For every 1 6 j 6 d, there is a restriction ρj ∈ R

nj
n such that for every gate f of height j

in C, the formula f |ρj has a decision tree with height < logm.

Proof. The proof is by induction on j. The base case is j = 1, where n1
def
= n/14. We randomly

choose (with equal probability) a restriction ρ from Rn1
n . For a gate f of height 1, let Ef denote

the event that “depth(T (f |ρ)) > logm.” Let E denote the event that “there is a gate f of height
1 such that depth(T (f |ρ)) > logm.”

We will first show that Prρ∈Rn1
n

[Ef] < 1/m, for every gate f of height 1. Let f be a gate of
height 1. If f is a ¬-gate, then the depth of its decision tree is 1. Since logm > 1, we have:

Prρ∈Rn1
n

[Ef] = 0 < 1/m

If f is an ∨-gate, we can view f as 1-DNF, i.e., every term has length 1. By Lemma 7.7 where
p = 1/14, k = 1 and s = logm, we have:

Prρ∈Rn1
n

[Ef] < (7 · (1/14) · 1)logm = (1/2)logm = 1/m

Then,

Prρ∈Rn1
n

[E] = Prρ∈Rn1
n

[⋃
f has height 1

Ef
]

6
∑

f has height 1

Prρ∈Rn1
n

[Ef] < m · (1/m) = 1

This means Prρ∈Rn1
n

[E] > 0, which means there is a restriction ρ ∈ Rn1
n such that for all gate f

of height 1, depth(T (f |ρ)) < logm, i.e., f |ρ has a decision tree with depth < logm.
For the induction hypothesis, we assume Lemma 7.9 holds for j − 1. Let ρ0 ∈ R

nj−1
n be a

restriction such that every gate g of height j− 1 has decision tree with depth < logm. Applying
ρ0 on all gates of height j − 1, we can view each gate of height j − 1 as DNF where each term
has length < logm.

Similar to above, we randomly choose a restriction ρ from Rnj
nj−1 . For a gate f of height j,

let E ′f denote the event that “every decision tree of f |ρ0ρ has depth > logm.” Let E ′ denote the
event that “there is a gate f of height j such that every decision tree of f |ρ0ρ has depth > logm.”

5/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Boolean circuits

We will show that Pr
ρ∈R

nj
nj−1

[E ′f] < 1/m, for every gate f of height j. Let f be a gate of

height j. If f is a ¬-gate, let f = ¬g, where g is of height j− 1. Since g|ρ0 has decision tree with
depth < logm, so does f |ρ0 . Thus,

Pr
ρ∈R

nj
nj−1

[E ′f] = 0 < 1/m

If f is an ∨-gate, we can view f as k-DNF, where k = logm. By Lemma 7.7 with p = 1/(14 logm),
k = logm and s = logm, we have:

Pr
ρ∈R

nj
nj−1

[depth(T (f |ρ0ρ)) > logm] < (7 · 1

14 logm
· logm)logm = (1/2)logm = 1/m

Now, note that:

Pr
ρ∈R

nj
nj−1

[E ′f] 6 Pr
ρ∈R

nj
nj−1

[depth(T (f |ρ0ρ)) > logm]

Thus,

Pr
ρ∈R

nj
nj−1

[E ′f] < 1/m

Applying similar argument as above, we obtain:

Pr
ρ∈R

nj
nj−1

[E ′] < 1

Hence, there is a restriction ρ ∈ Rnj
nj−1 such that for every gate f of height j, f |ρ0ρ has a decision

tree with depth < logm. Now, ρ0ρ ∈ R
nj
n . This completes the proof of Lemma 7.9.

Consider the following language PARITY ⊆ {0, 1}∗.

PARITY def
= {w : the number of 1’s in w is odd}

Obviously, it can be viewed as a family of boolean functions {fn}n∈N, where each fn has n
variables x1, . . . , xn and fn(x1, . . . , xn)

def
=
∑n

i=1 xi (mod 2).
Applying Lemma 7.9, we immediately obtain that PARITY is not in AC0.

Theorem 7.10 (Furst, Saxe and Sipser 1981, Ajtai 1983, Yao 1985) PARITY /∈ AC0.

6/6

	Some basics
	The switching lemma – Decision tree versionThis section is based on Sect. 13.1 in N. Immerman's textbook ``Descriptive Complexity'' (1998). See also P. Beame's note ``A switching lemma primer'' (1994).
	Some useful notations and definitions
	The switching lemma

	Applications of the switching lemma

