
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 5: Alternating Turing machines

Lesson 5: Alternating Turing machines

Theme: The notion of alternating Turing machine, the relation with deterministic Turing ma-
chine and the polynomial hierarchy.

1 Definition

A 1-tape alternating Turing machine (ATM) is a systemM = 〈Σ,Γ, Q, U, q0, qacc, qrej, δ〉, where
each component is as follows.

• Σ = {0, 1} and Γ = {0, 1,t} are the input and tape alphabets, respectively.

• Q is a finite set of states.

• U ⊆ Q is a finite subset of Q.

• q0, qacc, qrej are the initial state, accepting state and rejecting state, respectively.

• δ ⊆ (Q− {qacc, qrej})× Γ×Q× Γ× {Left, Right}.

Note that ATM is very much like NTM, except that it has one extra component U . The states
in U are called universal states, and the states in Q− U are called existential states.

The notions of initial/halting/accepting/rejecting configuration are defined similarly as in
NTM/DTM. A configuration C is called existential/universal configuration, if the the state in C
is an existential/universal state. The notion of “one step computation” C ` C ′ for ATM is also
similar to the one for DTM/NTM. When C ` C ′, we say that C ′ is one of the next configuration
of C (w.r.t. M).

On input word w, the run ofM on w is a tree T where each node in the tree is labelled with
a configuration ofM according to the following rules.

• The root node of T is labelled with the initial configuration ofM on w.

• Every other node x in T is labelled as follows.

If x is labelled with a configuration C and C1, . . . , Cn are all the next configurations of C,
then x has n children y1, . . . , yn labelled with C1, . . . , Cn, respectively.

Note that if x is labelled with C that does not have next configuration, then it is a leaf node,
i.e., it does not have any children.

Let T be the run ofM on w and let x be a node in T . We say that x leads to acceptance, if
the following holds.

• x is a leaf node labelled with an accepting configuration.

• If x is labelled with an existential configuration, then one of its children leads to acceptance.

• If x is labelled with a universal configuration, then all of its children lead to acceptance.

We say that T is accepting run, if its root node leads to acceptance. The ATMM accepts w, if
the run ofM on w is accepting run. As before, L(M)

def
= {w :M accepts w}.

Note that NTM is simply ATM where all the states are existential, and DTM is simply NTM
where every configuration (except the accepting/rejecting configuration) has exactly one next
configuration. The generalization of ATM to multiple tapes is straightforward.

1/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 5: Alternating Turing machines

2 Time and space complexity for ATM

LetM be a ATM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if the run ofM on w has depth at most t.

• M decides w in space t (or, uses t cells/space), if in the run of M on w, every node is
labelled with configuration of length t.

• M runs in time/space O(f(n)), if there is c > 0 such that for sufficiently long word w,M
decides w in time/space c · f(|w|).

• M decides a language L in time/space O(f(n)), if M runs in time/space O(f(n)) and
L(M) = L.

• Atime[f(n)]
def
= {L : there is ATMM that decides L in time O(f(n))}.

• Aspace[f(n)]
def
= {L : there is ATMM that decides L in space O(f(n))}.

Analoguous to the DTM/NTM, we can define the classes of languages accepted by ATM run in
algorithmic/polynomial/exponential time/space.

AL def
= {L : there is ATMM that decides L in space O(log n)}

AP def
=

⋃
f(n)=poly(n)

Atime[f(n)]

APSPACE def
=

⋃
f(n)=poly(n)

Aspace[f(n)]

AEXP def
=

⋃
f(n)=poly(n)

Atime[2f(n)]

The following lemma links time/space complexity classes for ATM with those for DTM.

Lemma 5.1 Let T : N→ N and S : N→ N such that T (n) > n and S(n) > log n, for every n.

(a) Atime[T (n)] ⊆ Dspace[T (n)].

(b) Dspace[S(n)] ⊆ Atime[S(n)2].

(c) Aspace[S(n)] ⊆ Dtime[2O(S(n))].

(d) Dtime[T (n)] ⊆ Aspace[log T (n)].

Proof. (a) and (c) is by straightforward simulation of ATM with DTM. (b) is similar to the
proof of Savitch’s theorem. (d) is similar to the proof of Theorem 5.5 below, i.e., by viewing the
computation of DTM as a boolean circuit.

Theorem 5.2 (Chandra, Kozen, Stockmeyer 1981)

• AL = P.

• AP = PSPACE.

• APSPACE = EXP.

• AEXP = EXPSPACE.

• · · · .

2/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 5: Alternating Turing machines

3 The polynomial hierarchy

For every integer i > 1, the class Σp
i is defined as follows. A language L ⊆ {0, 1}∗ is in Σp

i ,
if there is a polynomial q(n) and a polynomial time DTM M such that for every w ∈ {0, 1}∗,
w ∈ L if and only if the following holds.

∃y1 ∈ {0, 1}q(|w|) ∀y2 ∈ {0, 1}q(|w|) · · · Qyi ∈ {0, 1}q(|w|) M accepts (w, y1, . . . , yi) (1)

where Q = ∃, if i is odd and Q = ∀, if i is even.
The class Πp

i is defined as above, but the sequence of quantifiers in (1) starts with ∀. Alter-
natively, it can also be defined as Πp

i
def
= {L : L ∈ Σp

i }. Note that NP = Σp
1 and coNP = Πp

1.

Remark 5.3 The class Σp
i can also be defined as follows. A language L is in Σp

i , if there is a
polynomial time ATMM that decides L such that for every input word w ∈ {0, 1}∗, the run of
M on w can be divided into i layers. Each layer consists of nodes of the same depth in the run.
(Recall that the run of an ATM is a tree.) In the first layer all nodes are labeled with existential
configurations, in the second layer with universal configurations, and so on. It is not difficult to
show that this definition is equivalent to the one above.

The polynomial time hierarchy (or, in short, polynomial hierarchy) is defined as the following
class.

PH def
=

∞⋃
i=1

Σp
i

Note that PH ⊆ PSPACE.
It is conjectured that Σp

1 (Σp
2 (Σp

3 (· · · . In this case, we say that the polynomial
hierarchy does not collapse. We say that the polynomial hierarchy collapses, if there is i such that
PH = Σp

i , in which case we also say that the polynomial hierarchy collapses to level i.
We define the notion of hardness and completeness for each Σp

i as follows. For i > 1, a
language K is Σp

i -hard, if for every L ∈ Σp
i , L 6p K. It is Σp

i -complete, if it is in Σp
i and it is

Σp
i -hard. The same notion can be defined analogously for PH and each Πp

i .
Define the language Σi-SAT as consisting of true QBF of the form:

∃x̄1 ∀x̄2 · · · Qx̄i ϕ(x̄1, . . . , x̄i)

where ϕ(x̄1, . . . , x̄i) is quantifier-free Boolean formula and Q = ∃, if i is odd, and Q = ∀, if i is
even. Here x̄1, . . . , x̄i are all vectors of boolean variables. In other words, Σi-SAT is a subset of
TQBF where the number of quantifier alternation is limited to (i − 1). The language Πi-SAT is
defined analogously with the starting quantifiers being ∀.

Theorem 5.4

• For every i > 1, Σi-SAT is Σp
i -complete and Πi-SAT is Πp

i -complete.

• If Σp
i = Πp

i for some i > 1, then the polynomial hierarchy collapses.

• If there is language that is PH-complete, then the polynomial hierarchy collapses.

3/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 5: Alternating Turing machines

Appendix

A P-complete languages

Boolean circuits. Let n ∈ N, where n > 1. An n-input Boolean circuit C is a directed acyclic
graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex
with no outgoing edge).

The source vertices are labelled with x1, . . . , xn. The non-source vertices, called gates, are
labelled with one of ∧,∨,¬. The vertices labelled with ∧ and ∨ have two incoming edges, whereas
the vertices labelled with ¬ have one incoming edge. The size of C, denoted by |C|, is the number
of vertices in C.

On input w = x1 · · ·xn, where each xi ∈ {0, 1}, we write C(w) to denote the output of C on
w, where ∧,∨,¬ are interpreted as “and,” “or” and “negation,” respectively and 0 and 1 as false
and true, respectively.

(Boolean) straight line programs. It is sometimes more convenient to view a boolean circuit
a straight line program. The following is an example of straight line program, where the input is
w = x1 · · ·xn.

1: p1 := x1 ∧ x3.
2: p2 := ¬x4.
3: p3 := p1 ∨ p2.
...
`: p` := pi ∧ pj .

Intuitively, straight line programs are programs without if branch and while loop, hence, the
name “straight line” programs. It is assumed that such program always outputs the value in the
variable in the last line. In our example above, it outputs the value of variable p`.

Define the following problem.

CIRCUIT-EVAL

Input: An n input boolean circuit C and w ∈ {0, 1}n.
Task: Output C(w).

It can also be defined as the language CIRCUIT-EVAL def
= {(C,w) : C(w) = 1}.

For our proof of Theorem 5.5 below, it is also convenient to assume that vertices labelled
with ∧ and ∨ can have more than 2 incoming edges.

Theorem 5.5 CIRCUIT-EVAL is P-complete via log-space reductions.

Proof. Follows the reduction for the NP-completeness of SAT.

4/4

	Definition
	Time and space complexity for ATM
	The polynomial hierarchy
	P-complete languages

