
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 4: The class NL and PSPACE

Lesson 4: The class NL and PSPACE

Theme: Some classical results on the class NL and PSPACE.

1 Classical results on the class NL

We recall the notion of log-space reduction. Let F : Σ∗ → Σ∗ be a function. We say that F
is computable in logarithmic space, if there is a 3-tape DTMM such that on input word w, it
works as follows.

• Tape 1 contains the input word w and its content never changes.

• There is a constant c such thatM uses only c log |w| space in tape 2.

• The head in tape 3 can only “write” and move right, i.e., once it writes a symbol to a cell,
the content of that cell will not change.

Tape 1 is called the input tape, tape 2 the work tape and tape 3 the output tape.

Definition 4.1 A language L is log-space reducible to another languageK, denoted by L 6log K,
if there is a function F : Σ∗ → Σ∗ computable in logarithmic space such that for every w ∈ Σ∗,
w ∈ L if and only if F (w) ∈ K.

Remark 4.2 The relation 6log is transitive in the sense that if L1 6log L2 and L2 6log L3, then
L1 6log L3.

Definition 4.3 Let K be a language.

• K is NL-hard, if for every language L ∈ NL, L 6log K.

• K is NL-complete, if K ∈ NL and K is NL-hard.

Define the following language PATH.

PATH def
= {(G, s, t) : G is directed graph and there is a path in G from vertex s to vertex t}

Theorem 4.4 PATH is NL-complete.

Theorem 4.5 (Savitch 1970) NL ⊆ Dspace[log2 n].

To prove Theorem 4.5, it suffices to show that PATH ∈ Dspace[log2 n]. See Appendix A.

Theorem 4.6 (Immerman 1988 and Szelepcsényi 1987) NL = coNL.

To prove Theorem 4.6, we consider the complement language of PATH:

PATH def
= {(G, s, t) : G is directed graph and there is no path in G from vertex s to vertex t}

Note that PATH is coNL-complete. To prove Theorem 4.6, it suffices to show that PATH ∈ NL.
See Appendix B.

1/5

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 4: The class NL and PSPACE

2 Classical results on the class PSPACE

Definition 4.7 Let K be a language.

• K is PSPACE-hard, if for every language L ∈ PSPACE, L 6p K.

• K is PSPACE-complete, if K ∈ PSPACE and K is PSPACE-hard.

Quantified Boolean formulas (QBF) are formulas of the form:

Q1x1 Q2x2 · · · Qnxn ϕ(x1, . . . , xn)

where each Qi ∈ {∀, ∃} and ϕ(x1, . . . , xn) is a Boolean formula with variables x1, . . . , xn.
The intuitive meaning of each Qi is as follows.

• ∀x ψ means that for all x ∈ {true, false}, ψ is true.

• ∃x ψ means that there is x ∈ {true, false} such that ψ is true.

We define the problem TQBF:

TQBF

Input: A QBF ϕ.
Task: Return true, if ϕ is true. Otherwise, return false.

As usual, it can be viewed as a language TQBF def
= {ψ : ψ is a true QBF}. Note also that the

usual Boolean formula can be viewed as a QBF, where each Qi is ∃. Thus, TQBF is a more
general problem than SAT.

Theorem 4.8 (Stockmeyer and Meyer 1973) TQBF is PSPACE-complete.

Theorems 4.9 and 4.10 below are the polynomial space analog of Theorem 4.5 and 4.6, re-
spectively. In fact, they can be easily generalized to the so called time and space constructible
functions. See Appendix C.

Theorem 4.9 (Savitch 1970) Nspace[nk] ⊆ Dspace[n2k].

Theorem 4.10 (Immerman 1988 and Szelepcsényi 1987) Nspace[nk] = coNspace[nk].

Note that Theorem 4.9 implies PSPACE = NPSPACE = coNPSPACE.

2/5

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 4: The class NL and PSPACE

Appendix

A Proof of Theorem 4.5

Algorithm 1 below decides the language PATH.

Algorithm 1
Input: (G, s, t), where G is a directed graph and s and t are two vertices in G.
Task: ACCEPT iff there is a path in G from s to t.
1: Let n be the number of vertices in G.
2: ACCEPT iff CheckG(s, t, dlog ne) = true.

It uses Procedure CheckG defined below.

Procedure CheckG

Input: (u, v, k) where u and v are two vertices in G, and k is an integer > 0.
Task: Return true, if there is a path in G of length 6 2k from u to v. Otherwise, return false.
1: if k = 0 then
2: return true iff (u = v or (u, v) is an edge in G).
3: for all vertex x in G do
4: b := CheckG(u, x, k − 1).
5: if b = true then
6: b := CheckG(x, v, k − 1).
7: if b = true then
8: return true.
9: return false.

Note that when computing CheckG(u, x, k−1) and CheckG(x, v, k−1), Procedure CheckG

can use the same space. Thus, it uses only O(k log n) space. Since k is initialized with dlog ne,
Algorithm 1 uses O(log2 n) space in total.

B Proof of Theorem 4.6

Consider the following algorithm.

Algorithm No-path
Input: (G, s, t) where G is directed graph and s and t are two vertices in G.
Task: There is an accepting run iff there is no path in G from s to t.
1: m := the number of vertices in G reachable from s.
2: {Note: This value m is computed with Procedure Count-VertexG below.}
3: for all vertex x in G do
4: Guess if x is reachable from s.
5: if the guess is “yes” then
6: m := m− 1.
7: Guess a path from s to x.
8: if it is not possible to guess such a path then REJECT.
9: if there is such a path and x = t then REJECT.

10: ACCEPT iff m = 0.

3/5

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 4: The class NL and PSPACE

The number of vertices reachable from s can be computed with Procedure Count-VertexG

defined below.

Procedure Count-VertexG

Input: u where u is a vertex in G.
Task: Return the number of vertices in G reachable from vertex u, where the number is written

in binary form.
1: Let n be the number of vertices in G.
2: m := 1 + the outdegree of u.
3: {Note: m is initialized with the number of vertices reachable from u in 6 1 steps.}
4: for i = 2, . . . , n do
5: m′ := 0.
6: for all vertex x in G do
7: Guess if there is a path from u to x with length 6 i.
8: if the guess is “yes” then
9: Verify it by guessing such a path (of length 6 i).

10: m′ := m′ + 1.
11: if the guess is “no” then
12: Verify that indeed there is no such a path (of length 6 i).
13: m := m′.
14: {Note: On each iteration, m is the number of vertices reachable from u in 6 i steps.}
15: return m

The verification in Line 12 above is done with the following procedure.

Procedure VerifyG

Input: (u, x,m, i) where u and x are vertices in G, i > 2 is an integer and m is the number of
vertices in G reachable from u in 6 i− 1 steps.

Task: Verify that x is not reachable from u in 6 i steps.
1: ` := m.
2: for all vertex y in G do
3: Guess if there is a path from u to y with length 6 i− 1.
4: if the guess is “yes” then
5: ` := `− 1.
6: Guess a path (of length 6 i− 1) from u to y.
7: Verify that the edge (y, x) does not exist in G.
8: Verification is complete iff ` = 0.

Note that if any of the verification in Lines 9 and 12 in Procedure Count-VertexG and
Line 7 in Procedure VerifyG fails, the whole algorithm rejects immediately.

The correctness of Procedure Count-VertexG can be established by induction on i. The
correctness of Algorithm No-path follows immediately from Count-VertexG.

C Time and space constructible functions

Definition 4.11 Let T : N→ N be a function.

• We say that T is time constructible, if for every n, T (n) > n and there is a DTM that on
input 1n computes 1T (n) in time O(T (n)).

4/5

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 4: The class NL and PSPACE

• We say that T is space constructible, if there is a DTM that on input 1n computes 1T (n) in
space O(T (n)).

Intuitively, when we say that M runs in time/space O(T (n)), where T is time/space con-
structible function, we can assume that on input word w, M first “computes” the amount of
time/space needed to decide w, before going on to process w.

Theorems 4.9 and 4.10 can be easily generalized to space constructible functions as follows.

Theorem 4.12 Let f : N → N be space constructible function such that f(n) > log n, for
every n.

• (Savitch 1970) Nspace[f(n)] ⊆ Dspace[f(n)2].

• (Immerman 1988 and Szelepcsényi 1987) Nspace[f(n)] = coNspace[f(n)].

D Hardness via log space reduction

In our definition of hardness for NP, coNP and PSPACE, we require that the reduction is
polynomial time reduction. It is also common to define hardness by insisting the reduction is
log-space reduction. That is, we can define K as NP-hard by insisting L 6log K, for every
L ∈ NP, rather than L 6p K. Similarly, for coNP and PSPACE.

Most NP-, coNP- and PSPACE-complete problems are known to remain complete even
under log-space reduction, including SAT, 3-SAT and TQBF.

• SAT and 3-SAT are NP-complete under log-space reduction.

• TQBF is PSPACE-complete under log-space reduction.

5/5

	Classical results on the class NL
	Classical results on the class PSPACE
	Proof of Theorem 4.5
	Proof of Theorem 4.6
	Time and space constructible functions
	Hardness via log space reduction

