
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 3: More on the class NP

Lesson 3: More on the class NP

Theme: Some classical results on the class NP.

1 Ladner’s theorem: NP-intermediate language

Theorem 3.1 (Ladner 1975) If P 6= NP, then there is L ∈ NP such that L /∈ P and L is not
NP-complete.

For a function f : N→ N, we say that it is polynomial time computable (in unary representa-
tion), if there is a polynomial time algorithm that on input 1n, outputs 1f(n).

For a function f : N→ N, define SATf as follows.

SATf
def
= {ϕ0 1 · · · 1︸ ︷︷ ︸

nf(n)

: ϕ ∈ SAT and |ϕ| = n}

We first prove the following lemma.

Lemma 3.2 Suppose NP 6= P. If h : N→ N is polynomial time computable (in unary represen-
tation), non-decreasing and unbounded, i.e., limn→∞ h(n) =∞, then SATh is not NP-hard.

Proof. Suppose to the contrary that SATh is NP-hard. Let F be a polynomial time reduction
from SAT to SATh that runs in time cnk. Let N be an integer such that for every n > N , the
following holds.

• h(n) > 2k. (This is possible because h is non-decreasing and unbounded.)

• cn1/2 < n.

Claim 1 For every ϕ ∈ SAT with length at least N , the output of F on ϕ, denoted by F (ϕ) =

ψ01|ψ|
h(|ψ|), satisfies the following: If |ψ| > N , then |ψ| < |ϕ|.

Proof.(of claim) Since F runs in cnk time, it follows that:

|ψ|h(|ψ|) < |ψ|+ 1 + |ψ|h(|ψ|) 6 c|ϕ|k

Thus,

|ψ| < c|ϕ|k/h(|ψ|) 6 c|ϕ|1/2 < |ϕ|

The second and third inequalities come from the fact that |ψ|, |ϕ| > N .

We now present a polynomial time algorithm for SAT, which contradicts the assumption that
NP 6= P. On input ϕ, do the following.

• If |ϕ| 6 N , check by brute force if it is satisfiable. Otherwise, continue.

• Run F on ϕ, and let the output be ψ01m, for some m.

• Check if m = |ψ|h(|ψ|) by doing the following.

1. Let ` = h(1|ψ|). (Recall that h is polynomial time computable.)
2. Convert |ψ| in its binary form and compute |ψ|` (in binary form).

1/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 3: More on the class NP

3. Then, compare it with m.

• If m 6= |ψ|h(|ψ|), then REJECT immediately.

• Suppose m = |ψ|h(|ψ|).
If |ψ| 6 N , check if ψ is satisfiable by brute force.

If |ψ| > N , recursively call the algorithm on ψ. (Note that here |ψ| < |ϕ|.)

Each step in the algorithm takes polynomial time and the number of recursive call in this algo-
rithm is at most |ϕ|. So, overall the algorithm runs in polynomial time.

Next, consider the following lemma.

Lemma 3.3 Suppose NP 6= P. If h : N→ N is polynomial time computable (in unary represen-
tation) and bounded, i.e., there is a constant c such that h(n) 6 c for every n, then SATh /∈ P.

Proof. Suppose SATh ∈ P. We will show that SAT ∈ P, which contradicts the assumption that
NP 6= P. Consider the following algorithm. On input ϕ, do the following.

• Check if ϕ01i ∈ SATh, for some 0 6 i 6 |ϕ|c.
• ACCEPT iff there is i where ϕ01i ∈ SATh.

Combined with Lemmas 3.2 and 3.3, the following lemma implies Ladner’s theorem, i.e., SATh
is the desired intermediate NP language.

Lemma 3.4 Suppose NP 6= P. There is a non-decreasing function h : N→ N such that:

• h is polynomial time computable (in unary representation).

• SATh ∈ NP.

• SATh ∈ P if and only if h is bounded.

The function h for Lemma 3.4 is defined as follow. For every n > 1, the value h(n) is deter-
mined by Algorithm 1 below. HereMi is the DTM whose encoding is the binary representation
of i.

Algorithm 1
Input: 1n, where n > 1.
Task: Compute 1h(n).
1: for i = 1, . . . , log log(n)− 1 do
2: LetMi be the ith (1-tape) DTM.
3: for all x ∈ {0, 1}∗ where |x| 6 log n do
4: Compute SATh(x) (i.e., recursively check if x ∈ SATh).
5: SimulateMi on x in i|x|i steps (using the UTM in Theorem 3.8).
6: if the results in lines 4 and 5 agree on all x ∈ {0, 1}∗ where |x| 6 log n then
7: return i (in unary).
8: return log logn (in unary).

2/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 3: More on the class NP

2 Limit of diagonalization

A TMM with oracle access to a language K, denoted byMK , is a TM with a special tape called
oracle tape and three special states qquery, qyes, qno. Each time it is in qquery, it moves to qyes, if
w ∈ K and to qno, if w /∈ K, where w is the string found in the oracle tape. In other words, when
it is in qquery, the machine can “query” the membership of the language K. Regardless of the
choice of K, such query counts only as one step. We denote by L(MK) the language accepted
byMK .

For a language K, we define the classes P and NP relativized to K as follows.

PK def
= {L : there is a polynomial time DTMMK such that L(MK) = L}

NPK def
= {L : there is a polynomial time NTMMK such that L(MK) = L}

Theorem 3.5 (Baker, Gill, Solovay 1975) There is language A and B such that PA = NPA

and PB 6= NPB.

Proof. For a PSPACE-complete language A, we can show that PA = NPA. (We will show in
Lesson 2 that PSPACE-complete languages exist.)

To show the existence of B, we need the following notation. For a language C ⊆ {0, 1}∗,
define unary(C)

def
= {1n : there is w ∈ C with length n}. Obviously, for every C ⊆ {0, 1}∗,

unary(C) ∈ NPC .
The language B will be defined as B def

=
⋃
i∈NBi where each Bi is a finite set defined inductively

as follows. Each Bi is associated with an integer ki such that Bi = B∩{0, 1}6ki . Here {0, 1}6ki def
=

{w ∈ {0, 1}∗ : |w| 6 ki}.
The base case is B0 = ∅ and k0 = 0. For the induction step, Bi+1 is defined as follows, where

we assume an enumeration of all oracle DTMM0,M1,

• Let n = ki + 1.

• Simulate oracle TMMi+1 on 1n within 2n/10 steps.

During the simulationMi+1 may query the oracle. For the query strings with length 6 ki,
the oracle answers are according to Bi. For the query strings with length > ki, the oracle
answers are “no.”

• Let ki+1 be as follows.

ki+1
def
=

{
n, if all the query strings has length 6 ki
m, m is the maximal length of the query string with length > n

• IfMi+1 accepts 1n within 2n/10 steps, we set Bi+1
def
= Bi.

• IfMi+1 does not accept 1n within 2n/10 steps, we set Bi+1
def
= Bi∪{w}, where w ∈ {0, 1}n

and w is not one of the query strings.

From the definition of B, we can show that unary(B) /∈ PB.

3/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 3: More on the class NP

APPENDIX

A Universal Turing machines

Remark 3.6 For every k-tape TM M over input alphabet Σ = {0, 1}, there is a k-tape TM
M′ over the same input alphabet Σ = {0, 1} and tape alphabet Γ = {0, 1,t} such that L(M) =
L(M′). Moreover, ifM runs in time/space O(f(n)), so doesM′.

Due to this, we always assume that the input and tape alphabet of Turing machines are
Σ = {0, 1} and Γ = {0, 1,t}, respectively.

Recall that bMc denotes the encoding of a TMM.

Definition 3.7 A Universal Turing machine (UTM) is a k-tape DTM U , for some k > 1, such
that L(U) = {bMc$w | M accepts w and w ∈ {0, 1}∗}.

Theorem 3.8 There is a UTM U such that for every DTMM and every word w, ifM decides
w in time t, then U decides bMc$w in time (α · t · log t), where α does not depends |w|, but on
size of the tape alphabet ofM as well as the number of tapes and states ofM.

4/4

	Ladner's theorem: NP-intermediate language
	Limit of diagonalization
	Universal Turing machines

