Lesson 2: NP-complete languages

Theme: The notion of NP-completeness and coNP-completeness.

1 Alternative definitions of the class NP

Recall that for a string w, the length of w is denoted by |w|. In the previous lesson, we define the class **NP** as follows.

Definition 2.1 A language L is in **NP** if there is f(n) = poly(n) and an NTM \mathcal{M} such that $L(\mathcal{M}) = L$ and \mathcal{M} runs in time O(f(n)).

Definition 2.2 below is an alternative definition of **NP**.

Definition 2.2 A language $L \subseteq \Sigma^*$ is in **NP** if there is a language $K \subseteq \Sigma^* \cdot \{\#\} \cdot \Sigma^*$, where $\# \notin \Sigma$, such that the following holds.

- For every $w \in \Sigma^*$, $w \in L$ if and only if there is $v \in \Sigma^*$ such that $w \# v \in K$.
- There is $f(n) = \mathsf{poly}(n)$ such that for every $w \# v \in K$, $|v| \leq f(|w|)$.
- The language K is accepted by a polynomial time DTM.

For $w \# v \in K$, the string v is called the *certificate/witness* for w. We call the language K the *certificate/witness language* for L.

Indeed Def. 2.1 and 2.2 are equivalent. That is, for every language L, L is in **NP** in the sense of Def. 2.1 if and only if L is in **NP** in the sense of Def. 2.2.

2 NP-complete languages

Recall that a DTM \mathcal{M} computes a function $F: \Sigma^* \to \Sigma^*$ in time O(g(n)), if there is a constant c > 0 such that on every word w, \mathcal{M} computes F(w) in time $\leq cg(|w|)$. If $g(n) = \mathsf{poly}(n)$, such function F is called *polynomial time computable* function. Moreover, if \mathcal{M} uses only logarithmic space, it is called *logarithmic space computable* function. See Appendix A for more details.

The following definition is one of the most important definitions in computer science.

Definition 2.3 A language L_1 is *polynomial time reducible* to another language L_2 , denoted by $L_1 \leq_p L_2$, if there is a polynomial time computable function F such that for every $w \in \Sigma^*$:

$$w \in L_1$$
 if and only if $F(w) \in L_2$

Such function F is called polynomial time reduction, also known as *Karp reduction*.

If F is logarithmic space computable function, we say that L_1 is log-space reducible to L_2 , denoted by $L_1 \leq_{\log} L_2$.

If L_1 and L_2 are in **NP** with certificate languages K_1 and K_2 , respectively, we say that F is *parsimonious*, if for every $w \in \Sigma^*$, w has the same number of certificates in K_1 as F(w) in K_2 .

Definition 2.4 Let L be a language.

- L is **NP**-hard, if for every $L' \in \mathbf{NP}$, $L' \leq_p L$.
- L is NP-complete, if $L \in NP$ and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x_1, \ldots, x_n is in Conjunctive Normal Form (CNF), if it is of the form: $\bigwedge_i \bigvee_j \ell_{i,j}$ where each $\ell_{i,j}$ is a literal, i.e., a variable x_k or its negation $\neg x_k$. It is in 3-CNF, if it is of the form $\bigwedge_i (\ell_{i,1} \lor \ell_{i,2} \lor \ell_{i,3})$. A formula φ is satisfiable, if there is an assignment of Boolean values true or false to each variable in φ that evaluates to true.

SAT	
Input:	A propositional formula φ in CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT $\stackrel{\text{def}}{=} \{ \varphi : \varphi \text{ is satisfiable CNF formula} \}.$

Theorem 2.5 (Cook 1971, Levin 1973) SAT is NP-complete.

Proof. We have to show that $SAT \in NP$ and SAT is NP-hard. We first show that $SAT \in NP$. Consider the following non-deterministic algorithm that decides SAT. On input formula φ , do the following.

- Let x_1, \ldots, x_n be the variables in φ .
- For each $i = 1, \ldots, n$ do:
 - Non-deterministically assign the value of x_i to either true or false.
- Check if the formula φ evaluates to true under the assignment.
- If the formula evaluates to true, then ACCEPT.

If the formula evaluates to false, then REJECT.

It is not difficult to show that the algorithm above accepts a formula φ if and only if it is satisfiable. This completes the proof that $SAT \in NP$.

Now we show that SAT is NP-hard. That is, for every $L \in \mathbb{NP}$, $L \leq_p SAT$.

Let $L \in \mathbf{NP}$. Let $\mathcal{M} = \langle \Sigma, \Gamma, Q, q_0, q_{\mathsf{acc}}, q_{\mathsf{rej}}, \delta \rangle$ be the NTM that decides L in time $f(n) = \mathsf{poly}(n)$, where Σ is the input alphabet, Γ is the tape alphabet, Q is the set of states, q_0 is the initial state, q_{acc} is the accepting state, q_{rej} is the rejecting state and δ is the set of transitions. We denote by \sqcup the blank symbol. We may assume that \mathcal{M} has only 1 tape.

We will describe a deterministic algorithm \mathcal{A} such that on every word w, it output a CNF formula φ such that the following holds.

 $w \in L$ if and only if φ is satisfiable.

Intuitively, φ "describes" the accepting run of \mathcal{M} on w such that it is satisfiable if and only if there is an accepting run of \mathcal{M} on w. Let n = |w|. See Figure 1.

To describe the run, it uses the following boolean variables for every $q \in Q$, for every $\sigma \in \Gamma$, for every $1 \leq i, j \leq f(|w|)$:

$$X_{q,\sigma,i,j}$$
 and $X_{\sigma,i,j}$

Intuitively, $X_{q,\sigma,i,j}$ is true if and only if in step-*j* the head is in cell-*i* reading symbol σ and the TM is in state *q*; and $X_{\sigma,i,j}$ is true if and only if in step-*j* the content of cell-*i* is σ .

Essentially the formula φ states the following.

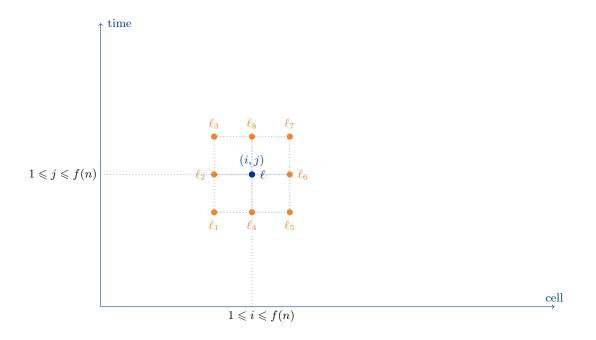


Figure 1: Each point (i, j) is labeled with a symbol $\ell \in (Q \times \Gamma) \cup \Gamma$. If $\ell = (q, \sigma) \in Q \times \Gamma$, it means in time-*j* the NTM \mathcal{M} is in state *q* and the head is in cell-*i* reading symbol σ . If $\ell = \sigma \in \Gamma$, it means in time-*j* the content of cell-*i* is σ . The labels ℓ and those in the neighboring points ℓ_1, \ldots, ℓ_8 must obey the transitions in of the NTM \mathcal{M} .

• In time-1 the labels of the points $(1, 1), \ldots, (1, f(n))$ is the initial configuration. It can be expressed as the following formula.

$$X_{q_0,a_1} \wedge X_{a_2} \wedge \dots \wedge X_{a_n} \wedge \bigwedge_{i=n+1}^{f(n)} X_{\sqcup}$$
(1)

• The accepting state must appear somewhere. It can be expressed as the following formula.

$$\bigvee_{1 \leqslant i,j \leqslant f(n)} \bigvee_{\sigma \in \Gamma} X_{q_{\mathsf{acc}},\sigma,i,j} \tag{2}$$

• For every $1 \leq i, j \leq f(n)$, the labels in (i-1,j), (i,j), (i+1,j+1) and the labels in (i-1,j+1), (i,j+1), (i+1,j+1) must obey the transitions in \mathcal{M} .

For example, if $(q, \sigma) \to (p, \alpha, \text{left})$ and $(q, \sigma) \to (r, \beta, \text{right})$ are transitions in \mathcal{M} , then the formula states the following.

$$\bigwedge_{1 \leqslant i,j \leqslant f(n)} \bigwedge_{\sigma_1,\sigma_2,\sigma_3 \in \Gamma} X_{\sigma_1,i-1,j} \wedge X_{q,\sigma_2,i,j} \wedge X_{\sigma_3,i+1,j} \\
\rightarrow \begin{pmatrix} (X_{p,\sigma_1,i-1,j+1} \wedge X_{\alpha,i,j+1} \wedge X_{\sigma_3,i+1,j+1}) \\ \vee \\ (X_{\sigma_1,i-1,j+1} \wedge X_{\beta,i,j+1} \wedge X_{r,\sigma_3,i+1,j+1}) \end{pmatrix} (3)$$

• For every time j, there is exactly one i such that the label of (i, j) is of the form $(q, \sigma) \in$

 \wedge

 $Q \times \Gamma$. It can be expressed as the following formula.

$$\bigwedge_{p,q \in Q} \bigwedge_{\text{and } \sigma, \sigma' \in \Gamma} \bigwedge_{1 \leqslant j \leqslant f(n)} \bigwedge_{1 \leqslant i < i' \leqslant f(n)} X_{q,\sigma,i,j} \to \neg X_{p,\sigma',i',j} \tag{4}$$

$$\bigwedge_{1 \leqslant j \leqslant f(n)} \bigvee_{q \in \Sigma} \bigvee_{\sigma \in \Gamma} \bigvee_{1 \leqslant i \leqslant f(n)} X_{q,\sigma,i,j}$$
(5)

The formula (4) states that there is at most one head and the formula (5) states that there is at least one head.

Formally, the algorithm \mathcal{A} works as follows. On input w, it outputs the formula φ which is the conjunction of the formulas (1)– (5). It is not difficult to show that $w \in L$ if and only if φ is satisfiable.

Remark 2.6 We note that in the proof of Theorem 2.5, the formula φ produced in the reduction from L to SAT satisfies the following.

The number of accepting run of \mathcal{M} on w = The number of satisfying assignment of φ

Thus, the reduction in Theorem 2.5 is parsimonious.

Remark 2.7 There are two ways to show that a language L is NP-hard.

- The first is by definition, i.e., we show that for every language $K \in \mathbf{NP}$, there is a polynomial time reduction from K to L.
- The second is by choosing an appropriate NP-hard language, say SAT, and show that there is a polynomial time reduction from SAT to L.

3-SAT	
Input:	A propositional formula φ in 3-CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.

Note that we can also view 3-SAT as the language 3-SAT $\stackrel{\text{def}}{=} \{ \varphi : \varphi \text{ is satisfiable 3-CNF formula} \}.$

Theorem 2.8 3-SAT is NP-complete.

Proof. That is 3-SAT is in NP follows immediately from Theorem 2.5. To show that it is NP-hard, we reduce it from SAT. On input a CNF formula φ , if it has a clause of length greater than 3:

 $\ell_1 \lor \cdots \lor \ell_k$ where $k \ge 4$

split it into two clauses, where z is a new variable:

 $(\ell_1 \vee \dots \vee \ell_{\lfloor k/2 \rfloor} \vee z) \land (\ell_{\lfloor k/2 \rfloor+1} \vee \dots \vee \ell_k \vee \neg z)$

Repeat it on each clause of length ≥ 4 until we get 3-CNF.

3 More NP-complete problems

We need a few terminologies. Let G = (V, E) be a (undirected) graph.

- G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored with one color) such that no two adjacent vertices have the same color.
- A set $C \subseteq V$ is a clique in G, if every pair of vertices in C are adjacent.
- A set $W \subseteq V$ is a vertex cover, if every edge in E is adjacent to at least one vertex in W.
- A set $I \subseteq V$ is independent, if every pair of vertices in I are non-adjacent.
- A set $D \subseteq V$ is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are **NP**-complete.

3-COL

Input: A (undirected) graph G = (V, E).

Task: Output true, if G is 3-colorable. Otherwise, output false.

CLIQUE

Input:	A (undirected) graph $G = (V, E)$ and an integer $k \ge 0$ in binary form.
Task:	Output true, if G has a clique of size $\geq k$. Otherwise, output false.

IND-SET

Input:	A (undirected) graph $G = (V, E)$ and an integer $k \ge 0$ in binary form.
Task:	Output true, if G has an independent set of size $\geq k$.
	Otherwise, output false.

VERT-COVER

Input:	A (undirected) graph $G = (V, E)$ and an integer $k \ge 0$ in binary form.
Task:	Output true, if G has a vertex cover of size $\leq k$. Otherwise, output false.

DOM-SET

Input:	A (undirected) graph $G = (V, E)$ and an integer $k \ge 0$ in binary form.
Task:	Output true, if G has an dominating set of size $\leq k$.
	Otherwise, output false.

4 coNP-complete problems

Analogous to NP-complete, we can also define **coNP**-complete problems.

Definition 2.9 Let K be a language.

- K is **coNP**-hard, if for every $L \in$ **coNP**, $L \leq_p K$.
- K is **coNP**-complete, if $K \in$ **coNP** and K is **coNP**-hard.

Theorem 2.10 For every language K over the alphabet Σ , K is **NP**-complete if and only if its complement \overline{K} is **coNP**-complete, where $\overline{K} \stackrel{\text{def}}{=} \Sigma^* - K$.

Corollary 2.11 $\overline{\mathsf{SAT}} \stackrel{\text{\tiny def}}{=} \{ \varphi : \varphi \text{ is not satisfiable} \}$ is **coNP**-complete.

APPENDIX

A The notion of computable functions

Polynomial time computable functions. Let $F : \Sigma^* \to \Sigma^*$ be a function from Σ^* to Σ^* . Let \mathcal{M} be a 2-tape DTM.

- \mathcal{M} computes the function F, if \mathcal{M} accepts every word $w \in \Sigma^*$ and when it halts, the content of its second tape is F(w).
- \mathcal{M} computes F in time O(g(n)), if there is a constant c > 0 such that on every word w, \mathcal{M} decides w in time $c \cdot g(|w|)$.
- \mathcal{M} computes F in polynomial time, if \mathcal{M} computes F in time O(g(n)) for some $g(n) = \operatorname{poly}(n)$.
- F is computable in polynomial time, if there is a DTM \mathcal{M} that computes F in polynomial time.

Logarithmic space computable function. A function $F : \Sigma^* \to \Sigma^*$ is computable in logarithmic space, if there is a 3-tape DTM \mathcal{M} and a constant c such that on every $w \in \Sigma^*$ the following holds.

- \mathcal{M} accepts w.
- \mathcal{M} never change the content of tape-1, i.e., tape-1 always contains the input word w. In other words, tape-1 is "read-only" tape.
- \mathcal{M} only uses at most $c \log |w|$ cells in tape-2.
- Tape-3 is "write-only" tape, i.e., the head in tape-3 can only write and move right.
- When \mathcal{M} halts, the content of tape-3 is F(w).