
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Lesson 2: NP-complete languages

Theme: The notion of NP-completeness and coNP-completeness.

1 Alternative definitions of the class NP

Recall that for a string w, the length of w is denoted by |w|. In the previous lesson, we define
the class NP as follows.

Definition 2.1 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L andM runs in time O(f(n)).

Definition 2.2 below is an alternative definition of NP.

Definition 2.2 A language L ⊆ Σ∗ is in NP if there is a language K ⊆ Σ∗ · {#} · Σ∗, where
/∈ Σ, such that the following holds.

• For every w ∈ Σ∗, w ∈ L if and only if there is v ∈ Σ∗ such that w#v ∈ K.

• There is f(n) = poly(n) such that for every w#v ∈ K, |v| 6 f(|w|).

• The language K is accepted by a polynomial time DTM.

For w#v ∈ K, the string v is called the certificate/witness for w. We call the language K the
certificate/witness language for L.

Indeed Def. 2.1 and 2.2 are equivalent. That is, for every language L, L is in NP in the sense
of Def. 2.1 if and only if L is in NP in the sense of Def. 2.2.

2 NP-complete languages

Recall that a DTMM computes a function F : Σ∗ → Σ∗ in time O(g(n)), if there is a constant
c > 0 such that on every word w,M computes F (w) in time 6 cg(|w|). If g(n) = poly(n), such
function F is called polynomial time computable function. Moreover, ifM uses only logarithmic
space, it is called logarithmic space computable function. See Appendix A for more details.

The following definition is one of the most important definitions in computer science.

Definition 2.3 A language L1 is polynomial time reducible to another language L2, denoted by
L1 6p L2, if there is a polynomial time computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L1 is log-space reducible to L2,

denoted by L1 6log L2.
If L1 and L2 are in NP with certificate languages K1 and K2, respectively, we say that F is

parsimonious, if for every w ∈ Σ∗, w has the same number of certificates in K1 as F (w) in K2.

Definition 2.4 Let L be a language.

1/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

• L is NP-hard, if for every L′ ∈ NP, L′ 6p L.

• L is NP-complete, if L ∈ NP and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x1, . . . , xn is in Con-
junctive Normal Form (CNF), if it is of the form:

∧
i

∨
j `i,j where each `i,j is a literal, i.e., a

variable xk or its negation ¬xk. It is in 3-CNF, if it is of the form
∧
i

(
`i,1 ∨ `i,2 ∨ `i,3

)
. A

formula ϕ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ϕ that evaluates to true.

SAT

Input: A propositional formula ϕ in CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT def
= {ϕ : ϕ is satisfiable CNF formula}.

Theorem 2.5 (Cook 1971, Levin 1973) SAT is NP-complete.

Proof. We have to show that SAT ∈ NP and SAT is NP-hard. We first show that SAT ∈ NP.
Consider the following non-deterministic algorithm that decides SAT. On input formula ϕ, do
the following.

• Let x1, . . . , xn be the variables in ϕ.

• For each i = 1, . . . , n do:

– Non-deterministically assign the value of xi to either true or false.

• Check if the formula ϕ evaluates to true under the assignment.

• If the formula evaluates to true, then ACCEPT.

If the formula evaluates to false, then REJECT.

It is not difficult to show that the algorithm above accepts a formula ϕ if and only if it is
satisfiable. This completes the proof that SAT ∈ NP.

Now we show that SAT is NP-hard. That is, for every L ∈ NP, L 6p SAT.
Let L ∈ NP. Let M = 〈Σ,Γ, Q, q0, qacc, qrej, δ〉 be the NTM that decides L in time f(n) =

poly(n), where Σ is the input alphabet, Γ is the tape alphabet, Q is the set of states, q0 is the
initial state, qacc is the accepting state, qrej is the rejecting state and δ is the set of transitions.
We denote by t the blank symbol. We may assume thatM has only 1 tape.

We will describe a deterministic algorithm A such that on every word w, it output a CNF
formula ϕ such that the following holds.

w ∈ L if and only if ϕ is satisfiable.

Intuitively, ϕ “describes” the accepting run of M on w such that it is satisfiable if and only if
there is an accepting run ofM on w. Let n = |w|. See Figure 1.

To describe the run, it uses the following boolean variables for every q ∈ Q, for every σ ∈ Γ,
for every 1 6 i, j 6 f(|w|):

Xq,σ,i,j and Xσ,i,j

Intuitively, Xq,σ,i,j is true if and only if in step-j the head is in cell-i reading symbol σ and the
TM is in state q; and Xσ,i,j is true if and only if in step-j the content of cell-i is σ.

Essentially the formula ϕ states the following.

2/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

cell

time

`1

`2

`3

`4

`

`8

`5

`6

`7

1 6 j 6 f(n)

1 6 i 6 f(n)

(i, j)

Figure 1: Each point (i, j) is labeled with a symbol ` ∈ (Q × Γ) ∪ Γ. If ` = (q, σ) ∈ Q × Γ, it
means in time-j the NTMM is in state q and the head is in cell-i reading symbol σ. If ` = σ ∈ Γ,
it means in time-j the content of cell-i is σ. The labels ` and those in the neighboring points
`1, . . . , `8 must obey the transitions in of the NTMM.

• In time-1 the labels of the points (1, 1), . . . , (1, f(n)) is the initial configuration. It can be
expressed as the following formula.

Xq0,a1 ∧Xa2 ∧ · · · ∧Xan ∧
f(n)∧
i=n+1

Xt (1)

• The accepting state must appear somewhere. It can be expressed as the following formula.∨
16i,j6f(n)

∨
σ∈Γ

Xqacc,σ,i,j (2)

• For every 1 6 i, j 6 f(n), the labels in (i − 1, j), (i, j), (i + 1, j + 1) and the labels in
(i− 1, j + 1), (i, j + 1), (i+ 1, j + 1) must obey the transitions inM.

For example, if (q, σ)→ (p, α, left) and (q, σ)→ (r, β, right) are transitions inM, then the
formula states the following.∧

16i,j6f(n)

∧
σ1,σ2,σ3∈Γ

Xσ1,i−1,j ∧Xq,σ2,i,j ∧Xσ3,i+1,j

→

 (Xp,σ1,i−1,j+1 ∧Xα,i,j+1 ∧Xσ3,i+1,j+1)
∨

(Xσ1,i−1,j+1 ∧Xβ,i,j+1 ∧Xr,σ3,i+1,j+1)

 (3)

• For every time j, there is exactly one i such that the label of (i, j) is of the form (q, σ) ∈

3/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Q× Γ. It can be expressed as the following formula.∧
p,q∈Q and σ,σ′∈Γ

∧
16j6f(n)

∧
16i<i′6f(n)

Xq,σ,i,j → ¬Xp,σ′,i′,j (4)

∧
∧

16j6f(n)

∨
q∈Σ

∨
σ∈Γ

∨
16i6f(n)

Xq,σ,i,j (5)

The formula (4) states that there is at most one head and the formula (5) states that there
is at least one head.

Formally, the algorithm A works as follows. On input w, it outputs the formula ϕ which is
the conjunction of the formulas (1)– (5). It is not difficult to show that w ∈ L if and only if ϕ is
satisfiable.

Remark 2.6 We note that in the proof of Theorem 2.5, the formula ϕ produced in the reduction
from L to SAT satisfies the following.

The number of accepting run ofM on w = The number of satisfying assignment of ϕ

Thus, the reduction in Theorem 2.5 is parsimonious.

Remark 2.7 There are two ways to show that a language L is NP-hard.

• The first is by definition, i.e., we show that for every language K ∈ NP, there is a polyno-
mial time reduction from K to L.

• The second is by choosing an appropriate NP-hard language, say SAT, and show that there
is a polynomial time reduction from SAT to L.

3-SAT

Input: A propositional formula ϕ in 3-CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

Note that we can also view 3-SAT as the language 3-SAT def
= {ϕ : ϕ is satisfiable 3-CNF formula}.

Theorem 2.8 3-SAT is NP-complete.

Proof. That is 3-SAT is in NP follows immediately from Theorem 2.5. To show that it is
NP-hard, we reduce it from SAT. On input a CNF formula ϕ, if it has a clause of length greater
than 3:

`1 ∨ · · · ∨ `k where k > 4

split it into two clauses, where z is a new variable:

(`1 ∨ · · · ∨ `bk/2c ∨ z) ∧ (`bk/2c+1 ∨ · · · ∨ `k ∨ ¬z)

Repeat it on each clause of length > 4 until we get 3-CNF.

4/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

3 More NP-complete problems

We need a few terminologies. Let G = (V,E) be a (undirected) graph.

• G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored
with one color) such that no two adjacent vertices have the same color.

• A set C ⊆ V is a clique in G, if every pair of vertices in C are adjacent.

• A set W ⊆ V is a vertex cover, if every edge in E is adjacent to at least one vertex in W .

• A set I ⊆ V is independent, if every pair of vertices in I are non-adjacent.

• A set D ⊆ V is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are NP-complete.

3-COL

Input: A (undirected) graph G = (V,E).
Task: Output true, if G is 3-colorable. Otherwise, output false.

CLIQUE

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has a clique of size > k. Otherwise, output false.

IND-SET

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has an independent set of size > k.

Otherwise, output false.

VERT-COVER

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has a vertex cover of size 6 k. Otherwise, output false.

DOM-SET

Input: A (undirected) graph G = (V,E) and an integer k > 0 in binary form.
Task: Output true, if G has an dominating set of size 6 k.

Otherwise, output false.

4 coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.

Definition 2.9 Let K be a language.

• K is coNP-hard, if for every L ∈ coNP, L 6p K.

• K is coNP-complete, if K ∈ coNP and K is coNP-hard.

5/6

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Theorem 2.10 For every language K over the alphabet Σ, K is NP-complete if and only if its
complement K is coNP-complete, where K def

= Σ∗ −K.

Corollary 2.11 SAT def
= {ϕ : ϕ is not satisfiable} is coNP-complete.

APPENDIX

A The notion of computable functions

Polynomial time computable functions. Let F : Σ∗ → Σ∗ be a function from Σ∗ to Σ∗.
LetM be a 2-tape DTM.

• M computes the function F , ifM accepts every word w ∈ Σ∗ and when it halts, the content
of its second tape is F (w).

• M computes F in time O(g(n)), if there is a constant c > 0 such that on every word w,
M decides w in time c · g(|w|).

• M computes F in polynomial time, if M computes F in time O(g(n)) for some g(n) =
poly(n).

• F is computable in polynomial time, if there is a DTMM that computes F in polynomial
time.

Logarithmic space computable function. A function F : Σ∗ → Σ∗ is computable in log-
arithmic space, if there is a 3-tape DTM M and a constant c such that on every w ∈ Σ∗ the
following holds.

• M accepts w.

• M never change the content of tape-1, i.e., tape-1 always contains the input word w.

In other words, tape-1 is “read-only” tape.

• M only uses at most c log |w| cells in tape-2.

• Tape-3 is “write-only” tape, i.e., the head in tape-3 can only write and move right.

• WhenM halts, the content of tape-3 is F (w).

6/6

	Alternative definitions of the class NP
	NP-complete languages
	More NP-complete problems
	coNP-complete problems
	The notion of computable functions

