Lesson 2: NP-complete languages

Theme: The notion of NP-completeness and coNP-completeness.

1 Alternative definitions of the class NP

Recall that for a string w, the length of w is denoted by $|w|$. In the previous lesson, we define the class NP as follows.

Definition 2.1 A language L is in NP if there is $f(n)=\operatorname{poly}(n)$ and an NTM \mathcal{M} such that $L(\mathcal{M})=L$ and \mathcal{M} runs in time $O(f(n))$.

Definition 2.2 below is an alternative definition of NP.
Definition 2.2 A language $L \subseteq \Sigma^{*}$ is in NP if there is a language $K \subseteq \Sigma^{*} \cdot\{\#\} \cdot \Sigma^{*}$, where $\# \notin \Sigma$, such that the following holds.

- For every $w \in \Sigma^{*}, w \in L$ if and only if there is $v \in \Sigma^{*}$ such that $w \# v \in K$.
- There is $f(n)=\operatorname{poly}(n)$ such that for every $w \# v \in K,|v| \leqslant f(|w|)$.
- The language K is accepted by a polynomial time DTM.

For $w \# v \in K$, the string v is called the certificate/witness for w. We call the language K the certificate/witness language for L.

Indeed Def. 2.1 and 2.2 are equivalent. That is, for every language L, L is in NP in the sense of Def. 2.1 if and only if L is in NP in the sense of Def. 2.2.

2 NP-complete languages

Recall that a DTM \mathcal{M} computes a function $F: \Sigma^{*} \rightarrow \Sigma^{*}$ in time $O(g(n))$, if there is a constant $c>0$ such that on every word w, \mathcal{M} computes $F(w)$ in time $\leqslant c g(|w|)$. If $g(n)=\operatorname{poly}(n)$, such function F is called polynomial time computable function. Moreover, if \mathcal{M} uses only logarithmic space, it is called logarithmic space computable function. See Appendix A for more details.

The following definition is one of the most important definitions in computer science.
Definition 2.3 A language L_{1} is polynomial time reducible to another language L_{2}, denoted by $L_{1} \leqslant p L_{2}$, if there is a polynomial time computable function F such that for every $w \in \Sigma^{*}$:

$$
w \in L_{1} \quad \text { if and only if } \quad F(w) \in L_{2}
$$

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L_{1} is log-space reducible to L_{2}, denoted by $L_{1} \leqslant \log L_{2}$.

If L_{1} and L_{2} are in NP with certificate languages K_{1} and K_{2}, respectively, we say that F is parsimonious, if for every $w \in \Sigma^{*}, w$ has the same number of certificates in K_{1} as $F(w)$ in K_{2}.

Definition 2.4 Let L be a language.

- L is NP-hard, if for every $L^{\prime} \in \mathbf{N P}, L^{\prime} \leqslant p L$.
- L is NP-complete, if $L \in \mathbf{N P}$ and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x_{1}, \ldots, x_{n} is in Conjunctive Normal Form (CNF), if it is of the form: $\bigwedge_{i} \bigvee_{j} \ell_{i, j}$ where each $\ell_{i, j}$ is a literal, i.e., a variable x_{k} or its negation $\neg x_{k}$. It is in 3-CNF, if it is of the form $\bigwedge_{i}\left(\ell_{i, 1} \vee \ell_{i, 2} \vee \ell_{i, 3}\right)$. A formula φ is satisfiable, if there is an assignment of Boolean values true or false to each variable in φ that evaluates to true.

SAT	
Input:	A propositional formula φ in CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT $\stackrel{\text { def }}{=}\{\varphi: \varphi$ is satisfiable CNF formula $\}$.
Theorem 2.5 (Cook 1971, Levin 1973) SAT is NP-complete.
Proof. We have to show that SAT \in NP and SAT is NP-hard. We first show that SAT \in NP. Consider the following non-deterministic algorithm that decides SAT. On input formula φ, do the following.

- Let x_{1}, \ldots, x_{n} be the variables in φ.
- For each $i=1, \ldots, n$ do:
- Non-deterministically assign the value of x_{i} to either true or false.
- Check if the formula φ evaluates to true under the assignment.
- If the formula evaluates to true, then ACCEPT.

If the formula evaluates to false, then REJECT.
It is not difficult to show that the algorithm above accepts a formula φ if and only if it is satisfiable. This completes the proof that SAT \in NP.

Now we show that SAT is NP-hard. That is, for every $L \in \mathbf{N P}, L \leqslant_{p}$ SAT.
Let $L \in \mathbf{N P}$. Let $\mathcal{M}=\left\langle\Sigma, \Gamma, Q, q_{0}, q_{\text {acc }}, q_{\mathrm{rej}}, \delta\right\rangle$ be the NTM that decides L in time $f(n)=$ poly (n), where Σ is the input alphabet, Γ is the tape alphabet, Q is the set of states, q_{0} is the initial state, q_{acc} is the accepting state, q_{rej} is the rejecting state and δ is the set of transitions. We denote by \sqcup the blank symbol. We may assume that \mathcal{M} has only 1 tape.

We will describe a deterministic algorithm \mathcal{A} such that on every word w, it output a CNF formula φ such that the following holds.

$$
w \in L \quad \text { if and only if } \quad \varphi \text { is satisfiable. }
$$

Intuitively, φ "describes" the accepting run of \mathcal{M} on w such that it is satisfiable if and only if there is an accepting run of \mathcal{M} on w. Let $n=|w|$. See Figure 1 .

To describe the run, it uses the following boolean variables for every $q \in Q$, for every $\sigma \in \Gamma$, for every $1 \leqslant i, j \leqslant f(|w|)$:

$$
X_{q, \sigma, i, j} \quad \text { and } \quad X_{\sigma, i, j}
$$

Intuitively, $X_{q, \sigma, i, j}$ is true if and only if in step- j the head is in cell- i reading symbol σ and the TM is in state q; and $X_{\sigma, i, j}$ is true if and only if in step- j the content of cell $-i$ is σ.

Essentially the formula φ states the following.

Figure 1: Each point (i, j) is labeled with a symbol $\ell \in(Q \times \Gamma) \cup \Gamma$. If $\ell=(q, \sigma) \in Q \times \Gamma$, it means in time $-j$ the NTM \mathcal{M} is in state q and the head is in cell- i reading symbol σ. If $\ell=\sigma \in \Gamma$, it means in time- j the content of cell- i is σ. The labels ℓ and those in the neighboring points $\ell_{1}, \ldots, \ell_{8}$ must obey the transitions in of the NTM \mathcal{M}.

- In time- 1 the labels of the points $(1,1), \ldots,(1, f(n))$ is the initial configuration. It can be expressed as the following formula.

$$
\begin{equation*}
X_{q_{0}, a_{1}} \wedge X_{a_{2}} \wedge \cdots \wedge X_{a_{n}} \wedge \bigwedge_{i=n+1}^{f(n)} X_{\sqcup} \tag{1}
\end{equation*}
$$

- The accepting state must appear somewhere. It can be expressed as the following formula.

$$
\begin{equation*}
\bigvee_{1 \leqslant i, j \leqslant f(n)} \bigvee_{\sigma \in \Gamma} X_{q_{\text {acc }}, \sigma, i, j} \tag{2}
\end{equation*}
$$

- For every $1 \leqslant i, j \leqslant f(n)$, the labels in $(i-1, j),(i, j),(i+1, j+1)$ and the labels in $(i-1, j+1),(i, j+1),(i+1, j+1)$ must obey the transitions in \mathcal{M}.
For example, if $(q, \sigma) \rightarrow(p, \alpha$, left $)$ and $(q, \sigma) \rightarrow(r, \beta$, right $)$ are transitions in \mathcal{M}, then the formula states the following.

$$
\begin{align*}
\bigwedge_{1 \leqslant i, j \leqslant f(n)} \bigwedge_{\sigma_{1}, \sigma_{2}, \sigma_{3} \in \Gamma} X_{\sigma_{1}, i-1, j} \wedge & X_{q, \sigma_{2}, i, j} \wedge X_{\sigma_{3}, i+1, j} \\
& \rightarrow\left(\begin{array}{c}
\left(X_{p, \sigma_{1}, i-1, j+1} \wedge X_{\alpha, i, j+1} \wedge X_{\sigma_{3}, i+1, j+1}\right) \\
\vee \\
\left(X_{\sigma_{1}, i-1, j+1} \wedge X_{\beta, i, j+1} \wedge X_{r, \sigma_{3}, i+1, j+1}\right)
\end{array}\right) \tag{3}
\end{align*}
$$

- For every time j, there is exactly one i such that the label of (i, j) is of the form $(q, \sigma) \in$
$Q \times \Gamma$. It can be expressed as the following formula.

$$
\begin{align*}
& \bigwedge_{p, q \in Q} \bigwedge_{\sigma \text { and } \sigma, \sigma^{\prime} \in \Gamma} \bigwedge_{1 \leqslant j \leqslant f(n)} \bigwedge_{1 \leqslant i<i^{\prime} \leqslant f(n)} X_{q, \sigma, i, j} \rightarrow \neg X_{p, \sigma^{\prime}, i^{\prime}, j} \tag{4}\\
& \bigwedge_{1 \leqslant f(n)} \bigvee_{q \in \Sigma} \bigvee_{\sigma \in \Gamma} X_{q, \sigma, i, j} \tag{5}
\end{align*}
$$

The formula (4) states that there is at most one head and the formula (5) states that there is at least one head.

Formally, the algorithm \mathcal{A} works as follows. On input w, it outputs the formula φ which is the conjunction of the formulas (1)- (5). It is not difficult to show that $w \in L$ if and only if φ is satisfiable.

Remark 2.6 We note that in the proof of Theorem 2.5, the formula φ produced in the reduction from L to SAT satisfies the following.

The number of accepting run of \mathcal{M} on $w=$ The number of satisfying assignment of φ Thus, the reduction in Theorem 2.5 is parsimonious.

Remark 2.7 There are two ways to show that a language L is NP-hard.

- The first is by definition, i.e., we show that for every language $K \in \mathbf{N P}$, there is a polynomial time reduction from K to L.
- The second is by choosing an appropriate NP-hard language, say SAT, and show that there is a polynomial time reduction from SAT to L.

3-SAT	
Input:	A propositional formula φ in 3-CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.

Note that we can also view 3-SAT as the language 3-SAT $\stackrel{\text { def }}{=}\{\varphi: \varphi$ is satisfiable 3-CNF formula $\}$.
Theorem 2.8 3-SAT is NP-complete.
Proof. That is 3-SAT is in NP follows immediately from Theorem 2.5. To show that it is NP-hard, we reduce it from SAT. On input a CNF formula φ, if it has a clause of length greater than 3:

$$
\ell_{1} \vee \cdots \vee \ell_{k} \quad \text { where } k \geqslant 4
$$

split it into two clauses, where z is a new variable:

$$
\left(\ell_{1} \vee \cdots \vee \ell_{\lfloor k / 2\rfloor} \vee z\right) \wedge\left(\ell_{\lfloor k / 2\rfloor+1} \vee \cdots \vee \ell_{k} \vee \neg z\right)
$$

Repeat it on each clause of length $\geqslant 4$ until we get 3-CNF.

3 More NP-complete problems

We need a few terminologies. Let $G=(V, E)$ be a (undirected) graph.

- G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored with one color) such that no two adjacent vertices have the same color.
- A set $C \subseteq V$ is a clique in G, if every pair of vertices in C are adjacent.
- A set $W \subseteq V$ is a vertex cover, if every edge in E is adjacent to at least one vertex in W.
- A set $I \subseteq V$ is independent, if every pair of vertices in I are non-adjacent.
- A set $D \subseteq V$ is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are NP-complete.

3-COL	
Input:	A (undirected) graph $G=(V, E)$.
Task:	Output true, if G is 3-colorable. Otherwise, output false.

CLIQUE

Input: A (undirected) graph $G=(V, E)$ and an integer $k \geqslant 0$ in binary form. Task: Output true, if G has a clique of size $\geqslant k$. Otherwise, output false.

IND-SET

Input: A (undirected) graph $G=(V, E)$ and an integer $k \geqslant 0$ in binary form.
Task: Output true, if G has an independent set of size $\geqslant k$.
Otherwise, output false.

VERT-COVER

Input: A (undirected) graph $G=(V, E)$ and an integer $k \geqslant 0$ in binary form.
Task: Output true, if G has a vertex cover of size $\leqslant k$. Otherwise, output false.

DOM-SET

Input: A (undirected) graph $G=(V, E)$ and an integer $k \geqslant 0$ in binary form.
Task: Output true, if G has an dominating set of size $\leqslant k$.
Otherwise, output false.

4 coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.
Definition 2.9 Let K be a language.

- K is coNP-hard, if for every $L \in \operatorname{coNP}, L \leqslant p K$.
- K is coNP-complete, if $K \in \mathbf{c o N P}$ and K is coNP-hard.

Theorem 2.10 For every language K over the alphabet Σ, K is NP-complete if and only if its complement \bar{K} is coNP-complete, where $\bar{K} \stackrel{\text { def }}{=} \Sigma^{*}-K$.

Corollary 2.11 $\overline{\mathrm{SAT}} \stackrel{\text { def }}{=}\{\varphi: \varphi$ is not satisfiable $\}$ is coNP-complete.

APPENDIX

A The notion of computable functions

Polynomial time computable functions. Let $F: \Sigma^{*} \rightarrow \Sigma^{*}$ be a function from Σ^{*} to Σ^{*}. Let \mathcal{M} be a 2 -tape DTM.

- \mathcal{M} computes the function F, if \mathcal{M} accepts every word $w \in \Sigma^{*}$ and when it halts, the content of its second tape is $F(w)$.
- \mathcal{M} computes F in time $O(g(n))$, if there is a constant $c>0$ such that on every word w, \mathcal{M} decides w in time $c \cdot g(|w|)$.
- \mathcal{M} computes F in polynomial time, if \mathcal{M} computes F in time $O(g(n))$ for some $g(n)=$ poly (n).
- F is computable in polynomial time, if there is a DTM \mathcal{M} that computes F in polynomial time.

Logarithmic space computable function. A function $F: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable in logarithmic space, if there is a 3 -tape DTM \mathcal{M} and a constant c such that on every $w \in \Sigma^{*}$ the following holds.

- \mathcal{M} accepts w.
- \mathcal{M} never change the content of tape-1, i.e., tape- 1 always contains the input word w. In other words, tape-1 is "read-only" tape.
- \mathcal{M} only uses at most $c \log |w|$ cells in tape- 2 .
- Tape-3 is "write-only" tape, i.e., the head in tape-3 can only write and move right.
- When \mathcal{M} halts, the content of tape-3 is $F(w)$.

