CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Lesson 2: NP-complete languages

Theme: The notion of NP-completeness and coNP-completeness.

1 Alternative definitions of the class NP

Recall that for a string w, the length of w is denoted by |w|. In the previous lesson, we define
the class NP as follows.

Definition 2.1 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L and M runs in time O(f(n)).

Definition below is an alternative definition of NP.

Definition 2.2 A language L C ¥* is in NP if there is a language K C X* - {#} - ¥*, where
¢ X, such that the following holds.

e For every w € ¥*, w € L if and only if there is v € ¥* such that w#v € K.
e There is f(n) = poly(n) such that for every w#v € K, |v| < f(Jw|).
e The language K is accepted by a polynomial time DTM.

For w#v € K, the string v is called the certificate/witness for w. We call the language K the
certificate /witness language for L.

Indeed Def. 2.1] and 2.2 are equivalent. That is, for every language L, L is in NP in the sense
of Def. if and only if L is in NP in the sense of Def.

2 NP-complete languages

Recall that a DTM M computes a function F': ¥* — ¥* in time O(g(n)), if there is a constant
¢ > 0 such that on every word w, M computes F(w) in time < cg(Jw|). If g(n) = poly(n), such
function F' is called polynomial time computable function. Moreover, if M uses only logarithmic
space, it is called logarithmic space computable function. See Appendix [A] for more details.

The following definition is one of the most important definitions in computer science.

Definition 2.3 A language L1 is polynomial time reducible to another language Lo, denoted by
L1 <, Lo, if there is a polynomial time computable function F' such that for every w € ¥*:

we Ly ifand only if F(w) € Lo

Such function F' is called polynomial time reduction, also known as Karp reduction.

If F is logarithmic space computable function, we say that L; is log-space reducible to Lo,
denoted by L1 <jog Lo.

If L1 and Lo are in NP with certificate languages K1 and Ko, respectively, we say that F' is
parsimonious, if for every w € ¥*, w has the same number of certificates in K; as F(w) in Ks.

Definition 2.4 Let L be a language.

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

e L is NP-hard, if for every L' € NP, L' <, L.
o [is NP-complete, if L € NP and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables 1, ..., z;, is in Con-
junctive Normal Form (CNF), if it is of the form: A\; \/, ¢;; where each /; ; is a literal, i.e., a
variable zj, or its negation —xy. It is in 3-CNF, if it is of the form A; (ﬁm V lio V €i73). A
formula ¢ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ¢ that evaluates to true.

SAT \

Input: A propositional formula ¢ in CNF.

Task: Output true, if ¢ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT & {¢ : p is satisfiable CNF formula}.
Theorem 2.5 (Cook 1971, Levin 1973) SAT is NP-complete.

Proof. We have to show that SAT € NP and SAT is NP-hard. We first show that SAT € NP.
Consider the following non-deterministic algorithm that decides SAT. On input formula ¢, do
the following.

e Let x1,...,xz, be the variables in ¢.

e Foreach:=1,...,n do:
— Non-deterministically assign the value of x; to either true or false.

e Check if the formula ¢ evaluates to true under the assignment.
e [f the formula evaluates to true, then ACCEPT.
If the formula evaluates to false, then REJECT.

It is not difficult to show that the algorithm above accepts a formula ¢ if and only if it is
satisfiable. This completes the proof that SAT € NP.

Now we show that SAT is NP-hard. That is, for every L € NP, L <, SAT.

Let L € NP. Let M = (X,T',Q, g0, qacc rej; 0) be the NTM that decides L in time f(n) =
poly(n), where 3 is the input alphabet, I" is the tape alphabet, @ is the set of states, qq is the
initial state, gacc is the accepting state, grj is the rejecting state and § is the set of transitions.
We denote by LI the blank symbol. We may assume that M has only 1 tape.

We will describe a deterministic algorithm A such that on every word w, it output a CNF
formula ¢ such that the following holds.

w € L if and only if ¢ is satisfiable.

Intuitively, ¢ “describes” the accepting run of M on w such that it is satisfiable if and only if
there is an accepting run of M on w. Let n = |w|. See Figure
To describe the run, it uses the following boolean variables for every g € @, for every o € T,
for every 1 < i,j < f(Jwl):
Xq,a,i,j and XU,iJ

Intuitively, X, 5 is true if and only if in step-j the head is in cell-i reading symbol o and the
TM is in state ¢; and X, ; ; is true if and only if in step-j the content of cell-i is o.
Essentially the formula ¢ states the following.

2/

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

time

1<j < f(n) & {

cell

Figure 1: Each point (,7) is labeled with a symbol £ € (Q x ') UT. If £ = (q,0) € @ x T, it
means in time-j the NTM M is in state ¢ and the head is in cell-i reading symbol ¢. If { = o € T,
it means in time-j the content of cell-i is o. The labels ¢ and those in the neighboring points
l1,...,0s must obey the transitions in of the NTM M.

e In time-1 the labels of the points (1,1),...,(1, f(n)) is the initial configuration. It can be
expressed as the following formula.

f(n)
XQO:al AXay N N Xg, A /\ Xy (1)
1=n+1

e The accepting state must appear somewhere. It can be expressed as the following formula.

VoV X (2)

1<i,j<f(n) o€l
e For every 1 < 4,5 < f(n), the labels in (i — 1,7),(4,7),(¢ + 1,5 + 1) and the labels in
(i—1,74+1),(i,j+1),(i+ 1,5 + 1) must obey the transitions in M.

For example, if (¢,0) — (p, o, left) and (¢,0) — (r, 5, right) are transitions in M, then the
formula states the following.

/\ /\ Xo1,i-1,j N X005 N Xosit1,j

1<4,j<f(n) o1,02,03€l

(Xpor,i—1,j41 A Xayij+1 A Xogit1,j+1)
— i (3)
(Xo1,im1,j+1 A XBij+1 A Xoosit1,j+1)

e For every time j, there is exactly one i such that the label of (i,) is of the form (¢,0) €

3/

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Q x I'. It can be expressed as the following formula.

A A N Xgois = " Xpori (4)

p,q€Q and o,0'cl 1<j< f(n) 1<i<i’/<f(n)

A AN VYV Ko 5)

1<G<f(n) ¢€X o€l 1<i< f(n)

The formula states that there is at most one head and the formula states that there
is at least one head.

Formally, the algorithm A works as follows. On input w, it outputs the formula ¢ which is
the conjunction of the formulas f . It is not difficult to show that w € L if and only if ¢ is
satisfiable. |

Remark 2.6 We note that in the proof of Theorem the formula ¢ produced in the reduction
from L to SAT satisfies the following.

The number of accepting run of M on w = The number of satisfying assignment of ¢

Thus, the reduction in Theorem is parsimonious.

Remark 2.7 There are two ways to show that a language L is NP-hard.

e The first is by definition, i.e., we show that for every language K € NP, there is a polyno-
mial time reduction from K to L.

e The second is by choosing an appropriate NP-hard language, say SAT, and show that there
is a polynomial time reduction from SAT to L.

| 3-SAT |

Input: A propositional formula ¢ in 3-CNF.
Task: Output true, if ¢ is satisfiable. Otherwise, output false.

Note that we can also view 3-SAT as the language 3-SAT & {¢ : ¢ is satisfiable 3-CNF formula}.
Theorem 2.8 3-SAT is NP-complete.

Proof. That is 3-SAT is in NP follows immediately from Theorem To show that it is
NP-hard, we reduce it from SAT. On input a CNF formula ¢, if it has a clause of length greater
than 3:

bV -V L where k > 4

split it into two clauses, where z is a new variable:
(ly V-V KWQJ Vz) A (g_k/QH-l Vo VA Vo2)

Repeat it on each clause of length > 4 until we get 3-CNF. |

49

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

3 More NP-complete problems

We need a few terminologies. Let G = (V, E) be a (undirected) graph.
e (G is 3-colorable, if we can color the vertices in G with 3 colors (every vertex must be colored
with one color) such that no two adjacent vertices have the same color.
e Aset C'CV isaclique in G, if every pair of vertices in C' are adjacent.
e A set W CV is a vertex cover, if every edge in F is adjacent to at least one vertex in W.
e A set I CV is independent, if every pair of vertices in I are non-adjacent.

e A set D CV is dominating, if every vertex in V is adjacent to at least one vertex in D.

All the following problems are NP-complete.

3-COL
Input: A (undirected) graph G = (V, E).
Task: Output true, if G is 3-colorable. Otherwise, output false.

CLIQUE

Input: A (undirected) graph G = (V, E) and an integer k£ > 0 in binary form.

Task: Output true, if G has a clique of size > k. Otherwise, output false.

IND-SET

Input: A (undirected) graph G = (V, E) and an integer k£ > 0 in binary form.
Task: Output true, if G has an independent set of size > k.

Otherwise, output false.

VERT-COVER

Input: A (undirected) graph G = (V, E) and an integer k > 0 in binary form.

Task: Output true, if G has a vertex cover of size < k. Otherwise, output false.

DOM-SET

Input: A (undirected) graph G = (V, E) and an integer k£ > 0 in binary form.
Task: Output true, if G has an dominating set of size < k.

Otherwise, output false.

4 coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.
Definition 2.9 Let K be a language.

e K is coNP-hard, if for every L € coNP, L <, K.

e K is coNP-complete, if K € coNP and K is coNP-hard.

5/

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 2: NP-complete languages

Theorem 2.10 For every language K over the alphabet 3, K is NP-complete if and only if its
complement K is coNP-complete, where K Ly K.

Corollary 2.11 SAT Lo o is not satisfiable} is coNP-complete.
Py

APPENDIX

A The notion of computable functions

Polynomial time computable functions. Let F': ¥* — ¥* be a function from ¥* to X*.
Let M be a 2-tape DTM.

o M computes the function F', if M accepts every word w € 3* and when it halts, the content
of its second tape is F(w).

o M computes F in time O(g(n)), if there is a constant ¢ > 0 such that on every word w,
M decides w in time c- g(|w|).

o M computes F in polynomial time, if M computes F in time O(g(n)) for some g(n) =
poly(n).

o F'is computable in polynomial time, if there is a D'TM M that computes F' in polynomial
time.

Logarithmic space computable function. A function F' : ¥* — ¥* is computable in log-
arithmic space, if there is a 3-tape DTM M and a constant ¢ such that on every w € ¥* the
following holds.

e M accepts w.

e M never change the content of tape-1, i.e., tape-1 always contains the input word w.

In other words, tape-1 is “read-only” tape.

M only uses at most clog|w| cells in tape-2.

Tape-3 is “write-only” tape, i.e., the head in tape-3 can only write and move right.

When M halts, the content of tape-3 is F(w).

	Alternative definitions of the class NP
	NP-complete languages
	More NP-complete problems
	coNP-complete problems
	The notion of computable functions

