Lesson 1: Basic complexity classes

Theme: Review of some introductory material.

1 The big-Oh notations

Let \mathbb{N} denote the set of natural numbers $\{0, 1, 2, \ldots\}$. Let f and g be functions from \mathbb{N} to \mathbb{N} .

- f = O(g) means that there is c and n_0 such that for every $n \ge n_0$, $f(n) \le c \cdot g(n)$. It is usually phrased as "there is c such that for (all) sufficiently large n," $f(n) \le c \cdot g(n)$.
- $f = \Omega(g)$ means g = O(f).
- $f = \Theta(g)$ means g = O(f) and f = O(g).
- f = o(g) means for every c > 0, $f(n) \le c \cdot g(n)$ for sufficiently large n. Equivalently, f = o(g) means f = O(g) and $g \ne O(f)$.

Another equivalent definition is f = o(g) means $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$.

• $f = \omega(g)$ means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω notations. We also write $f(n) = \operatorname{poly}(n)$ to denote that $f(n) = c \cdot n^k$ for some c and $k \ge 1$.

Throughout the course, for an integer $n \ge 0$, we will denote by $\lfloor n \rfloor$ the binary representation of n. Likewise, $\lfloor G \rfloor$ the binary encoding of a graph G. In general, we write $\lfloor X \rfloor$ to denote the encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we often write X instead of $\lfloor X \rfloor$.

We usually use Σ to denote a finite input alphabet. Often $\Sigma = \{0, 1\}$. Recall also that for a word $w \in \Sigma^*$, |w| denotes the length of w. For a DTM/NTM \mathcal{M} , we write $L(\mathcal{M})$ to denote the language $\{w : \mathcal{M} \text{ accepts } w\}$.

We often view a language $L \subseteq \Sigma^*$ as a boolean function, i.e., $L : \Sigma^* \to \{\text{true}, \text{false}\}$, where L(x) = true if and only if $x \in L$, for every $x \in \Sigma^*$.

2 Time complexity

Definition 1.1 Let \mathcal{M} be a DTM/NTM, $w \in \Sigma^*$, $t \in \mathbb{N}$ and let $f : \mathbb{N} \to \mathbb{N}$ be a function.

• \mathcal{M} decides w in time t (or, in t steps), if every run of \mathcal{M} on w has length at most t. That is, for every run of \mathcal{M} on w:

 $C_0 \vdash C_1 \vdash \cdots \vdash C_m$ where C_m is a halting configuration,

we have $m \leq t$.

- \mathcal{M} runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w, \mathcal{M} decides w in time $c \cdot f(|w|)$.
- \mathcal{M} decides/accepts a language L in time O(f(n)), if $L(\mathcal{M}) = L$ and \mathcal{M} runs in time O(f(n)).
- DTIME $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is a DTM } \mathcal{M} \text{ that decides } L \text{ in time } O(f(n))\}.$

• NTIME $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is an NTM } \mathcal{M} \text{ that decides } L \text{ in time } O(f(n))\}.$

Note that Definition 1.1 applies in similar manner for both DTM and NTM. The only difference is that a DTM has one run for each input word w, whereas NTM can have many runs for each input word w.

We say that \mathcal{M} runs in *polynomial* and *exponential time*, if there is $f(n) = \mathsf{poly}(n)$ such that \mathcal{M} runs in time O(f(n)) and $O(2^{f(n)})$, respectively. In this case we also say that \mathcal{M} is a polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

$$\mathbf{P} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \text{poly}(n)}} \text{DTIME}[f(n)]$$
$$\mathbf{NP} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \text{poly}(n)}} \text{NTIME}[f(n)]$$
$$\mathbf{coNP} \stackrel{\text{def}}{=} \{L : \Sigma^* - L \in \mathbf{NP}\}$$
$$\mathbf{EXP} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \text{poly}(n)}} \text{DTIME}[2^{f(n)}]$$
$$\mathbf{NEXP} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \text{poly}(n)}} \text{NTIME}[2^{f(n)}]$$
$$\mathbf{coNEXP} \stackrel{\text{def}}{=} \{L : \Sigma^* - L \in \mathbf{NEXP}\}$$

Theorem 1.2 (Padding theorem) If NP = P, then NEXP = EXP. Likewise, if NP = coNP, then NEXP = coNEXP.

Proof. We will only prove the first statement, i.e., "if NP = P, then NEXP = EXP."

Suppose $\mathbf{NP} = \mathbf{P}$. We will show that $\mathbf{NEXP} \subseteq \mathbf{EXP}$. Let $L \in \mathbf{NEXP}$. Let \mathcal{M} be an NTM that decides L in time $2^{p(n)}$, where $p(n) = \mathsf{poly}(n)$. Consider the following language:

$$L' \stackrel{\text{def}}{=} \{ w 0 \underbrace{11 \cdots 1}_{m} : w \in L \text{ and } m = 2^{p(|w|)} \}$$

We will first show that $L' \in \mathbf{NP}$. Consider the following algorithm that we denote by Algorithm 1.

 Algorithm 1

 Input: $u \in \Sigma^*$.

 Task: Decide if $u \in L'$.

 1: Check if u is of the form $w0 \underbrace{11 \cdots 1}_{m}$ for some m. and that $m = 2^{p(|w|)}$.

 If not, REJECT. Otherwise, continue.

 2: Run \mathcal{M} on w.

 3: ACCEPT if and only if \mathcal{M} accepts w.

Since \mathcal{M} is non-deterministic, Algorithm 1 is also non-deterministic. We can show that Algorithm 1 runs in polynomial time (in the length of the input u). Thus, $L' \in \mathbf{NP}$. By our assumption that $\mathbf{NP} = \mathbf{P}$, we obtain that $L' \in \mathbf{P}$. Let \mathcal{M}' be a DTM that decides L' in polynomial time.

To show that $L \in \mathbf{EXP}$, consider the following algorithm that we denote by Algorithm 2.

Algorithm 2Input: $w \in \Sigma^*$.Task: Decide if $w \in L$.1: Compute $m \stackrel{\text{def}}{=} 2^{p(|w|)}$.2: Run \mathcal{M}' on input $w01^m$.3: ACCEPT if and only if \mathcal{M} accepts w.

Note that by the definition of L', Algorithm 2 decides the language L. It is deterministic because \mathcal{M}' is deterministic. Moreover, it runs in exponential time in the length of the input word w. Therefore, $L \in \mathbf{EXP}$, as desired. This completes the proof that $\mathbf{NP} = \mathbf{P}$ implies $\mathbf{NEXP} = \mathbf{EXP}$.

3 Space complexity

Definition 1.3 Let \mathcal{M} be a DTM/NTM, $w \in \Sigma^*$, $t \in \mathbb{N}$ and let $f : \mathbb{N} \to \mathbb{N}$ be a function.

• \mathcal{M} decides w in t space (or, using t cells/space), if for every run of \mathcal{M} on w:

 $C_0 \vdash C_1 \vdash \cdots \vdash C_N$ where C_N is an accepting/rejecting configuration,

the length $|C_i| \leq t$, for each $i = 0, \ldots, N$.

- \mathcal{M} uses O(f(n)) space, if there is c > 0 such that for sufficiently long word w, \mathcal{M} decides w using $c \cdot f(|w|)$ space.
- \mathcal{M} decides/accepts a language L in space O(f(n)), if $L(\mathcal{M}) = L$ and \mathcal{M} uses O(f(n)) space.
- DSPACE $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is a DTM } \mathcal{M} \text{ that decides } L \text{ using } O(f(n)) \text{ space} \}.$
- NSPACE $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is an NTM } \mathcal{M} \text{ that decides } L \text{ using } O(f(n)) \text{ space} \}.$

Again, note that the notion of \mathcal{M} uses space O(f(n)) is the same for DTM and NTM. The only difference is that a DTM has only one run for each input word w, whereas NTM can have many runs for each input word w. In both cases, we can only say that \mathcal{M} uses space O(f(n)), if for each input word w, for every run of \mathcal{M} on w, the length of each configuration in the run is always $\leq cf(|w|)$.

We say that \mathcal{M} uses *polynomial* and *exponential* space, if there is $f(n) = \operatorname{poly}(n)$ such that \mathcal{M} runs in time O(f(n)) and $O(2^{f(n)})$, respectively. In this case we also say that \mathcal{M} is a polynomial/exponential space TM. The following are some of the important classes in complexity theory.

$$\begin{split} \mathbf{PSPACE} &\stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \mathsf{poly}(n) \\ f(n) = \mathsf{poly}(n)}} \mathsf{DSPACE}[f(n)] \\ \mathbf{EXPSPACE} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \mathsf{poly}(n) \\ f(n) = \mathsf{poly}(n)}} \mathsf{DSPACE}[2^{f(n)}] \end{split}$$

4 Logarithmic space complexity

Another interesting classes are **L** and **NL**. We say that a language L is in **L**, if there is a 2-tape DTM \mathcal{M} that decides L and a constant c > 0 such that for every input word w:

- The first tape always contains only the input word w, i.e., \mathcal{M} <u>never</u> changes the content of the first tape.
- \mathcal{M} uses $c \cdot \log(|w|)$ space in its second tape.

Likewise, we say that a language L is in **NL**, if there is a 2-tape NTM \mathcal{M} that decides L such that the above two conditions are satisfied.

5 Some classic complexity results

Obviously, we have $\mathbf{L} \subseteq \mathbf{NL}$, $\mathbf{P} \subseteq \mathbf{NP}$, and $\mathbf{PSPACE} \subseteq \mathbf{NPSPACE}$.

Proposition 1.4

- $\mathbf{L} \subseteq \mathbf{P}$.
- NP \subseteq PSPACE.

Deterministic/non-deterministic time/space hierarchy theorem states that for every $k \ge 1$, the following holds.

 $\begin{array}{ll} \text{DTIME}[n^k] \subsetneq \text{DTIME}[n^{k+1}] & \text{DSPACE}[n^k] \subsetneq \text{DSPACE}[n^{k+1}] \\ \text{NTIME}[n^k] \subsetneq \text{NTIME}[n^{k+1}] & \text{NSPACE}[n^k] \subsetneq \text{NSPACE}[n^{k+1}] \end{array}$

Some classic results in complexity theory are: (We will prove all these results later on.)

- $\mathbf{NL} \subseteq \mathbf{P}$.
- If $L \in \text{NSPACE}[n^k]$, then $\Sigma^* L \in \text{NSPACE}[n^k]$.
- NSPACE $[n^k] \subseteq DSPACE[n^{2k}].$

The third bullet is the reason why we only have the class **PSPACE**.

Combining all these inclusions together, we obtain:

$$L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE$$

From the deterministic/non-deterministic space hierarchy, it is also known that $\mathbf{L} \subsetneq \mathbf{PSPACE}$ and $\mathbf{NL} \subsetneq \mathbf{PSPACE}$. So, we know that at least one of the inclusions must be strict, but we don't know which one.