CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

Lesson 1: Basic complexity classes

Theme: Review of some introductory material.

1 The big-Oh notations

Let N denote the set of natural numbers {0,1,2,...}. Let f and g be functions from N to N.

e f = 0O(g) means that there is ¢ and ng such that for every n > ng, f(n) < c-g(n).
It is usually phrased as “there is ¢ such that for (all) sufficiently large n,” f(n) < c- g(n).

o f=10Q(g) means g = O(f).
e f=0(g) means g = O(f) and f = O(g).

e f = o0(g) means for every ¢ > 0, f(n) < c- g(n) for sufficiently large n.

)
Equivalently, f = o(g) means f = O(g) and g # O(f).

Another equivalent definition is f = o(g) means lim,, % =0.

e f=w(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Q,0,w
notations. We also write f(n) = poly(n) to denote that f(n) = c-n* for some ¢ and k > 1.

Throughout the course, for an integer n > 0, we will denote by |n| the binary representation
of n. Likewise, |G] the binary encoding of a graph G. In general, we write | X | to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we
often write X instead of | X |.

We usually use X to denote a finite input alphabet. Often ¥ = {0,1}. Recall also that for a
word w € ¥*, |w| denotes the length of w. For a DTM/NTM M, we write L(M) to denote the
language {w : M accepts w}.

We often view a language L C ¥* as a boolean function, i.e., L : ¥* — {true,false}, where
L(z) = true if and only if x € L, for every x € ¥*.

2 Time complexity

Definition 1.1 Let M be a DTM/NTM, w € ¥* t € N and let f : N — N be a function.

o M decides w in time t (or, in t steps), if every run of M on w has length at most t. That
is, for every run of M on w:

CoFCi F o F Cp where C), is a halting configuration,

we have m < t.

o M runs in time O(f(n)), if there is ¢ > 0 such that for sufficiently long word w, M decides
w in time ¢ - f(Jw)|).

o M decides/accepts a language L in time O(f(n)), if L(M) = L and M runs in time O(f(n)).

def

e DTIME[f(n)] = {L : there is a DTM M that decides L in time O(f(n))}.

Yo

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

def

e NTIME[f(n)] = {L : there is an NTM M that decides L in time O(f(n))}.

Note that Definition applies in similar manner for both DTM and NTM. The only difference
is that a DTM has one run for each input word w, whereas NTM can have many runs for each
input word w.

We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2/(), respectively. In this case we also say that M is a
polynomial /exponential time TM.

The following are some of the important classes in complexity theory.

P |J Drug[f(n)]
f(n)=poly(n)

NPE | Nrmve[f(n)]
f(n)=poly(n)

coNP ¥ {L:¥* - L € NP}

EXP & U DTiME[2/ ()]
F(n)=poly(n)

NEXPZ | Nrvg2/®)]
F(n)=poly(n)

coNEXP & {I:¥* - L ¢ NEXP}

Theorem 1.2 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

Proof. We will only prove the first statement, i.e., “if NP = P, then NEXP = EXP.”
Suppose NP = P. We will show that NEXP C EXP. Let L € NEXP. Let M be an NTM
that decides L in time 2P(") where p(n) = poly(n). Consider the following language:

L% {w0ll---1 : we L andm =2°1vD}

m

We will first show that L’ € NP. Consider the following algorithm that we denote by Algorithm 1.

Algorithm 1
Input: u € ¥*.
Task: Decide if u € L.
1: Check if u is of the form w011 ---1 for some m. and that m = 2P(wD.
—

If not, REJECT. Otherwise, co;lntinue.
2: Run M on w.
3: ACCEPT if and only if M accepts w.

Since M is non-deterministic, Algorithm 1 is also non-deterministic. We can show that
Algorithm 1 runs in polynomial time (in the length of the input). Thus, L' € NP. By our
assumption that NP = P, we obtain that L' € P. Let M’ be a DTM that decides L’ in
polynomial time.

To show that L € EXP, consider the following algorithm that we denote by Algorithm 2.

>

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

Algorithm 2
Input: w € X*.
Task: Decide if w € L.
1: Compute m &l op(lwl),
2: Run M’ on input w01™.
3: ACCEPT if and only if M accepts w.

Note that by the definition of L', Algorithm 2 decides the language L. It is deterministic
because M’ is deterministic. Moreover, it runs in exponential time in the length of the input
word w. Therefore, L € EXP, as desired. This completes the proof that NP = P implies
NEXP = EXP. |

3 Space complexity

Definition 1.3 Let M be a DTM/NTM, w € ¥* t € N and let f : N — N be a function.

e M decides w in ¢ space (or, using t cells/space), if for every run of M on w:
Co-FCi - CnN where C is an accepting/rejecting configuration,

the length |C;| < t, for each i = 0,..., N.

M uses O(f(n)) space, if there is ¢ > 0 such that for sufficiently long word w, M decides
w using ¢ - f(Jw|) space.

M decides/accepts a language L in space O(f(n)), if L(M) = L and M uses O(f(n))
space.

def

DSPACE[f(n)] = {L : there is a DTM M that decides L using O(f(n)) space}.

def

e NSPACE[f(n)] = {L : there is an NTM M that decides L using O(f(n)) space}.

Again, note that the notion of M uses space O(f(n)) is the same for DTM and NTM. The
only difference is that a DTM has only one run for each input word w, whereas NTM can have
many runs for each input word w. In both cases, we can only say that M uses space O(f(n)), if
for each input word w, for every run of M on w, the length of each configuration in the run is
always < cf (Jw|).

We say that M uses polynomial and ezponential space, if there is f(n) = poly(n) such that
M runs in time O(f(n)) and O(2/(), respectively. In this case we also say that M is a
polynomial /exponential space TM. The following are some of the important classes in complexity
theory.

PSPACEZ |] DspacE[f(n)]
F(n)=poly(n)
EXPSPACES | Dspacg[2/(")]
f(n)=poly(n)

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

4 Logarithmic space complexity

Another interesting classes are L and NL. We say that a language L is in L, if there is a 2-tape
DTM M that decides L and a constant ¢ > 0 such that for every input word w:

e The first tape always contains only the input word w, i.e., M never changes the content of
the first tape.

e M uses c¢-log(|w|) space in its second tape.

Likewise, we say that a language L is in NL, if there is a 2-tape NTM M that decides L such
that the above two conditions are satisfied.

5 Some classic complexity results

Obviously, we have L C NL, P C NP, and PSPACE C NPSPACE.

Proposition 1.4

e LCP.
e NP C PSPACE.

Deterministic/non-deterministic time/space hierarchy theorem states that for every k > 1,
the following holds.

DTiME[nF] € DTIME[R*] DsPACE[n¥] € DsPACE[n*+1]

NTIME[n*] € NTIME[n*!] NsPACE[n*] € NspaCE[n*]
Some classic results in complexity theory are: (We will prove all these results later on.)

e NL CP.
e If L € NSPACE[n"], then ¥* — L € NsSpACE[n¥].
e NspACE[n*] C DspacCE[n?H].

The third bullet is the reason why we only have the class PSPACE.
Combining all these inclusions together, we obtain:

L € NL € P C NP C PSPACE

From the deterministic/non-deterministic space hierarchy, it is also known that L C PSPACE
and NL C PSPACE. So, we know that at least one of the inclusions must be strict, but we
don’t know which one.

	The big-Oh notations
	Time complexity
	Space complexity
	Logarithmic space complexity
	Some classic complexity results

