
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

Lesson 1: Basic complexity classes

Theme: Review of some introductory material.

1 The big-Oh notations

Let N denote the set of natural numbers {0, 1, 2, . . .}. Let f and g be functions from N to N.

• f = O(g) means that there is c and n0 such that for every n > n0, f(n) 6 c · g(n).

It is usually phrased as “there is c such that for (all) sufficiently large n,” f(n) 6 c · g(n).

• f = Ω(g) means g = O(f).

• f = Θ(g) means g = O(f) and f = O(g).

• f = o(g) means for every c > 0, f(n) 6 c · g(n) for sufficiently large n.

Equivalently, f = o(g) means f = O(g) and g 6= O(f).

Another equivalent definition is f = o(g) means limn→∞
f(n)
g(n) = 0.

• f = ω(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω
notations. We also write f(n) = poly(n) to denote that f(n) = c · nk for some c and k > 1.

Throughout the course, for an integer n > 0, we will denote by bnc the binary representation
of n. Likewise, bGc the binary encoding of a graph G. In general, we write bXc to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we
often write X instead of bXc.

We usually use Σ to denote a finite input alphabet. Often Σ = {0, 1}. Recall also that for a
word w ∈ Σ∗, |w| denotes the length of w. For a DTM/NTMM, we write L(M) to denote the
language {w :M accepts w}.

We often view a language L ⊆ Σ∗ as a boolean function, i.e., L : Σ∗ → {true, false}, where
L(x) = true if and only if x ∈ L, for every x ∈ Σ∗.

2 Time complexity

Definition 1.1 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if every run ofM on w has length at most t. That
is, for every run ofM on w:

C0 ` C1 ` · · · ` Cm where Cm is a halting configuration,

we have m 6 t.

• M runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w,M decides
w in time c · f(|w|).

• M decides/accepts a language L in time O(f(n)), if L(M) = L andM runs in timeO(f(n)).

• Dtime[f(n)]
def
= {L : there is a DTMM that decides L in time O(f(n))}.

1/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

• Ntime[f(n)]
def
= {L : there is an NTMM that decides L in time O(f(n))}.

Note that Definition 1.1 applies in similar manner for both DTM and NTM. The only difference
is that a DTM has one run for each input word w, whereas NTM can have many runs for each
input word w.

We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

P def
=

⋃
f(n)=poly(n)

Dtime[f(n)]

NP def
=

⋃
f(n)=poly(n)

Ntime[f(n)]

coNP def
= {L : Σ∗ − L ∈ NP}

EXP def
=

⋃
f(n)=poly(n)

Dtime[2f(n)]

NEXP def
=

⋃
f(n)=poly(n)

Ntime[2f(n)]

coNEXP def
= {L : Σ∗ − L ∈ NEXP}

Theorem 1.2 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

Proof. We will only prove the first statement, i.e., “if NP = P, then NEXP = EXP.”
Suppose NP = P. We will show that NEXP ⊆ EXP. Let L ∈ NEXP. LetM be an NTM

that decides L in time 2p(n), where p(n) = poly(n). Consider the following language:

L′
def
= {w0 11 · · · 1︸ ︷︷ ︸

m

: w ∈ L and m = 2p(|w|)}

We will first show that L′ ∈ NP. Consider the following algorithm that we denote by Algorithm 1.

Algorithm 1
Input: u ∈ Σ∗.
Task: Decide if u ∈ L′.
1: Check if u is of the form w0 11 · · · 1︸ ︷︷ ︸

m

for some m. and that m = 2p(|w|).

If not, REJECT. Otherwise, continue.
2: RunM on w.
3: ACCEPT if and only ifM accepts w.

Since M is non-deterministic, Algorithm 1 is also non-deterministic. We can show that
Algorithm 1 runs in polynomial time (in the length of the input u). Thus, L′ ∈ NP. By our
assumption that NP = P, we obtain that L′ ∈ P. Let M′ be a DTM that decides L′ in
polynomial time.

To show that L ∈ EXP, consider the following algorithm that we denote by Algorithm 2.

2/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

Algorithm 2
Input: w ∈ Σ∗.
Task: Decide if w ∈ L.
1: Compute m

def
= 2p(|w|).

2: RunM′ on input w01m.
3: ACCEPT if and only ifM accepts w.

Note that by the definition of L′, Algorithm 2 decides the language L. It is deterministic
because M′ is deterministic. Moreover, it runs in exponential time in the length of the input
word w. Therefore, L ∈ EXP, as desired. This completes the proof that NP = P implies
NEXP = EXP.

3 Space complexity

Definition 1.3 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in t space (or, using t cells/space), if for every run ofM on w:

C0 ` C1 ` · · · ` CN where CN is an accepting/rejecting configuration,

the length |Ci| 6 t, for each i = 0, . . . , N .

• M uses O(f(n)) space, if there is c > 0 such that for sufficiently long word w,M decides
w using c · f(|w|) space.

• M decides/accepts a language L in space O(f(n)), if L(M) = L and M uses O(f(n))
space.

• Dspace[f(n)]
def
= {L : there is a DTMM that decides L using O(f(n)) space}.

• Nspace[f(n)]
def
= {L : there is an NTMM that decides L using O(f(n)) space}.

Again, note that the notion ofM uses space O(f(n)) is the same for DTM and NTM. The
only difference is that a DTM has only one run for each input word w, whereas NTM can have
many runs for each input word w. In both cases, we can only say thatM uses space O(f(n)), if
for each input word w, for every run of M on w, the length of each configuration in the run is
always 6 cf(|w|).

We say that M uses polynomial and exponential space, if there is f(n) = poly(n) such that
M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential space TM. The following are some of the important classes in complexity
theory.

PSPACE def
=

⋃
f(n)=poly(n)

Dspace[f(n)]

EXPSPACE def
=

⋃
f(n)=poly(n)

Dspace[2f(n)]

3/4

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 1: Basic complexity classes

4 Logarithmic space complexity

Another interesting classes are L and NL. We say that a language L is in L, if there is a 2-tape
DTMM that decides L and a constant c > 0 such that for every input word w:

• The first tape always contains only the input word w, i.e.,M never changes the content of
the first tape.

• M uses c · log(|w|) space in its second tape.

Likewise, we say that a language L is in NL, if there is a 2-tape NTM M that decides L such
that the above two conditions are satisfied.

5 Some classic complexity results

Obviously, we have L ⊆ NL, P ⊆ NP, and PSPACE ⊆ NPSPACE.

Proposition 1.4

• L ⊆ P.

• NP ⊆ PSPACE.

Deterministic/non-deterministic time/space hierarchy theorem states that for every k > 1,
the following holds.

Dtime[nk] (Dtime[nk+1] Dspace[nk] (Dspace[nk+1]

Ntime[nk] (Ntime[nk+1] Nspace[nk] (Nspace[nk+1]

Some classic results in complexity theory are: (We will prove all these results later on.)

• NL ⊆ P.

• If L ∈ Nspace[nk], then Σ∗ − L ∈ Nspace[nk].

• Nspace[nk] ⊆ Dspace[n2k].

The third bullet is the reason why we only have the class PSPACE.
Combining all these inclusions together, we obtain:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE

From the deterministic/non-deterministic space hierarchy, it is also known that L (PSPACE
and NL (PSPACE. So, we know that at least one of the inclusions must be strict, but we
don’t know which one.

4/4

	The big-Oh notations
	Time complexity
	Space complexity
	Logarithmic space complexity
	Some classic complexity results

