Homework 2 (40 points total) Due on Friday, 10:20 am, 5 May 2023 (112/05/05)

Question 1 (6 points). Prove that the algorithm NO-PATH, procedure COUNT-VERTEX_G and procedure VERIFY_G in the appendix in Note 4 are all correct. That is, they all compute according to the described task. Argue that they all use only logarithmic space.

Question 2 (3 point). Consider the problem CIRCUIT-EVAL and Theorem 5.5 in Note 5. The main idea for the proof of hardness is as follows. Let \mathcal{M} be a polynomial time DTM. On input word w, the reduction constructs a circuit C such that:

C(w) = 1 if and only if \mathcal{M} accepts w

The construction of C is similar to Cook-Levin reduction for the proof of **NP**-hardness of SAT. Explain why we need the fact that \mathcal{M} is DTM and *not* NTM in the proof of Theorem 5.5.

Question 3 (6 points). Prove that PH collapses if any one of the following is true.

- $\Sigma_i^p = \Pi_i^p$ for some $i \ge 1$.
- There is **PH**-complete language.
- $\mathbf{PH} = \mathbf{PSPACE}.$

Question 4 (4 points). Suppose that A is a language such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$. Prove that $\mathbf{P}\mathbf{H}^{A} \subseteq \mathbf{P}^{A}$.

Question 5 (6 point). Prove Lemmas 6.10 and 6.11 in Note 6.

Question 6. (See Appendix B for the definition of the class $SIZE(n^k)$)

- (a) (3 points) Show that every function $f : \{0,1\}^t \to \{0,1\}$ can be computed by a circuit of size $\leq 3t2^t$.
- (b) (4 points) Show that for every $k \ge 1$, there is a language L such that the following holds.
 - (P1) $L \in \text{SIZE}(n^{k+1}).$
 - (P2) For sufficiently large n, there is no circuit of size $\leq n^k$ that computes $L \cap \{0, 1\}^n$.

Conclude that for every $k \ge 1$, SIZE $(n^k) \subsetneq$ SIZE (n^{k+1}) .

- (c) (4 points) Prove that for every $k \ge 1$, there is a language $L \in \Sigma_4^p$ that has properties (P1) and (P2) above. Then, conclude that for every $k \ge 1$, $\Sigma_4^p \setminus \text{SIZE}(n^k) \ne \emptyset$.
- (d) (4 points) Prove that for every $k \ge 1$, there is a language $L \in \Sigma_2^p \setminus \text{SIZE}(n^k)$.

Hint for (b): We know that for every t, there is a function $f : \{0, 1\}^t \to \{0, 1\}$ such that f is not computable by circuit of size $2^t/(10t)$. Combine this with (a) for some appropriate value t.

Hint for (c): Consider the language L in Question 1. Then, for every n, consider the "lexicographically first" circuit C_n of size $\leq n^{k+1}$ that is not equivalent to any of the circuit of size $\leq n^k$.

A The definition needed in Question 4

Def: A language L is in the class Σ_i^p with oracle access to A, if there is a polynomial q(n) and a polynomial time DTM \mathcal{M}^A such that for every $w \in \Sigma^*$ the following holds.

 $w \in L$ iff $\exists y_1 \in \{0,1\}^{q(|w|)} \ \forall y_2 \in \{0,1\}^{q(|w|)} \cdots Qy_i \in \{0,1\}^{q(|w|)} \mathcal{M}^A$ accepts (w, y_1, \dots, y_i)

As before, \mathcal{M}^A denotes the TM \mathcal{M} with oracle access to A. A language L is in \mathbf{PH}^A , if there is an index i such that L is in the class Σ_i^p with oracle access to A.

B The notation used in Question 6

For a function $g : \mathbb{N} \to \mathbb{N}$, let SIZE(g) denote the class of languages such that $L \in SIZE(g)$ if and only if L is decided by a circuit family $\{C_n\}$ such that for sufficiently large n:

$$|C_n| \leq g(n)$$

That is, there is n' such that for every $n \ge n'$, $|C_n| \le g(n)$.