Lesson 11: IP $=$ PSPACE

Theme: The equivalence between the class IP and PSPACE.

1 The verifier for the number of satisfying assignments of boolean formulas

Consider the following language $L_{\sharp S A T}$:

$$
L_{\sharp S A T} \stackrel{\text { def }}{=}\left\{\begin{array}{l|l}
(\varphi, k) & \begin{array}{l}
\varphi \text { is a boolean formula } \\
\text { and } k \text { is the number of its satisfying assignments (in binary) }
\end{array}
\end{array}\right\}
$$

We will describe its IP protocol.
The arithmetization of boolean formulas. Let $\varphi\left(x_{1}, \ldots, x_{n}\right)$ be a boolean formula with variables x_{1}, \ldots, x_{n}. We first convert it into a multi-variate polynomial $\widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right)$ by replacing the operators \wedge, \vee and \neg as follows.

$$
\begin{array}{rll}
\neg \varphi_{1} & \mapsto & 1-\widetilde{\varphi_{1}} \\
\varphi_{1} \wedge \varphi_{2} & \mapsto & \widetilde{\varphi_{1}} \cdot \widetilde{\varphi_{2}} \\
\varphi_{1} \vee \varphi_{2} & \mapsto & 1-\left(1-\widetilde{\varphi_{1}}\right) \cdot\left(1-\widetilde{\varphi_{2}}\right)
\end{array}
$$

By a straightforward induction on φ, it is not difficult to show that $\varphi(\bar{b})=\widetilde{\varphi}(\bar{b})$, for every $\bar{b}=\left(b_{1}, \ldots, b_{n}\right) \in\{0,1\}^{n}$. Thus,

$$
\sharp \varphi=\sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} \cdots \sum_{x_{n}=0}^{1} \widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right) .
$$

The IP verifier for $L_{\sharp S A T}$. Let (φ, k) be the input and x_{1}, \ldots, x_{n} be the variables in φ. Let d be the maximal degree of each variable in $\widetilde{\varphi}$. Let \mathbb{F} be some finite field with size $\geqslant 3 d$.

Denote by $f_{i}\left(x_{1}, \ldots, x_{i}\right)$ the following polynomial:

$$
f_{i}\left(x_{1}, \ldots, x_{i}\right) \stackrel{\text { def }}{=} \sum_{x_{i+1}=0}^{1} \cdots \sum_{x_{n}=0}^{1} \widetilde{\varphi}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

In each round i, on some numbers $r_{1}, \ldots, r_{i}, t \in \mathbb{F}$, the prover tries to convince the verifier that the following holds.

$$
\begin{equation*}
f_{i}\left(r_{1}, \ldots, r_{i}\right)=t \tag{1}
\end{equation*}
$$

The protocol works by recursively on i.
In round 0 , the prover "tells" the verifier that the value in (2) is k. Otherwise, the verifier rejects immediately.

For each $i \leqslant n-1$, round i works as follows Let r_{1}, \ldots, r_{i} and t be the values that the prover tries to convince verifier that Eq. (1]) holds.

- The verifier asks for the polynomial $f_{i+1}\left(r_{1}, \ldots, r_{i}, x_{i+1}\right)$.
- Suppose the prover replies with $g\left(x_{i+1}\right)$.
- The verifier checks if the following holds.

$$
t=g(0)+g(1)
$$

Reject, if it does not. Otherwise, continue.

- The verifier chooses a random $r \in \mathbb{F}$ and proceeds to the next round to check:

$$
g(r)=f_{i+1}\left(r_{1}, \ldots, r_{i}, r\right)
$$

Note that $f_{n}\left(r_{1}, \ldots, r_{n}\right)=\widetilde{\varphi}\left(r_{1}, \ldots, r_{n}\right)$. Thus, in the last round $i=n-1$, the verifier can compute the value $f_{n}\left(r_{1}, \ldots, r_{n}\right)$ directly.

Proof of correctness. Note that if $(\varphi, k) \in L_{\sharp S A T}$, the verifier always accepts when the prover always gives correct answers. That is, if in each round i the prover replies with $f_{i}\left(r_{1}, \ldots, r_{i-1}, x_{i}\right)$, the verifier always accepts.

Suppose $(\varphi, k) \notin L_{\sharp S A T}$. That is, the following holds.

$$
k \neq \sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} \cdots \sum_{x_{n}=0}^{1} \widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right)
$$

In the following let $g_{i}\left(x_{i}\right)$ denote the polynomial sent by the prover in round i.
We can assume that in round 1 the prover replies with a polynomial $g_{1}\left(x_{1}\right)$ where $k=$ $g_{1}(0)+g_{1}(1)$. Otherwise, verifier rejects immediately. Note that this means that $g_{1}\left(x_{1}\right) \neq f_{1}\left(x_{1}\right)$.

We will calculate the probability that V rejects. Consider a fixed interaction between a prover and the verifier. Let r_{1}, \ldots, r_{n} be the random strings generated by the verifier. There are two scenarios.
(S1) In round n, the prover's reply $g\left(x_{n}\right)$ is not correct, i.e., $g_{n}\left(x_{n}\right) \neq f_{n}\left(r_{1}, \ldots, r_{n-1}, x_{n}\right)$.
(S2) In round n, the prover's reply $g\left(x_{n}\right)$ is correct, i.e., $g_{n}\left(x_{n}\right)=f_{n}\left(r_{1}, \ldots, r_{n-1}, x_{n}\right)$.
In (S1) the probability that the verifier accepts in round n is:

$$
\operatorname{Pr}_{r}[V \text { accepts }]=\operatorname{Pr}_{r}\left[g_{n}(r)=f_{n}\left(r_{1}, \ldots, r_{n-1}, r\right)\right] \leqslant \frac{d}{|\mathbb{F}|} \leqslant \frac{1}{3}
$$

The second last inequality comes from the fact that the degree of g_{n} and f_{n} are at most d, hence, there at most d such r where $g(r)=f_{n}\left(r_{1}, \ldots, r_{n-1}, r\right)$.

We now consider (S2). Since $g_{1}\left(x_{1}\right) \neq f_{1}\left(x_{1}\right)$ and $g_{n}\left(x_{n}\right)=f_{n}\left(r_{1}, \ldots, r_{n-1}, x_{n}\right)$, there is $1 \leqslant i \leqslant n$ such that:

$$
g_{i-1}\left(x_{i-1}\right) \neq f_{i-1}\left(r_{1}, \ldots, r_{i-2}, x_{i-1}\right) \quad \text { and } \quad g_{i}\left(x_{i}\right)=f_{i}\left(r_{1}, \ldots, r_{i-1}, x_{i}\right)
$$

The probability that the verifier continues in round i is:

$$
\begin{aligned}
\mathbf{P r}_{r_{i-1}}[\text { the verifier continues in round } i] & =\mathbf{P r}_{r_{i-1}}\left[g_{i-1}\left(r_{i-1}\right)=g_{i}(0)+g_{i}(1)\right] \\
& =\operatorname{Pr}_{r_{i-1}}\left[g_{i-1}\left(r_{i-1}\right)=f_{i-1}\left(r_{1}, \ldots, r_{i-1}\right)\right] \\
& \leqslant \frac{d}{|\mathbb{F}|} \leqslant \frac{1}{3}
\end{aligned}
$$

Again, the second last inequality is due to the degree of g_{n} and f_{n} being at most d. In both scenarios (S 1) and (S 2), the probability that the verifier rejects is $\geqslant 2 / 3$. Thus, we have shown the IP protocol for the language $L_{\sharp S A T}$. We state this result formally.

Theorem 11.1 (Lund, Fortnow, Karloff, Nisan 1990) $L_{\sharp S A T} \in \operatorname{IP}$. Hence, $\mathbf{P H} \subseteq$ IP.
The inclusion $\mathbf{P H} \subseteq \mathbf{I P}$ follows from the algorithm for Toda's Theorem, i.e., Theorem 9.1.

2 The verifier for TQBF

We will now describe the IP protocol for TQBF. The idea is simple. To verify that $\forall x \varphi(x)$ is true, we check that $\widetilde{\varphi}(0) \cdot \widetilde{\varphi}(1) \neq 0$. Likewise, to verify that $\exists x \varphi(x)$ is true, we check that $1-(1-\widetilde{\varphi}(0)) \cdot(1-\widetilde{\varphi}(1)) \neq 0$.

We formalize this intuition as follows. Let $q\left(\bar{x}, y_{1}, \ldots, y_{n}\right)$ be a polynomial where \bar{x} is a vector of variables and y_{1}, \ldots, y_{n} are variables. The expression $\mathrm{Q}_{1} y_{1} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, y_{1}, \ldots, y_{n}\right)$, where each $\mathrm{Q}_{i} \in\{\mathrm{~A}, \mathrm{E}\}$, defines a polynomial $p(\bar{x})$ as follows.

- If $Q_{1}=A$:

$$
p(\bar{x}) \stackrel{\text { def }}{=}\left(\mathrm{Q}_{2} y_{2} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 0, y_{2}, \ldots, y_{n}\right)\right) \cdot\left(\mathrm{Q}_{2} y_{2} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 1, y_{2}, \ldots, y_{n}\right)\right)
$$

- If $Q_{1}=E:$

$$
p(\bar{x}) \stackrel{\text { def }}{=} 1-\left(1-\mathrm{Q}_{2} y_{2} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 0, y_{2}, \ldots, y_{n}\right)\right) \cdot\left(1-\mathrm{Q}_{2} y_{2} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 1, y_{2}, \ldots, y_{n}\right)\right)
$$

Intuitively, the IP protocol for TQBF works as follows. Let $\Psi \stackrel{\text { def }}{=} Q_{1} x_{1} \cdots Q_{n} x_{n} \varphi\left(x_{1}, \ldots, x_{n}\right)$ be the input QBF. Its arithmetization is $\widetilde{\Psi} \stackrel{\text { def }}{=} \mathrm{Q}_{1} x_{1} \cdots \mathrm{Q}_{n} x_{n} \widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right)$, where each $\forall x_{i}$ is replaced by $\mathrm{A} x_{i}$ and each $\exists x_{i}$ by $\mathrm{E} x_{i}$. It is not difficult to show that Ψ is true QBF if and only if $\widetilde{\Psi}=1$.

Checking whether $\widetilde{\Psi}=1$ can be done by similar method in the previous section. In each round i the verifier asks the prover for the polynomial:

$$
f_{i}\left(r_{1}, \ldots, r_{i-1}, x_{i}\right) \stackrel{\text { def }}{=} \mathrm{Q}_{i+1} x_{i+1} \cdots \mathrm{Q}_{n} x_{n} \widetilde{\varphi}\left(r_{1}, \ldots, r_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)
$$

for some randomly chosen numbers r_{1}, \ldots, r_{i-1}. However, note that the degree of x_{i} can be 2^{n-i}. For this, we introduce a new operator $\mathrm{L} x$, whose semantics are defined as follows. The expression $\mathrm{L} z \mathrm{Q}_{1} y_{1} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, z, y_{1}, \ldots, y_{n}\right)$ defines the following polynomial $p(\bar{x}, z)$:

$$
p(\bar{x}, z) \stackrel{\text { def }}{=}(1-z) \mathrm{Q}_{1} y_{1} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 0, y_{1}, \ldots, y_{n}\right)+z \mathrm{Q}_{1} y_{1} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, 1, y_{1}, \ldots, y_{n}\right)
$$

In the expression $\mathrm{L} z \mathrm{Q}_{1} y_{1} \cdots \mathrm{Q}_{n} y_{n} q\left(\bar{x}, z, y_{1}, \ldots, y_{n}\right)$, the variables \bar{x} and z are free variables. The operator $\mathrm{L} z q(\bar{x}, z)$ means "linearize" the variable z in the polynomial $q(\bar{x}, z)$.

Since in the operators A and E we are only evaluating the polynomial on 0 and 1 and $x^{k}=x$ for $x \in\{0,1\}$, the value $\mathrm{Q}_{1} x_{1} \cdots \mathrm{Q}_{n} x_{n} \widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right)$ is equal to:

$$
\begin{equation*}
\mathrm{Q}_{1} x_{1} \mathrm{~L} x_{1} \mathrm{Q}_{2} x_{2} \mathrm{~L} x_{1} \mathrm{~L} x_{2} \cdots \mathrm{Q}_{n} x_{n} \mathrm{~L} x_{1} \cdots \mathrm{~L} x_{n} \widetilde{\varphi}\left(x_{1}, \ldots, x_{n}\right) \tag{2}
\end{equation*}
$$

The IP protocol will verify that the value in Eq.(2) is 1.
It works recursively where in each round i, on some numbers r_{1}, \ldots, r_{k} and t, the prover tries to convince the verifier that the following holds.

$$
\begin{equation*}
\mathrm{Q}_{i} z_{i} \cdots \mathrm{Q}_{m} z_{m} \widetilde{\varphi}\left(r_{1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)=t \tag{3}
\end{equation*}
$$

where x_{k+1}, \ldots, x_{n} are the variables quantified by A or E in $\mathrm{Q}_{i} z_{i} \cdots \mathrm{Q}_{m} z_{m}$.
In round 0 , the prover "tells" the verifier that the value in (2) is 1 . Otherwise, the verifier rejects immediately.

In round i, suppose the values r_{1}, \ldots, r_{k} and t are already given. The verifier tries to verify that (3) is true as follows. There are three cases.

Case 1: $\mathrm{Q}_{i} z_{i}$ is $\mathrm{A} x_{k+1}$.

- The verifier asks for the polynomial:

$$
\mathrm{Q}_{i+1} z_{i+1} \cdots \mathrm{Q}_{m} z_{m} \widetilde{\varphi}\left(r_{1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

- Suppose the prover replies with $g\left(x_{k+1}\right)$.
- The verifier checks the following.

$$
t=g(0) \cdot g(1)
$$

Reject, if it does not hold. Otherwise, continue.

- The verifier chooses a random number $r \in \mathbb{F}$ and proceeds to the next round to verify:

$$
g(r)=\mathrm{Q}_{i+1} z_{i+1} \cdots \mathrm{Q}_{m} z_{m} \widetilde{\varphi}\left(r_{1}, \ldots, r_{k}, r, x_{k+2}, \ldots, x_{n}\right)
$$

Case 2: $\mathrm{Q}_{i} z_{i}$ is $\mathrm{E} x_{k+1}$.
Similar to above, but the verifier checks the following.

$$
t=1-(1-g(0)) \cdot(1-g(1))
$$

Case 3: $\mathrm{Q}_{i} z_{i}$ is $\mathrm{L} x_{j}$, for some $1 \leqslant j \leqslant k$.

- The verifier asks for the polynomial:

$$
\mathrm{Q}_{i+1} z_{i+1} \cdots \mathrm{Q}_{m} z_{m} \widetilde{\varphi}\left(r_{1}, \ldots, r_{j-1}, x_{j}, r_{j+1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

- Suppose the prover replies with $g\left(x_{j}\right)$.
- The verifier checks the following.

$$
t=\left(1-r_{j}\right) \cdot g(0)+r_{j} \cdot g(1)
$$

Reject, if it does not hold. Otherwise, continue.

- The verifier chooses a random number $r \in \mathbb{F}$ and proceeds to the next round to verify:

$$
g(r)=\mathrm{Q}_{i+1} z_{i+1} \cdots \mathrm{Q}_{m} z_{m} \widetilde{\varphi}\left(r_{1}, \ldots, r_{j-1}, r, r_{j+1}, \ldots, r_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

The probabilistic analysis is similar to the one in the previous section. If Ψ is a true QBF, then the verifier always accepts provided that the prover always answers correctly. If Ψ is not correct, then in some round i the polynomial $g\left(x_{j}\right)$ sent by the prover is not correct. We can show that in such round the probability that the verifier chooses the value r that invalidates the prover's claim is at least $2 / 3$.

Theorem 11.2 (Shamir 1990). $\operatorname{TQBF} \in \mathbf{I P}$. Hence, $\mathrm{IP}=\mathrm{PSPACE} \|^{*}$
Theorem 11.3 If $\mathbf{P S P A C E} \subseteq \mathbf{P}_{/ \text {poly }}$, then $\mathbf{P S P A C E}=$ MA .

[^0]
[^0]: ${ }^{*}$ The IP protocol described in this note is from "A. Shen. IP = PSPACE: Simplified proof. JACM, vol. 39, no. 4 , Oct. 1992 , pp. $878-880$."

