
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Probabilistic Turing machines

Lesson 7: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.

Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system M =
〈Σ,Γ, Q, q0, qacc, qrej, δ〉 defined like the NTM, with the difference that δ ⊆ (Q−{qacc, qrej})×Γ ×
Q× Γ× {Left, Right} is now a relation such that for every (p, σ) ∈ (Q− {qacc, qrej})× Γ, there
are exactly two transitions that can be applied:

(p, σ)→ (q1, σ1, Move1) and (p, σ)→ (q2, σ2, Move2)

and the probability that each transition is applied is 1/2. Intuitively, when it is in state p reading
symbol σ,M tosses an unbiased coin to decide whether to apply (q1, σ1, Move1) or (q2, σ2, Move2).
On an input word w, the probability thatM accepts/rejects w is defined over all possible coin
tossing.

Similar to DTM/NTM, we say thatM runs in time f(n), if for every word w, every run of
M on w has length 6 f(|w|). We say thatM runs in polynomial time, if there is a polynomial
p(n) = poly(n) such thatM runs in time p(n). In this case we also say thatM is a polynomial
time PTM.

The class BPP is defined as follows. A language L is in the class BPP, if there a polynomial
time PTMM such that for every input word x, the following holds.

Pr[M(x) = L(x)] > 2/3

Here we treat a language L as a function L : {0, 1}∗ → {0, 1}, where L(x) = 1, if x ∈ L, and
L(x) = 0, if x /∈ L. Similarly, we treat TM M as a function M : {0, 1}∗ → {0, 1}, where
M(x) = 1, ifM accepts x, andM(x) = 0, ifM rejects x.

Note that BPP is closed under complement, union and intersection.

Remark 7.1 Alternatively, we can define the class BPP as follows. A language L is in the
class BPP, if there is a polynomial q(n) and a polynomial time DTM M such that for every
x ∈ {0, 1}∗, the following holds.

Prr∈{0,1}q(|x|) [M(x, r) = L(x)] > 2/3

Note that the DTM M takes as input (x, r). Intuitively, it can be viewed as a PTM that on
input x, first randomly choose a string r of length q(|x|), then run DTMM on (x, r).

Note the similarity with the alternative definition of NP (Def. 0.4), where an NTM first
guesses a certificate string r, and then runs a DTM for verification.

Theorem 7.2 (Error reduction) Let L ∈ BPP. Then, for every d > 1, there is a polynomial
time PTMM such that for every input word x:

Pr[M(x) = L(x)] > 1− 2−α|x|
d

(for some fixed α > 0)

Theorem 7.3 (Adleman 1978) BPP ⊆ P/poly.

Theorem 7.3 and Theorem 6.4 imply that if SAT ∈ BPP, then PH collapses to Σp
2.

Theorem 7.4 (Sipser, Gács, Lautemann 1983) BPP ⊆ Σp
2 ∩Πp

2.

1/2

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 7: Probabilistic Turing machines

One-sided error PTM. The class RP is defined as follows. A language L is in the class RP,
if there a polynomial time PTMM such that for every input word x, the following holds.

• If x ∈ L, then Pr[M(x) = 1] > 2/3.

• If x /∈ L, then Pr[M(x) = 0] = 1.

Note thatM is never wrong when the input x /∈ L, hence, the name one-sided. The class coRP
is defined as coRP def

= {L : {0, 1}∗ \ L ∈ RP}.

Zero error PTM. A PTMM for a language L is a zero error PTM, if it never errs, i.e., for
every input word x, Pr[M(x) = L(x)] = 1. Now for a PTMM and input word x, we can define
a random variable TM,x to denote the run time ofM on x, where the probability distribution is
Pr[TM,x = t] = p, if with probability p over the random strings ofM on input x, it halts in t
steps .

The class ZPP is defined as follows. A language L is in ZPP, if there is a polynomial q(n) =
poly(n) and a zero error PTMM for L such that for every input word x, Exp[TM,x] 6 q(|x|).

The algorithms for languages in BPP/RP/coRP are also called Monte Carlo algorithms,
and those for languages in ZPP are called Las Vegas algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let E1, . . . , Em be some m events. Then, the following holds.

Pr
[m⋃
i=1

Ei
]

=
m∑
i=1

Pr[Ei]−
∑

16i1<i26m

Pr[Ei1 ∩ Ei2] +
∑

16i1<i2<i36m

Pr[Ei1 ∩ Ei2 ∩ Ei3]− · · ·

From here, we also obtain the so called union bound:

Pr
[m⋃
i=1

Ei
]

6
m∑
i=1

Pr[Ei]

Markov inequality: Let X be a non-negative random variable with expectation µ. Then, for
every real c > 0, the following holds.

Pr[X > cµ] 6 1/c

Markov inequality is often also called averaging argument.

Chebyshev inequality: Let X be a random variable with expectation µ and variance σ2.
Then, for every real c > 0, the following holds.

Pr
[
|X − µ| > cσ

]
6 1/c2

Chernoff inequality: Let X1, . . . , Xm be (independent) 0,1 random variables. Suppose for
every 1 6 i 6 m, Pr[Xi = 1] = p, for some p > 1/2. Let X def

=
∑m

i=1Xi. Then, the following
holds.

Pr
[
X >

⌊
m/2

⌋]
> 1− 2−αm where α =

log2 e

2p

(
p− 1

2

)2

2/2

	Useful inequalities

