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Lesson 7: Probabilistic Turing machines

Theme: The notion of probabilistic/randomized Turing machines and some classical results.

Probabilistic Turing machines. A probabilistic Turing machine (PTM) is system M =
(3,T,Q, 90, qace, Grej, 0) defined like the NTM, with the difference that 6 C (Q — {acc, @rej}) X I' X
@ x T x {Left,Right} is now a relation such that for every (p,o) € (Q — {qacc, Grej}) X I, there
are exactly two transitions that can be applied:

(p,0) = (q1,01,Move;) and (p,o) — (go,02,Moves)

and the probability that each transition is applied is 1/2. Intuitively, when it is in state p reading
symbol o, M tosses an unbiased coin to decide whether to apply (q1, 01, Move;) or (ga, o2, Moves).
On an input word w, the probability that M accepts/rejects w is defined over all possible coin
tossing.

Similar to DTM/NTM, we say that M runs in time f(n), if for every word w, every run of
M on w has length < f(Jw|). We say that M runs in polynomial time, if there is a polynomial
p(n) = poly(n) such that M runs in time p(n). In this case we also say that M is a polynomial
time PTM.

The class BPP is defined as follows. A language L is in the class BPP, if there a polynomial
time PTM M such that for every input word z, the following holds.

Pr[ M(z) = L(z)] > 2/3

Here we treat a language L as a function L : {0,1}* — {0,1}, where L(z) = 1, if x € L, and
L(z) = 0, if x ¢ L. Similarly, we treat TM M as a function M : {0,1}* — {0,1}, where
M(x) =1, if M accepts z, and M(z) = 0, if M rejects .

Note that BPP is closed under complement, union and intersection.

Remark 7.1 Alternatively, we can define the class BPP as follows. A language L is in the
class BPP, if there is a polynomial ¢(n) and a polynomial time DTM M such that for every
x € {0,1}*, the following holds.

Pr cionjoen [ M(z,r) = L(z) ] > 2/3

Note that the DTM M takes as input (z,r). Intuitively, it can be viewed as a PTM that on
input z, first randomly choose a string r of length ¢(|z|), then run DTM M on (z,7).

Note the similarity with the alternative definition of NP (Def. [0.4), where an NTM first
guesses a certificate string r, and then runs a DTM for verification.

Theorem 7.2 (Error reduction) Let L € BPP. Then, for every d > 1, there is a polynomial
time PTM M such that for every input word x:

Pr[ M(z) = L(z) ] > 1-2 ¢kl (for some fized o > 0)
Theorem 7.3 (Adleman 1978) BPP C P,
Theorem and Theorem imply that if SAT € BPP, then PH collapses to 5.

Theorem 7.4 (Sipser, Gacs, Lautemann 1983) BPP C X/ NII}.
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One-sided error PTM. The class RP is defined as follows. A language L is in the class RP,
if there a polynomial time PTM M such that for every input word x, the following holds.

o If v € L, then Pr[ M(z) =1]>2/3.
o If z ¢ L, then Pr{ M(z)=0]=1.

Note that M is never wrong when the input x ¢ L, hence, the name one-sided. The class coRP
def

is defined as coRP = {L :{0,1}*\ L € RP}.

Zero error PTM. A PTM M for a language L is a zero error PTM, if it never errs, i.e., for
every input word x, Pr[ M(z) = L(x) ] = 1. Now for a PTM M and input word x, we can define
a random variable T\, to denote the run time of M on x, where the probability distribution is
Pr[ T\, =t ] = p, if with probability p over the random strings of M on input z, it halts in ¢
steps .

The class ZPP is defined as follows. A language L is in ZPP, if there is a polynomial ¢(n) =
poly(n) and a zero error PTM M for L such that for every input word z, Exp[Tiq] < q(|z]).

The algorithms for languages in BPP/RP/coRP are also called Monte Carlo algorithms,
and those for languages in ZPP are called Las Vegas algorithms.

Appendix

A Useful inequalities

Inclusion-exclusion principle: Let &1,...,&,, be some m events. Then, the following holds.
m m

PT[UEZ] = ZPI‘[&]— Z Pr[5i1ﬂ5i2]+ Z Pr[5i105i205i3]—~--
=1 =1 1< <ig<m 1<i1<ie<iz<m

From here, we also obtain the so called union bound:
i=1 i=1

Markov inequality: Let X be a non-negative random variable with expectation pu. Then, for
every real ¢ > 0, the following holds.

PrlX>cu] < 1/c
Markov inequality is often also called averaging argument.

Chebyshev inequality: Let X be a random variable with expectation p and variance o2.

Then, for every real ¢ > 0, the following holds.

Pr[|X—p[>co] < 1/¢

Chernoff inequality: Let Xj,...,X,, be (independent) 0,1 random variables. Suppose for

def

every 1 < i < m, Pr[X; = 1] = p, for some p > 1/2. Let X = >, X;. Then, the following
holds.

Pr[X > Lm/QJ } > 1-279m where oo = 102g;e(p_ })2
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