Lesson 6: Boolean circuits

Theme: Some classical results on boolean circuits.

Let $n \in \mathbb{N}$, where $n \ge 1$. An *n*-input Boolean circuit C is a directed acyclic graph with n source vertices (i.e., vertices with no incoming edges) and 1 sink vertex (i.e., vertex with no outgoing edge).

The source vertices are labelled with x_1, \ldots, x_n . The non-source vertices, called *gates*, are labelled with one of \land, \lor, \neg . The vertices labelled with \land and \lor have *two* incoming edges, whereas the vertices labelled with \neg have one incoming edge. The size of C, denoted by |C|, is the number of vertices in C.

On input $w = x_1 \cdots x_n$, where each $x_i \in \{0, 1\}$, we write C(w) to denote the output of C on w, where \wedge, \vee, \neg are interpreted in the natural way and 0 and 1 as false and true, respectively.

We refer to the in-degree and out-degree of vertices in a circuit as *fan-in* and *fan-out*, respectively. In our definition above, we require fan-in 2.

A circuit family is a sequence {C_n}_{n∈N} such that every C_n has input n inputs and a single output.

To avoid clutter, we write $\{C_n\}$ to denote a circuit family.

- We say that $\{C_n\}$ decides a language L, if for every $n \in \mathbb{N}$, for every $w \in \{0, 1\}^n$, $w \in L$ if and only if $C_n(w) = 1$.
- We say that $\{C_n\}$ is of size T(n), where $T : \mathbb{N} \to \mathbb{N}$ is a function, if $|C_n| \leq T(n)$, for every $n \in \mathbb{N}$.

We define the following class.

 $\mathbf{P}_{\mathsf{/poly}} \stackrel{\text{def}}{=} \{L: L \text{ is decided by } \{C_n\} \text{ of size } q(n) \text{ for some polynomial } q(n) \}$

That is, the class of languages decided by a circuit family of polynomial size.

Remark 6.1 It is not difficult to show that *every* unary language L is in \mathbf{P}_{poly} . Thus, \mathbf{P}_{poly} contains some undecidable language.

Definition 6.2 A circuit family $\{C_n\}$ is **P**-uniform, if there is a polynomial time DTM that on input 1^n , output the description of the circuit C_n .

Theorem 6.3 A language L is in **P** if and only if it is decided by a **P**-uniform circuit family.

Theorem 6.4 (Karp and Lipton 1980) If NP \subseteq P_{/poly}, then PH = Σ_2^p .

Theorem 6.5 (Meyer 1980) If EXP \subseteq P_{/poly}, then EXP = Σ_2^p .

Theorem 6.6 (Shannon 1949) For every n > 1, there is a function $f : \{0,1\}^n \to \{0,1\}$ that cannot be computed by a circuit of size $2^n/(10n)$.

The classes NC and AC. For a circuit C, the *depth* of C is the length of the longest directed path from an input vertex to the output vertex.^{*} For a function $T : \mathbb{N} \to \mathbb{N}$, we say that a circuit family $\{C_n\}$ has depth T(n), if for every n, the depth of C_n is $\leq T(n)$.

For every i, the classes \mathbf{NC}^i and \mathbf{AC}^i are defined as follows.

- A language L is in \mathbf{NC}^{i} , if there is $f(n) = \mathsf{poly}(n)$ such that L is decided by a circuit family of size f(n) and depth $O(\log^{i} n)$.
- The class \mathbf{AC}^i is defined analogously, except that gates in the circuits are allowed to have unbounded fan-in.

The classes \mathbf{NC} and \mathbf{AC} are defined as follows.

$$\mathbf{NC} \stackrel{\mathsf{def}}{=} \bigcup_{i \geqslant 0} \mathbf{NC}^i \qquad \text{and} \qquad \mathbf{AC} \stackrel{\mathsf{def}}{=} \bigcup_{i \geqslant 0} \mathbf{AC}^i$$

Note that $\mathbf{NC}^i \subseteq \mathbf{AC}^i \subseteq \mathbf{NC}^{i+1}$.

^{*}Here we take the length of a path as the number of edges in it.