Lesson 2: The class NL and PSPACE

Theme: Some classical results on the class NL and PSPACE.

1 Classical results on the class NL

We recall the notion of log-space reduction. Let $F: \Sigma^* \to \Sigma^*$ be a function. We say that F is computable in logarithmic space, if there is a 3-tape DTM \mathcal{M} such that on input word w, it works as follows.

- Tape 1 contains the input word w and its content never changes.
- There is a constant c such that \mathcal{M} uses only $c \log |w|$ space in tape 2.
- The head in tape 3 can only "write" and move right, i.e., once it writes a symbol to a cell, the content of that cell will not change.

Tape 1 is called the *input tape*, tape 2 the work tape and tape 3 the output tape.

Definition 2.1 A language L is log-space reducible to another language K, denoted by $L \leq_{\log} K$, if there is a function $F: \Sigma^* \to \Sigma^*$ computable in logarithmic space such that for every $w \in \Sigma^*$, $w \in L$ if and only if $F(w) \in K$.

Remark 2.2 The relation \leq_{\log} is transitive in the sense that if $L_1 \leq_{\log} L_2$ and $L_2 \leq_{\log} L_3$, then $L_1 \leq_{\log} L_3$.

Definition 2.3 Let K be a language.

- K is NL-hard, if for every language $L \in NL$, $L \leq_{\log} K$.
- K is NL-complete, if $K \in NL$ and K is NL-hard.

Define the following language PATH.

 $\mathsf{PATH} \ \stackrel{\mathsf{def}}{=} \ \{(G,s,t): G \text{ is } \textit{directed} \text{ graph and there is a path in } G \text{ from vertex } s \text{ to vertex } t\}$

Theorem 2.4 PATH is NL-complete.

Theorem 2.5 (Savitch 1970) $NL \subseteq DSPACE[\log^2 n]$.

To prove Theorem 2.5, it suffices to show that $PATH \in DSPACE[\log^2 n]$. See Appendix A.

Theorem 2.6 (Immerman 1988 and Szelepcsényi 1987) NL = coNL.

To prove Theorem 2.6, we consider the complement language of PATH:

 $\overline{\mathsf{PATH}} \stackrel{\mathsf{def}}{=} \{(G, s, t) : G \text{ is } directed \text{ graph and there is } no \text{ path in } G \text{ from vertex } s \text{ to vertex } t\}$

Note that $\overline{\mathsf{PATH}}$ is \mathbf{coNL} -complete. To prove Theorem 2.6, it suffices to show that $\overline{\mathsf{PATH}} \in \mathbf{NL}$. See Appendix B.

2 Classical results on the class PSPACE

Definition 2.7 Let K be a language.

- K is **PSPACE**-hard, if for every language $L \in \mathbf{PSPACE}$, $L \leq_p K$.
- K is **PSPACE**-complete, if $K \in \mathbf{PSPACE}$ and K is **PSPACE**-hard.

Quantified Boolean formulas (QBF) are formulas of the form:

$$Q_1x_1 \ Q_2x_2 \ \cdots \ Q_nx_n \ \varphi(x_1,\ldots,x_n)$$

where each $Q_i \in \{\forall, \exists\}$ and $\varphi(x_1, \dots, x_n)$ is a Boolean formula with variables x_1, \dots, x_n . The intuitive meaning of each Q_i is as follows.

- $\forall x \ \psi$ means that for all $x \in \{\text{true}, \text{false}\}, \ \psi$ is true.
- $\exists x \ \psi$ means that there is $x \in \{\mathsf{true}, \mathsf{false}\}\ \mathsf{such}\ \mathsf{that}\ \psi$ is true.

We define the problem TQBF:

TQBF Input: A QBF φ .

Task: Return true, if φ is true. Otherwise, return false.

As usual, it can be viewed as a language $\mathsf{TQBF} \stackrel{\mathsf{def}}{=} \{ \psi : \psi \text{ is a true QBF} \}$. Note also that the usual Boolean formula can be viewed as a QBF, where each Q_i is \exists . Thus, TQBF is a more general problem than SAT .

Theorem 2.8 (Stockmeyer and Meyer 1973) TQBF is PSPACE-complete.

Theorems 2.9 and 2.10 below are the polynomial space analog of Theorem 2.5 and 2.6, respectively. In fact, they can be easily generalized to the so called *time* and *space constructible functions*. See Appendix C.

Theorem 2.9 (Savitch 1970) $NSPACE[n^k] \subseteq DSPACE[n^{2k}]$.

Theorem 2.10 (Immerman 1988 and Szelepcsényi 1987) $NSPACE[n^k] = coNSPACE[n^k]$.

Note that Theorem 2.9 implies PSPACE = NPSPACE = coNPSPACE.

Appendix

A Proof of Theorem 2.5

Algorithm 1 below decides the language PATH.

Algorithm 1

```
Input: (G, s, t), where G is a directed graph and s and t are two vertices in G.

Task: ACCEPT iff there is a path in G from s to t.

1: Let n be the number of vertices in G.

2: ACCEPT iff CHECK_G(s, t, \lceil \log n \rceil) = true.
```

It uses Procedure $CHECK_G$ defined below.

Procedure CHECKG

```
Input: (u, v, k) where u and v are two vertices in G, and k is an integer \geq 0.
```

```
Task: Return true, if there is a path in G of length \leq 2^k from u to v. Otherwise, return false.

1: if k=0 then

2: return true iff (u=v \text{ or } (u,v) \text{ is an edge in } G).

3: for all vertex x in G do

4: b:=\operatorname{CHECK}_G(u,x,k-1).

5: if b=\operatorname{true} then

6: b:=\operatorname{CHECK}_G(x,v,k-1).

7: if b=\operatorname{true} then

8: return true.

9: return false.
```

Note that when computing $CHECK_G(u, x, k-1)$ and $CHECK_G(x, v, k-1)$, Procedure $CHECK_G$ can use the same space. Thus, it uses only $O(k \log n)$ space. Since k is initialized with $\lceil \log n \rceil$, Algorithm 1 uses $O(\log^2 n)$ space in total.

B Proof of Theorem 2.6

Consider the following algorithm.

Algorithm NO-PATH

```
Input: (G, s, t) where G is directed graph and s and t are two vertices in G.

Task: ACCEPT iff there is no path in G from s to t.

1: m := the number of vertices in G reachable from s.

2: {Note: This value m is computed with Procedure Count-Vertex_G below.}

3: for all vertex x in G do

4: Guess if x is reachable from s.

5: if the guess is "yes" then

6: m := m - 1.

7: Guess a path from s to s.

8: if it is not possible to guess such a path then REJECT.

9: if there is such a path and s if then REJECT.
```

The number of vertices reachable from s can be computed with Procedure Count-Vertex $_G$ defined below.

Procedure COUNT-VERTEXG

Input: u where u is a vertex in G.

Task: Return the number of vertices in G reachable from vertex u, where the number is written in binary form.

```
1: Let n be the number of vertices in G.
 2: m := 1 + the outdegree of u.
 3: {Note: m is initialized with the number of vertices reachable from u in \leq 1 steps.}
 4: for i = 2, ..., n do
      m' := 0.
 5:
       for all vertex x in G do
 6:
          Guess if there is a path from u to x with length \leq i.
 7:
 8:
          if the guess is "yes" then
             Verify it by guessing such a path (of length \leq i).
 9:
             m' := m' + 1.
10:
          if the guess is "no" then
11:
             Verify that indeed there is no such a path (of length \leq i).
12:
13:
      m:=m'.
       {Note: On each iteration, m is the number of vertices reachable from u in \leq i steps.}
14:
15: return m
```

The verification in Line 12 above is done with the following procedure.

Procedure VERIFYG

Input: (u, x, m, i) where u and x are vertices in G, $i \ge 2$ is an integer and m is the number of vertices in G reachable from u in $\le i - 1$ steps.

Task: Verify that x is not reachable from u in $\leq i$ steps.

```
1: \ell := m.

2: for all vertex y in G do

3: Guess if there is a path from u to y with length \leqslant i-1.

4: if the guess is "yes" then

5: \ell := \ell - 1.

6: Guess a path (of length \leqslant i-1) from u to y.

7: Verify that the edge (y,x) does not exist in G.

8: Verification is complete iff \ell = 0.
```

Note that if any of the verification in Lines 9 and 12 in Procedure COUNT-VERTEX_G and Line 7 in Procedure VERIFY_G fails, the whole algorithm rejects immediately.

The correctness of Procedure Count-Vertex $_G$ can be established by induction on i. The correctness of Algorithm No-path follows immediately from Count-Vertex $_G$.

C Time and space constructible functions

Definition 2.11 Let $T: \mathbb{N} \to \mathbb{N}$ be a function.

• We say that T is time constructible, if for every n, $T(n) \ge n$ and there is a DTM that on input 1^n computes $1^{T(n)}$ in time O(T(n)).

• We say that T is space constructible, if there is a DTM that on input 1^n computes $1^{T(n)}$ in space O(T(n)).

Intuitively, when we say that \mathcal{M} runs in time/space O(T(n)), where T is time/space constructible function, we can assume that on input word w, \mathcal{M} first "computes" the amount of time/space needed to decide w, before going on to process w.

Theorems 2.9 and 2.10 can be easily generalized to space constructible functions as follows.

Theorem 2.12 Let $f : \mathbb{N} \to \mathbb{N}$ be space constructible function such that $f(n) \ge \log n$, for every n.

- (Savitch 1970) NSPACE $[f(n)] \subseteq DSPACE[f(n)^2]$.
- (Immerman 1988 and Szelepcsényi 1987) NSPACE[f(n)] = coNSPACE[f(n)].

D Hardness via log space reduction

In our definition of hardness for **NP**, **coNP** and **PSPACE**, we require that the reduction is polynomial time reduction. It is also common to define hardness by insisting the reduction is log-space reduction. That is, we can define K as **NP**-hard by insisting $L \leq_{\log} K$, for every $L \in \mathbf{NP}$, rather than $L \leq_p K$. Similarly, for **coNP** and **PSPACE**.

Most NP-, coNP- and PSPACE-complete problems are known to remain complete even under log-space reduction, including SAT, 3-SAT and TQBF.

- SAT and 3-SAT are NP-complete under log-space reduction.
- TQBF is PSPACE-complete under log-space reduction.