Lesson 1: The class NP

Theme: Some classical results on the class NP.

1 Ladner's theorem: NP-intermediate language

Theorem 1.1 (Ladner 1975) If $\mathbf{P} \neq \mathbf{NP}$, then there is $L \in \mathbf{NP}$ such that $L \notin \mathbf{P}$ and L is not \mathbf{NP} -complete.

For a function $f : \mathbb{N} \to \mathbb{N}$, we say that it is *polynomial time computable* (in unary representation), if there is a polynomial time algorithm that on input 1^n , outputs $1^{f(n)}$.

For a function $f : \mathbb{N} \to \mathbb{N}$, define SAT_f as follows.

$$\mathsf{SAT}_f \stackrel{\mathsf{def}}{=} \{\varphi 0 \underbrace{1 \cdots 1}_{n^{f(n)}} : \varphi \in \mathsf{SAT} \text{ and } |\varphi| = n\}$$

We first prove the following lemma.

Lemma 1.2 Suppose $\mathbf{NP} \neq \mathbf{P}$. If $h : \mathbb{N} \to \mathbb{N}$ is polynomial time computable (in unary representation), non-decreasing and unbounded, i.e., $\lim_{n\to\infty} h(n) = \infty$, then SAT_h is not \mathbf{NP} -hard.

Proof. Suppose to the contrary that SAT_h is **NP**-hard. Let F be a polynomial time reduction from SAT to SAT_h that runs in time cn^k . Let N be an integer such that for every $n \ge N$, the following holds.

- $h(n) \ge 2k$. (This is possible because h is non-decreasing and unbounded.)
- $cn^{1/2} < n$.

Claim 1 For every $\varphi \in SAT$ with length at least N, the output of F on φ , denoted by $F(\varphi) = \psi 01^{|\psi|^{h(|\psi|)}}$, satisfies the following: If $|\psi| > N$, then $|\psi| < |\varphi|$.

Proof. (of claim) Since F runs in cn^k time, it follows that:

$$|\psi|^{h(|\psi|)} < |\psi| + 1 + |\psi|^{h(|\psi|)} \leq c|\varphi|^k$$

Thus,

$$|\psi| < c|\varphi|^{k/h(|\psi|)} \leq c|\varphi|^{1/2} < |\varphi|$$

The second and third inequalities come from the fact that $|\psi|, |\varphi| \ge N$.

We now present a polynomial time algorithm for SAT, which contradicts the assumption that $\mathbf{NP} \neq \mathbf{P}$. On input φ , do the following.

- If $|\varphi| \leq N$, check by brute force if it is satisfiable. Otherwise, continue.
- Run F on φ , and let the output be $\psi 01^m$, for some m.
- Check if $m = |\psi|^{h(|\psi|)}$ by doing the following.
 - 1. Let $\ell = h(1^{|\psi|})$. (Recall that h is polynomial time computable.)
 - 2. Convert $|\psi|$ in its binary form and compute $|\psi|^{\ell}$ (in binary form).

- 3. Then, compare it with m.
- If $m \neq |\psi|^{h(|\psi|)}$, then REJECT immediately.
- Suppose $m = |\psi|^{h(|\psi|)}$.
 - If $|\psi| \leq N$, check if ψ is satisfiable by brute force.
 - If $|\psi| > N$, recursively call the algorithm on ψ . (Note that here $|\psi| < |\varphi|$.)

Each step in the algorithm takes polynomial time and the number of recursive call in this algorithm is at most $|\varphi|$. So, overall the algorithm runs in polynomial time.

Next, consider the following lemma.

Lemma 1.3 Suppose $\mathbf{NP} \neq \mathbf{P}$. If $h : \mathbb{N} \to \mathbb{N}$ is polynomial time computable (in unary representation) and bounded, i.e., there is a constant c such that $h(n) \leq c$ for every n, then $\mathsf{SAT}_h \notin \mathbf{P}$.

Proof. Suppose $\mathsf{SAT}_h \in \mathbf{P}$. We will show that $\mathsf{SAT} \in \mathbf{P}$, which contradicts the assumption that $\mathbf{NP} \neq \mathbf{P}$. Consider the following algorithm. On input φ , do the following.

- Check if $\varphi 01^i \in \mathsf{SAT}_h$, for some $0 \leq i \leq |\varphi|^c$.
- ACCEPT iff there is *i* where $\varphi 01^i \in \mathsf{SAT}_h$.

Combined with Lemmas 1.2 and 1.3, the following lemma implies Ladner's theorem, i.e., SAT_h is the desired intermediate **NP** language.

Lemma 1.4 Suppose $NP \neq P$. There is a non-decreasing function $h : \mathbb{N} \to \mathbb{N}$ such that:

- h is polynomial time computable (in unary representation).
- SAT_h \in NP.
- $SAT_h \in \mathbf{P}$ if and only if h is bounded.

The function h for Lemma 1.4 is defined as follow. For every $n \ge 1$, the value h(n) is determined by **Algorithm 1** below. Here \mathcal{M}_i is the DTM whose encoding is the binary representation of i.

Algorithm 1

```
Input: 1^n, where n \ge 1.
Task: Compute 1^{h(n)}.
 1: for i = 1, ..., \log \log(n) - 1 do
       Let \mathcal{M}_i be the i^{\text{th}} (1-tape) DTM.
 2:
       for all x \in \{0,1\}^* where |x| \leq \log n do
 3:
          Compute \mathsf{SAT}_h(x) (i.e., recursively check if x \in \mathsf{SAT}_h).
 4:
          Simulate \mathcal{M}_i on x in i|x|^i steps (using the UTM in Theorem 1.8).
 5:
       if the results in lines 4 and 5 agree on all x \in \{0,1\}^* where |x| \leq \log n then
 6:
          return i (in unary).
 7:
 8: return \log \log n (in unary).
```

2 TM with oracles

A TM \mathcal{M} with oracle access to a language K, denoted by \mathcal{M}^K , is a TM with a special tape called oracle tape and three special states $q_{query}, q_{yes}, q_{no}$. Each time it is in q_{query} , it moves to q_{yes} , if $w \in K$ and to q_{no} , if $w \notin K$, where w is the string found in the oracle tape. In other words, when it is in q_{query} , the machine can "query" the membership of the language K. Regardless of the choice of K, such query counts only as one step. We denote by $L(\mathcal{M}^K)$ the language accepted by \mathcal{M}^K .

For a language K, we define the classes **P** and **NP** relativized to K as follows.

 $\mathbf{P}^{K} \stackrel{\text{def}}{=} \{L : \text{there is a polynomial time DTM } \mathcal{M}^{K} \text{ such that } L(\mathcal{M}^{K}) = L\}$

 $\mathbf{NP}^{K} \stackrel{\text{def}}{=} \{L : \text{there is a polynomial time NTM } \mathcal{M}^{K} \text{ such that } L(\mathcal{M}^{K}) = L\}$

Theorem 1.5 (Baker, Gill, Solovay 1975) There is language A and B such that $\mathbf{P}^A = \mathbf{NP}^A$ and $\mathbf{P}^B \neq \mathbf{NP}^B$.

Proof. For a **PSPACE**-complete language A, we can show that $\mathbf{P}^{A} = \mathbf{NP}^{A}$. (We will show in Lesson 2 that **PSPACE**-complete languages exist.)

To show the existence of B, we need the following notation. For a language $C \subseteq \{0,1\}^*$, define $\operatorname{unary}(C) \stackrel{\text{def}}{=} \{1^n : \text{there is } w \in C \text{ with length } n\}$. Obviously, for every $C \subseteq \{0,1\}^*$, $\operatorname{unary}(C) \in \mathbf{NP}^C$.

The language B will be defined as $B \stackrel{\text{def}}{=} \bigcup_{i \in \mathbb{N}} B_i$ where each B_i is a finite set defined inductively as follows. Each B_i is associated with an integer k_i such that $B_i = B \cap \{0, 1\}^{\leq k_i}$. Here $\{0, 1\}^{\leq k_i} \stackrel{\text{def}}{=} \{w \in \{0, 1\}^* : |w| \leq k_i\}$.

The base case is $B_0 = \emptyset$ and $k_0 = 0$. For the induction step, B_{i+1} is defined as follows, where we assume an enumeration of all oracle DTM $\mathcal{M}_0, \mathcal{M}_1, \ldots$

- Let $n = k_i + 1$.
- Simulate oracle TM \mathcal{M}_{i+1} on 1^n within $2^n/10$ steps.

During the simulation \mathcal{M}_{i+1} may query the oracle. For the query strings with length $\leq k_i$, the oracle answers are according to B_i . For the query strings with length $> k_i$, the oracle answers are "no."

• Let k_{i+1} be as follows.

 $k_{i+1} \stackrel{\text{def}}{=} \begin{cases} n, & \text{if all the query strings has length } \leqslant k_i \\ m, & m \text{ is the maximal length of the query string with length } \geqslant n \end{cases}$

- If \mathcal{M}_{i+1} accepts 1^n within $2^n/10$ steps, we set $B_{i+1} \stackrel{\mathsf{def}}{=} B_i$.
- If \mathcal{M}_{i+1} does not accept 1^n within $2^n/10$ steps, we set $B_{i+1} \stackrel{\text{def}}{=} B_i \cup \{w\}$, where $w \in \{0,1\}^n$ and w is not one of the query strings.

From the definition of B, we can show that $unary(B) \notin \mathbf{P}^B$.

APPENDIX

A Universal Turing machines

Remark 1.6 For every k-tape TM \mathcal{M} over input alphabet $\Sigma = \{0, 1\}$, there is a k-tape TM \mathcal{M}' over the same input alphabet $\Sigma = \{0, 1\}$ and tape alphabet $\Gamma = \{0, 1, \sqcup\}$ such that $L(\mathcal{M}) = L(\mathcal{M}')$. Moreover, if \mathcal{M} runs in time/space O(f(n)), so does \mathcal{M}' .

Due to this, we always assume that the input and tape alphabet of Turing machines are $\Sigma = \{0, 1\}$ and $\Gamma = \{0, 1, \sqcup\}$, respectively.

Recall that $|\mathcal{M}|$ denotes the encoding of a TM \mathcal{M} .

Definition 1.7 A Universal Turing machine (UTM) is a k-tape DTM \mathcal{U} , for some $k \ge 1$, such that $L(\mathcal{U}) = \{ \lfloor \mathcal{M} \rfloor \$ w \mid \mathcal{M} \text{ accepts } w \text{ and } w \in \{0,1\}^* \}.$

Theorem 1.8 There is a UTMU such that for every DTM \mathcal{M} and every word w, if \mathcal{M} decides w in time t, then \mathcal{U} decides $\lfloor \mathcal{M} \rfloor$ w in time $(\alpha \cdot t \cdot \log t)$, where α does not depends |w|, but on size of the tape alphabet of \mathcal{M} as well as the number of tapes and states of \mathcal{M} .