CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

Lesson 0: Preliminaries

Theme: Review of some introductory material.

Let N denote the set of natural numbers {0,1,2,...}. Let f and g be functions from N to N.

e f = 0(g) means that there is ¢ and ng such that for every n > ng, f(n) < c-g(n).
It is usually phrased as “there is ¢ such that for (all) sufficiently large n,” f(n) < c- g(n).

o f=Q(g) means g = O(f).
e f=0(g) means g = O(f) and f = O(g).

e f = 0(g) means for every ¢ > 0, f(n) < c¢- g(n) for sufficiently large n.

g) and g # O(f).
f(n)
g

Another equivalent definition is f = o(g) means lim,, (—Z) =0.

)
(

Equivalently, f = o(g) means f = O

e [=w(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Q,0,w
notations. We also write f(n) = poly(n) to denote that f(n) = c¢-n* for some ¢ and k > 1.

Throughout the course, for an integer n > 0, we will denote by |[n] the binary representation
of n. Likewise, |G| the binary encoding of a graph G. In general, we write | X | to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we
often write X instead of | X |.

We usually use ¥ to denote a finite input alphabet. Often ¥ = {0,1}. Recall also that for a
word w € ¥*, |w| denotes the length of w. For a DTM/NTM M, we write L(M) to denote the
language {w : M accepts w}.

We often view a language L C ¥* as a boolean function, i.e., L : ¥* — {true, false}, where
L(z) = true if and only if x € L, for every x € ¥*.

1 Time complexity

Definition 0.1 Let M be a DTM/NTM, w € ¥* t € N and let f : N — N be a function.

o M decides w in time t (or, int steps), if every run of M on w has length at most ¢. That
is, for every run of M on w:

CoHCy F -+ Cp where (), is a halting configuration,

we have m < t.

o M runs in time O(f(n)), if there is ¢ > 0 such that for sufficiently long word w, M decides
w in time ¢ - f(Jw)).

M decides/accepts a language L in time O(f(n)), if L(M) = L and M runs in time O(f(n)).

def

e DTIME[f(n)] = {L : there is a DTM M that decides L in time O(f(n))}.

def

NTIME[f(n)] = {L : there is an NTM M that decides L in time O(f(n))}.

Yo

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2/("), respectively. In this case we also say that M is a
polynomial /exponential time TM.

The following are some of the important classes in complexity theory.

P < U DTIME[f(n)] EXP & U DTivE[2/ ()]
f(n)=poly(n) f(n)=poly(n)
NP & U NTIME[f(n)] NEXP & U NTIME[2f (™))
f(n)=poly(n) f(n)=poly(n)
coNP & {L:¥* - L e NP} coNEXP & {[:¥* — L ¢ NEXP}

Theorem 0.2 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

2 Alternative definitions of the class NP

Note that according to the definition in the previous section, the class NP can be defined as
follows.

Definition 0.3 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L and M runs in time O(f(n)).

There is an alternative definition of NP.

Definition 0.4 A language L C ¥* is in NP if there is a language K C ¥* x X* such that the
following holds.

e For every w € ¥*, w € L if and only if there is v € ¥* such that (w,v) € K.
e There is f(n) = poly(n) such that for every (w,v) € K, |v| < f(Jw]|).
e The language K is accepted by a polynomial time DTM.

For (w,v) € K, the string v is called the certificate/witness for w. We call the language K the
certificate/witness language for L.

Indeed Def. and [0.4] are equivalent. That is, for every language L, L is in NP in the sense
of Def. if and only if L is in NP in the sense of Def.
3 NP-complete languages

Recall that a DTM M computes a function F': ¥* — ¥* in time O(g(n)), if there is a constant
¢ > 0 such that on every word w, M computes F(w) in time < cg(Jw|). If g(n) = poly(n), such
fucntion F' is called polynomial time computable function. Moreover, if M uses only logarithmic
space, it is called logarithmic space computable function.

Definition 0.5 A language Lq is polynomial time reducible to another language Lo, denoted by
L1 <, Lo, if there is a polynomial time computable function F' such that for every w € ¥*:

we Ly ifand only if F(w) € Lo

2B

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

Such function F' is called polynomial time reduction, also known as Karp reduction.

If F is logarithmic space computable function, we say that Li is log-space reducible to Lo,
denoted by L Slog Lo.

If L1 and Lo are in NP with certificate languages Ki and Ko, respectively, we say that F is
parsimonious, if for every w € ¥*, w has the same number of certificates in K as F(w) in K.

Definition 0.6 Let L be a language.

e L is NP-hard, if for every L' € NP, L' <, L.
o L is NP-complete, if L € NP and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables 1, ..., x, is in Con-
junctive Normal Form (CNF), if it is of the form: /\; V; ¢;; where each {;; is a literal, i.e., a
variable z, or its negation —xy. It is in 3-CNF, if it is of the form A, (E,;J V lia V &-73). A
formula ¢ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ¢ that evaluates to true.

| SAT |

Input: A propositional formula ¢ in CNF.

Task: Output true, if ¢ is satisfiable. Otherwise, output false.

| 3-SAT |

Input: A propositional formula ¢ in 3-CNF.

Task: Output true, if ¢ is satisfiable. Otherwise, output false.

def

Obviously, SAT can be viewed as a language, i.e., SAT = {¢ : ¢ is satisfiable CNF formula}.
Likewise, for 3-SAT.

Theorem 0.7 (Cook 1971, Levin 1973) SAT and 3-SAT are NP-complete.

4 coNP-complete problems
Analogous to NP-complete, we can also define coNP-complete problems.
Definition 0.8 Let K be a language.

e K is coNP-hard, if for every L € coNP, L <, K.

e K is coNP-complete, if K € coNP and K is coNP-hard.

Note that for every language K, K is NP-complete if and only if its complement K is coNP-
complete, where K & ¥* — K. Thus, SAT £ { : ¢ is not satisfiable} is coNP-complete.

	Time complexity
	Alternative definitions of the class NP
	NP-complete languages
	coNP-complete problems

