
CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

Lesson 0: Preliminaries

Theme: Review of some introductory material.

Let N denote the set of natural numbers {0, 1, 2, . . .}. Let f and g be functions from N to N.

• f = O(g) means that there is c and n0 such that for every n > n0, f(n) 6 c · g(n).

It is usually phrased as “there is c such that for (all) sufficiently large n,” f(n) 6 c · g(n).

• f = Ω(g) means g = O(f).

• f = Θ(g) means g = O(f) and f = O(g).

• f = o(g) means for every c > 0, f(n) 6 c · g(n) for sufficiently large n.

Equivalently, f = o(g) means f = O(g) and g 6= O(f).

Another equivalent definition is f = o(g) means limn→∞
f(n)
g(n) = 0.

• f = ω(g) means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω
notations. We also write f(n) = poly(n) to denote that f(n) = c · nk for some c and k > 1.

Throughout the course, for an integer n > 0, we will denote by bnc the binary representation
of n. Likewise, bGc the binary encoding of a graph G. In general, we write bXc to denote the
encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we
often write X instead of bXc.

We usually use Σ to denote a finite input alphabet. Often Σ = {0, 1}. Recall also that for a
word w ∈ Σ∗, |w| denotes the length of w. For a DTM/NTMM, we write L(M) to denote the
language {w :M accepts w}.

We often view a language L ⊆ Σ∗ as a boolean function, i.e., L : Σ∗ → {true, false}, where
L(x) = true if and only if x ∈ L, for every x ∈ Σ∗.

1 Time complexity

Definition 0.1 LetM be a DTM/NTM, w ∈ Σ∗, t ∈ N and let f : N→ N be a function.

• M decides w in time t (or, in t steps), if every run ofM on w has length at most t. That
is, for every run ofM on w:

C0 ` C1 ` · · · ` Cm where Cm is a halting configuration,

we have m 6 t.

• M runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w,M decides
w in time c · f(|w|).

• M decides/accepts a language L in time O(f(n)), if L(M) = L andM runs in timeO(f(n)).

• Dtime[f(n)]
def
= {L : there is a DTMM that decides L in time O(f(n))}.

• Ntime[f(n)]
def
= {L : there is an NTMM that decides L in time O(f(n))}.

1/3

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

We say that M runs in polynomial and exponential time, if there is f(n) = poly(n) such
that M runs in time O(f(n)) and O(2f(n)), respectively. In this case we also say that M is a
polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

P def
=

⋃
f(n)=poly(n)

Dtime[f(n)] EXP def
=

⋃
f(n)=poly(n)

Dtime[2f(n)]

NP def
=

⋃
f(n)=poly(n)

Ntime[f(n)] NEXP def
=

⋃
f(n)=poly(n)

Ntime[2f(n)]

coNP def
= {L : Σ∗ − L ∈ NP} coNEXP def

= {L : Σ∗ − L ∈ NEXP}

Theorem 0.2 (Padding theorem) If NP = P, then NEXP = EXP.
Likewise, if NP = coNP, then NEXP = coNEXP.

2 Alternative definitions of the class NP

Note that according to the definition in the previous section, the class NP can be defined as
follows.

Definition 0.3 A language L is in NP if there is f(n) = poly(n) and an NTM M such that
L(M) = L andM runs in time O(f(n)).

There is an alternative definition of NP.

Definition 0.4 A language L ⊆ Σ∗ is in NP if there is a language K ⊆ Σ∗ × Σ∗ such that the
following holds.

• For every w ∈ Σ∗, w ∈ L if and only if there is v ∈ Σ∗ such that (w, v) ∈ K.

• There is f(n) = poly(n) such that for every (w, v) ∈ K, |v| 6 f(|w|).

• The language K is accepted by a polynomial time DTM.

For (w, v) ∈ K, the string v is called the certificate/witness for w. We call the language K the
certificate/witness language for L.

Indeed Def. 0.3 and 0.4 are equivalent. That is, for every language L, L is in NP in the sense
of Def. 0.3 if and only if L is in NP in the sense of Def. 0.4.

3 NP-complete languages

Recall that a DTMM computes a function F : Σ∗ → Σ∗ in time O(g(n)), if there is a constant
c > 0 such that on every word w,M computes F (w) in time 6 cg(|w|). If g(n) = poly(n), such
fucntion F is called polynomial time computable function. Moreover, ifM uses only logarithmic
space, it is called logarithmic space computable function.

Definition 0.5 A language L1 is polynomial time reducible to another language L2, denoted by
L1 6p L2, if there is a polynomial time computable function F such that for every w ∈ Σ∗:

w ∈ L1 if and only if F (w) ∈ L2

2/3

CSIE 5046: Topics in complexity theory (Sem. 2, 2021/2022) Lesson 0: Preliminaries

Such function F is called polynomial time reduction, also known as Karp reduction.
If F is logarithmic space computable function, we say that L1 is log-space reducible to L2,

denoted by L1 6log L2.
If L1 and L2 are in NP with certificate languages K1 and K2, respectively, we say that F is

parsimonious, if for every w ∈ Σ∗, w has the same number of certificates in K1 as F (w) in K2.

Definition 0.6 Let L be a language.

• L is NP-hard, if for every L′ ∈ NP, L′ 6p L.

• L is NP-complete, if L ∈ NP and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x1, . . . , xn is in Con-
junctive Normal Form (CNF), if it is of the form:

∧
i

∨
j `i,j where each `i,j is a literal, i.e., a

variable xk or its negation ¬xk. It is in 3-CNF, if it is of the form
∧

i

(
`i,1 ∨ `i,2 ∨ `i,3

)
. A

formula ϕ is satisfiable, if there is an assignment of Boolean values true or false to each variable
in ϕ that evaluates to true.

SAT

Input: A propositional formula ϕ in CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

3-SAT

Input: A propositional formula ϕ in 3-CNF.
Task: Output true, if ϕ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT def
= {ϕ : ϕ is satisfiable CNF formula}.

Likewise, for 3-SAT.

Theorem 0.7 (Cook 1971, Levin 1973) SAT and 3-SAT are NP-complete.

4 coNP-complete problems

Analogous to NP-complete, we can also define coNP-complete problems.

Definition 0.8 Let K be a language.

• K is coNP-hard, if for every L ∈ coNP, L 6p K.

• K is coNP-complete, if K ∈ coNP and K is coNP-hard.

Note that for every language K, K is NP-complete if and only if its complement K is coNP-
complete, where K

def
= Σ∗ −K. Thus, SAT def

= {ϕ : ϕ is not satisfiable} is coNP-complete.

3/3

	Time complexity
	Alternative definitions of the class NP
	NP-complete languages
	coNP-complete problems

