Lesson 0: Preliminaries

Theme: Review of some introductory material.

Let \mathbb{N} denote the set of natural numbers $\{0, 1, 2, \ldots\}$. Let f and g be functions from \mathbb{N} to \mathbb{N} .

- f = O(g) means that there is c and n_0 such that for every $n \ge n_0$, $f(n) \le c \cdot g(n)$. It is usually phrased as "there is c such that for (all) sufficiently large n," $f(n) \le c \cdot g(n)$.
- $f = \Omega(g)$ means g = O(f).
- $f = \Theta(g)$ means g = O(f) and f = O(g).
- f = o(g) means for every c > 0, f(n) ≤ c ⋅ g(n) for sufficiently large n. Equivalently, f = o(g) means f = O(g) and g ≠ O(f). Another equivalent definition is f = o(g) means lim_{n→∞} f(n)/g(n) = 0.
- $f = \omega(g)$ means g = o(f).

To emphasize the input parameter, we will write f(n) = O(g(n)). The same for the Ω, o, ω notations. We also write $f(n) = \mathsf{poly}(n)$ to denote that $f(n) = c \cdot n^k$ for some c and $k \ge 1$.

Throughout the course, for an integer $n \ge 0$, we will denote by $\lfloor n \rfloor$ the binary representation of n. Likewise, $\lfloor G \rfloor$ the binary encoding of a graph G. In general, we write $\lfloor X \rfloor$ to denote the encoding/representation of an object X as a binary string, i.e., a 0-1 string. To avoid clutter, we often write X instead of $\lfloor X \rfloor$.

We usually use Σ to denote a finite input alphabet. Often $\Sigma = \{0, 1\}$. Recall also that for a word $w \in \Sigma^*$, |w| denotes the length of w. For a DTM/NTM \mathcal{M} , we write $L(\mathcal{M})$ to denote the language $\{w : \mathcal{M} \text{ accepts } w\}$.

We often view a language $L \subseteq \Sigma^*$ as a boolean function, i.e., $L : \Sigma^* \to \{\text{true}, \text{false}\}$, where L(x) = true if and only if $x \in L$, for every $x \in \Sigma^*$.

1 Time complexity

Definition 0.1 Let \mathcal{M} be a DTM/NTM, $w \in \Sigma^*$, $t \in \mathbb{N}$ and let $f : \mathbb{N} \to \mathbb{N}$ be a function.

• \mathcal{M} decides w in time t (or, in t steps), if every run of \mathcal{M} on w has length at most t. That is, for every run of \mathcal{M} on w:

 $C_0 \vdash C_1 \vdash \cdots \vdash C_m$ where C_m is a halting configuration,

we have $m \leq t$.

- \mathcal{M} runs in time O(f(n)), if there is c > 0 such that for sufficiently long word w, \mathcal{M} decides w in time $c \cdot f(|w|)$.
- \mathcal{M} decides/accepts a language L in time O(f(n)), if $L(\mathcal{M}) = L$ and \mathcal{M} runs in time O(f(n)).
- DTIME $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is a DTM } \mathcal{M} \text{ that decides } L \text{ in time } O(f(n))\}.$
- NTIME $[f(n)] \stackrel{\text{def}}{=} \{L : \text{there is an NTM } \mathcal{M} \text{ that decides } L \text{ in time } O(f(n))\}.$

Lesson 0: Preliminaries

We say that \mathcal{M} runs in *polynomial* and *exponential time*, if there is f(n) = poly(n) such that \mathcal{M} runs in time O(f(n)) and $O(2^{f(n)})$, respectively. In this case we also say that \mathcal{M} is a polynomial/exponential time TM.

The following are some of the important classes in complexity theory.

$$\mathbf{P} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \mathsf{poly}(n) \\ f(n) = \mathsf{poly}(n)}} \operatorname{DTIME}[f(n)]} \qquad \mathbf{EXP} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \mathsf{poly}(n) \\ f(n) = \mathsf{poly}(n)}} \operatorname{DTIME}[f(n)]} \qquad \mathbf{NEXP} \stackrel{\text{def}}{=} \bigcup_{\substack{f(n) = \mathsf{poly}(n) \\ f(n) = \mathsf{poly}(n)}} \operatorname{NTIME}[2^{f(n)}]} \\ \mathbf{coNP} \stackrel{\text{def}}{=} \{L : \Sigma^* - L \in \mathbf{NP}\} \qquad \mathbf{coNEXP} \stackrel{\text{def}}{=} \{L : \Sigma^* - L \in \mathbf{NEXP}\}$$

Theorem 0.2 (Padding theorem) If NP = P, then NEXP = EXP. Likewise, if NP = coNP, then NEXP = coNEXP.

2 Alternative definitions of the class NP

Note that according to the definition in the previous section, the class **NP** can be defined as follows.

Definition 0.3 A language L is in **NP** if there is f(n) = poly(n) and an NTM \mathcal{M} such that $L(\mathcal{M}) = L$ and \mathcal{M} runs in time O(f(n)).

There is an alternative definition of **NP**.

Definition 0.4 A language $L \subseteq \Sigma^*$ is in **NP** if there is a language $K \subseteq \Sigma^* \times \Sigma^*$ such that the following holds.

- For every $w \in \Sigma^*$, $w \in L$ if and only if there is $v \in \Sigma^*$ such that $(w, v) \in K$.
- There is $f(n) = \operatorname{poly}(n)$ such that for every $(w, v) \in K$, $|v| \leq f(|w|)$.
- The language K is accepted by a polynomial time DTM.

For $(w, v) \in K$, the string v is called the *certificate/witness* for w. We call the language K the *certificate/witness language* for L.

Indeed Def. 0.3 and 0.4 are equivalent. That is, for every language L, L is in **NP** in the sense of Def. 0.3 if and only if L is in **NP** in the sense of Def. 0.4.

3 NP-complete languages

Recall that a DTM \mathcal{M} computes a function $F : \Sigma^* \to \Sigma^*$ in time O(g(n)), if there is a constant c > 0 such that on every word w, \mathcal{M} computes F(w) in time $\leq cg(|w|)$. If $g(n) = \mathsf{poly}(n)$, such function F is called *polynomial time computable* function. Moreover, if \mathcal{M} uses only logarithmic space, it is called *logarithmic space computable* function.

Definition 0.5 A language L_1 is polynomial time reducible to another language L_2 , denoted by $L_1 \leq_p L_2$, if there is a polynomial time computable function F such that for every $w \in \Sigma^*$:

$$w \in L_1$$
 if and only if $F(w) \in L_2$

Such function F is called polynomial time reduction, also known as Karp reduction.

If F is logarithmic space computable function, we say that L_1 is log-space reducible to L_2 , denoted by $L_1 \leq_{\log} L_2$.

If L_1 and L_2 are in **NP** with certificate languages K_1 and K_2 , respectively, we say that F is *parsimonious*, if for every $w \in \Sigma^*$, w has the same number of certificates in K_1 as F(w) in K_2 .

Definition 0.6 Let *L* be a language.

- L is **NP**-hard, if for every $L' \in$ **NP**, $L' \leq_p L$.
- L is NP-complete, if $L \in NP$ and L is NP-hard.

Recall that a propositional formula (Boolean expression) with variables x_1, \ldots, x_n is in Conjunctive Normal Form (CNF), if it is of the form: $\bigwedge_i \bigvee_j \ell_{i,j}$ where each $\ell_{i,j}$ is a literal, i.e., a variable x_k or its negation $\neg x_k$. It is in 3-CNF, if it is of the form $\bigwedge_i (\ell_{i,1} \lor \ell_{i,2} \lor \ell_{i,3})$. A formula φ is satisfiable, if there is an assignment of Boolean values true or false to each variable in φ that evaluates to true.

Input:	A propositional formula φ in CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.
3-SAT	

Input:	A propositional formula φ in 3-CNF.
Task:	Output true, if φ is satisfiable. Otherwise, output false.

Obviously, SAT can be viewed as a language, i.e., SAT $\stackrel{\text{def}}{=} \{\varphi : \varphi \text{ is satisfiable CNF formula}\}$. Likewise, for 3-SAT.

Theorem 0.7 (Cook 1971, Levin 1973) SAT and 3-SAT are NP-complete.

4 coNP-complete problems

Analogous to \mathbf{NP} -complete, we can also define \mathbf{coNP} -complete problems.

Definition 0.8 Let K be a language.

- K is **coNP**-hard, if for every $L \in$ **coNP**, $L \leq_p K$.
- K is coNP-complete, if $K \in coNP$ and K is coNP-hard.

Note that for every language K, K is **NP**-complete if and only if its complement \overline{K} is **coNP**-complete, where $\overline{K} \stackrel{\text{def}}{=} \Sigma^* - K$. Thus, $\overline{\mathsf{SAT}} \stackrel{\text{def}}{=} \{\varphi : \varphi \text{ is not satisfiable}\}$ is **coNP**-complete.