Homework 3

Due on Tuesday, 11:59 am, 30 May 2022 (111/05/30)

Note: There are 8 questions altogether. For Questions $1-3$, we will use the following notation. For a function $g: \mathbb{N} \rightarrow \mathbb{N}$, let $\operatorname{SIZE}(g)$ denote the class of languages such that $L \in \operatorname{SIZE}(g)$ if and only if L is decided by a circuit family $\left\{C_{n}\right\}$ such that for sufficiently large n :

$$
\left|C_{n}\right| \leqslant g(n)
$$

That is, there is n^{\prime} such that for every $n \geqslant n^{\prime},\left|C_{n}\right| \leqslant g(n)$.

Question 1.

(a) Show that every function $f:\{0,1\}^{t} \rightarrow\{0,1\}$ can be computed by a circuit of size $\leqslant 3 t 2^{t}$.
(b) Show that for every $k \geqslant 1$, there is a language L such that the following holds.
(P1) $L \in \operatorname{SIZE}\left(n^{k+1}\right)$.
(P2) For sufficiently large n, there is no circuit of size $\leqslant n^{k}$ that computes $L \cap\{0,1\}^{n}$.
Conclude that for every $k \geqslant 1, \operatorname{SIZE}\left(n^{k}\right) \subsetneq \operatorname{SIZE}\left(n^{k+1}\right)$.
Hint for (b): We know that for every t, there is a function $f:\{0,1\}^{t} \rightarrow\{0,1\}$ such that f is not computable by circuit of size $2^{t} /(10 t)$. Combine this with (a) for some appropriate value t.

Question 2. Prove that for every $k \geqslant 1$, there is a language $L \in \boldsymbol{\Sigma}_{4}^{p}$ that has properties (P1) and (P2) above. Then, conclude that for every $k \geqslant 1, \boldsymbol{\Sigma}_{4}^{p} \backslash \operatorname{SIZE}\left(n^{k}\right) \neq \emptyset$.
Hint: Consider the language L in Question 1. Then, for every n, consider the "lexicographically first" circuit C_{n} of size $\leqslant n^{k+1}$ that is not equivalent to any of the circuit of size $\leqslant n^{k}$.

Question 3. Prove that for every $k \geqslant 1$, there is a language $L \in \boldsymbol{\Sigma}_{2}^{p} \backslash \operatorname{SIZE}\left(n^{k}\right)$.

Question 4.

- Let $\mathcal{H}_{n, k}$ be a pairwise independent collection of hash functions $h:\{0,1\}^{\rightarrow}\{0,1\}^{k}$. Prove that for every $x \in\{0,1\}^{n}$, for every $y \in\{0,1\}^{k}, \operatorname{Pr}_{h \in \mathcal{H}_{n, k}}[h(x)=y]=2^{-k}$.
- Prove Theorem 8.9, i.e., the collection $\mathcal{H}_{n, n} \stackrel{\text { def }}{=}\left\{h_{A, b}: A \in\{0,1\}^{n \times n}\right.$ and $\left.b \in\{0,1\}^{n \times 1}\right\}$ is pair-wise independent.

Question 5. Prove that MA $\subseteq \boldsymbol{\Sigma}_{2}^{p}$.

