Homework 3

Due on Tuesday, 11:59 am, 30 May 2022 (111/05/30)

Note: There are 8 questions altogether. For Questions 1–3, we will use the following notation. For a function $g : \mathbb{N} \to \mathbb{N}$, let SIZE(g) denote the class of languages such that $L \in SIZE(g)$ if and only if L is decided by a circuit family $\{C_n\}$ such that for sufficiently large n:

 $|C_n| \leq g(n)$

That is, there is n' such that for every $n \ge n'$, $|C_n| \le g(n)$.

Question 1.

- (a) Show that every function $f: \{0,1\}^t \to \{0,1\}$ can be computed by a circuit of size $\leq 3t2^t$.
- (b) Show that for every $k \ge 1$, there is a language L such that the following holds.
 - (P1) $L \in \text{SIZE}(n^{k+1}).$
 - (P2) For sufficiently large n, there is no circuit of size $\leq n^k$ that computes $L \cap \{0, 1\}^n$.

Conclude that for every $k \ge 1$, SIZE $(n^k) \subseteq$ SIZE (n^{k+1}) .

Hint for (b): We know that for every t, there is a function $f : \{0,1\}^t \to \{0,1\}$ such that f is not computable by circuit of size $2^t/(10t)$. Combine this with (a) for some appropriate value t.

Question 2. Prove that for every $k \ge 1$, there is a language $L \in \Sigma_4^p$ that has properties (P1) and (P2) above. Then, conclude that for every $k \ge 1$, $\Sigma_4^p \setminus \text{SIZE}(n^k) \ne \emptyset$.

Hint: Consider the language L in Question 1. Then, for every n, consider the "lexicographically first" circuit C_n of size $\leq n^{k+1}$ that is not equivalent to any of the circuit of size $\leq n^k$.

Question 3. Prove that for every $k \ge 1$, there is a language $L \in \Sigma_2^p \setminus \text{SIZE}(n^k)$.

Question 4.

- Let $\mathcal{H}_{n,k}$ be a pairwise independent collection of hash functions $h : \{0,1\}^{\rightarrow} \{0,1\}^k$. Prove that for every $x \in \{0,1\}^n$, for every $y \in \{0,1\}^k$, $\mathbf{Pr}_{h \in \mathcal{H}_{n,k}}[h(x) = y] = 2^{-k}$.
- Prove Theorem 8.9, i.e., the collection $\mathcal{H}_{n,n} \stackrel{\text{def}}{=} \{h_{A,b} : A \in \{0,1\}^{n \times n} \text{ and } b \in \{0,1\}^{n \times 1}\}$ is pair-wise independent.

Question 5. Prove that $\mathbf{MA} \subseteq \boldsymbol{\Sigma}_2^p$.