Homework 2

Due on Monday, 10:30 am, 25 April 2022 (111/04/25)

Question 1 (1 point). Consider the problem CIRCUIT-EVAL and Theorem 3.3 in Note 3. The main idea for the proof of hardness is as follows. Let \mathcal{M} be a polynomial time DTM. On input word w, the reduction constructs a circuit C such that:

C(w) = 1 if and only if \mathcal{M} accepts w

The construction of C is similar to Cook-Levin reduction for the proof of **NP**-hardness of SAT. Explain why we need the fact that \mathcal{M} is DTM and *not* NTM in the proof of Theorem 3.3.

Question 2 (2 points). Prove that PH collapses if any one of the following is true.

- $\Sigma_i^p = \Pi_i^p$ for some $i \ge 1$.
- There is **PH**-complete language.
- $\mathbf{PH} = \mathbf{PSPACE}$.

Question 3 (2 points). Suppose that A is a language such that $\mathbf{P}^{A} = \mathbf{N}\mathbf{P}^{A}$. Prove that $\mathbf{P}\mathbf{H}^{A} \subseteq \mathbf{P}^{A}$.

Def: A language L is in the class Σ_i^p with oracle access to A, if there is a polynomial q(n) and a polynomial time DTM \mathcal{M}^A such that for every $w \in \Sigma^*$ the following holds.

 $w \in L$ iff $\exists y_1 \in \{0,1\}^{q(|w|)} \forall y_2 \in \{0,1\}^{q(|w|)} \cdots Qy_i \in \{0,1\}^{q(|w|)} \mathcal{M}^A$ accepts (w, y_1, \dots, y_i)

As before, \mathcal{M}^A denotes the TM \mathcal{M} with oracle access to A. A language L is in \mathbf{PH}^A , if there is i such that L is in the class Σ_i^p with oracle access to A.

Question 4 (1 point). Consider the following two problems.

CYCLE-COVER		
Input:	A directed graph G .	
Task:	Output a cycle cover of A , if exists. Otherwise, output 0.	
MATCHING		

Input:	A bipartite (undirected) graph $H = (U, V, E)$, where $ U = V $.
Task:	Output a matching of H , if exists. Otherwise, output 0.

Here a matching of H = (U, V, E) is defined as a set $E_0 \subseteq E$ such that every vertex $u \in U \cup V$ is incident to exactly one edge in E_0 . In other words, E_0 forms a "bijection" from U to V.

Prove that CYCLE-COVER and MATCHING are reducible to each other in polynomial time.

Question 5 (2 points). Prove Lemma 5.10 in Note 5.

Question 6 (2 points). Prove Lemma 5.11 in Note 5.