Homework 1

Due on Monday, 10:30 am, 28 March 2022 (111/03/28)

Question 1 (2 points). Consider the proof of Theorem 1.1. Prove that Algorithm 1 runs in time $O(n^3)$.

Question 2 (2 points). Prove that P = NP if and only if there is a polynomial time DTM for the following problem.

FIND-SOL	
Input:	A propositional formula φ in CNF.
Task:	Output a satisfying assignment for φ , if it exists. Otherwise, output 0.

Note that FIND-SOL is *not* an NP-complete problem. Recall that NP-complete problems are defined only on "decision" problems, i.e., determining whether a word w is in a certain language L.

Question 3 (2 points). Prove that if there is a unary language L that is NP-hard, then $SAT \in \mathbf{P}$, and hence, $\mathbf{P} = \mathbf{NP}$.

Def: A language L is a unary language, if $L \subseteq \{1\}^*$, i.e., every word $w \in L$ contains only 1.

Question 4 (2 points). Consider the following language CYCLE.

CYCLE $\stackrel{\text{def}}{=} \{G: G \text{ is a directed graph and it contains a cycle}\}$

- Prove that CYCLE is **NL**-complete.
- Give a logarithmic space NTM for $\overline{\mathsf{CYCLE}}$.

Here \overline{CYCLE} is the complement of CYCLE, defined as follows.

 $\overline{\mathsf{CYCLE}} \stackrel{\text{def}}{=} \{G: G \text{ is a directed graph and does not contain cycle}\}$

Question 5 (2 points). Consider the following language K.

 $K \stackrel{\mathsf{def}}{=} \{ (\mathcal{M}, w, 1^n) : \mathcal{M} \text{ is a DTM that accepts } w \text{ in space } n \}$

Prove that K is **PSPACE**-complete. Is its complement \overline{K} **PSPACE**-complete?