
Gumbo: Guarded Fragment Queries over Big Data

[Demo paper]

Jonny Daenen
Hasselt University

Diepenbeek, Belgium
jonny.daenen@uhasselt.be

Frank Neven
Hasselt University

Diepenbeek, Belgium
frank.neven@uhasselt.be

Tony Tan
Hasselt University

Diepenbeek, Belgium
tony.tan@uhasselt.be

ABSTRACT
We present Gumbo, a system for the efficient evaluation of
guarded fragment queries on top of Hadoop and Spark. A
key asset of Gumbo is the reduced number of jobs in com-
parison with recent systems such as Pig, Hive or Shark. For
unnested guarded fragment queries, Gumbo even provides
a constant bound on the number of jobs independent of the
size of the query. In the demo, we will address the follow-
ing features of Gumbo: ease-of-use, query plan construction
and visualisation, and query execution.

Categories and Subject Descriptors
[Information systems]: MapReduce-based systems, rela-
tional parallel and distributed DBMSs, key-value stores, re-
lational database model

General Terms
DBMS

Keywords
MapReduce, Hadoop, Spark, Guarded-fragment Queries

1. INTRODUCTION
Recent years have seen a massive growth in parallel and

distributed computations based on the use of the key-value
paradigm. This proliferation was fostered by the emergence
of popular systems such as Hadoop [14] and Spark [1]. Re-
cent systems such as Hive [13], Pig [9], Shark [15], etc. pro-
vide an SQL-like query language on top of Hadoop and
Spark. In this demo we showcase a novel system, called
Gumbo,1 that also operates on top of Hadoop and Spark,
and is specifically tailored for the evaluation of so called
guarded fragment (GF) queries. We show that, in general,

1In case you are wondering about the name, Gumbo’s
brother is an elephant featuring in several animated movies
but not known to be interested in guarded fragment queries.

c©2015, Copyright is with the authors. Published in Proc. 18th Inter-
national Conference on Extending Database Technology (EDBT), March
23-27, 2015, Brussels, Belgium: ISBN 978-3-89318-067-7, on OpenPro-
ceedings.org. Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Gumbo takes less jobs to evaluate GF queries than Pig, Hive
or Shark.

2. GUARDED-FRAGMENT QUERIES (GF)
We briefly review the definition of guarded fragment (GF)

queries. They are defined inductively as follows:

• Every atomic formula S(x̄) is a GF query.

• IfR(x̄, ȳ) is an atomic formula and ψ1(ȳ, z̄), . . . , ψl(ȳ, z̄)
are GF queries, then the following ϕ(x̄) is also a GF
query:

ϕ(x̄) := ∃ȳ ∃z̄1 · · · ∃z̄l

R(x̄, ȳ) ∧
(

Boolean combination of
ψ1(ȳ, z̄1), . . . , ψl(ȳ, z̄l)

)
The original definition of GF queries in [2] allows for ‘un-
garded negation’ by including that if ϕ(x̄) is a GF query,
then so is ¬ϕ(x̄). For pragmatic reason, the Gumbo system
does not consider such ungarded negation. Take, for exam-
ple, the negation of atomic relation ¬R(x̄). Under the closed
world assumption, its evaluation will involve collecting the
active domain and performing a Cartesian product on them
|x̄|−1 times, which, in general, is a very expensive operation
in distributed databases. We stress that Gumbo allows for
guarded negation as is allowed in the definition above and
is exemplified in the example in Section 5.

Originally GF queries were in [2] to investigate various
properties of modal logic. Since then, they have become
popular and found numerous applications in various fields.
One example is the description logic ALC, the basis of the
knowledge representation in artificial intelligence as well as
ontologies and web semantics. We refer the reader to [3,
11] and the references therein for more details. In fact,
ALC itself is a subclass of GF queries [10]. Recent studies
such as [6, 7] investigate the complexity of query answering
in description logic. GF queries and its natural extension,
guarded negation queries have also found applications in var-
ious database settings (for example, [4, 5, 12]).

To end this section, we sketch a scenario in which GF
queries can be used. Consider a library that records which
member borrows which books over a period of time. Specifi-
cally, there is a table R containing records with the following
fields: d, mem_id, b1, b2, b3, b4, b5. Here d stands for date,
mem_id for the member id, and each b represents a borrowed
book.2 Every night the new data that arose during the day

2In our imaginary library, each member can only borrow up

521 10.5441/002/edbt.2015.48

http://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2015.48

is added. To provide better service to its members, the li-
brarian decided to find out more about the dynamics of the
book transactions and starts exploring the data. For exam-
ple, she may want to find out how (un)popular books about
technology compared to other books. So she compiles a list
S of the ISBNs of the books about technology, and uses the
following query:

R(d, mem_id, b1, . . . , b5)

∧ ¬S(b1) ∧ ¬S(b2) ∧ ¬S(b3) ∧ ¬S(b4) ∧ ¬S(b5)

This query computes for each member all days that only
non-technology books are borrowed..

3. GF QUERY EVALUATION IN GUMBO
We contrast GF query evaluation in Gumbo with that in

Pig and Hive by means of an example.

GF in Pig and Hive.
To implement a relational operation between two datasets,

Pig requires us to perform a cogroup. Consider for instance
the following query:

ϕ(x̄) := R(x̄) ∧
(
¬S(x1) ∧ · · · ∧ ¬S(xn)

)
,

where x̄ = (x1, . . . , xn). Here, R is an n-ary relation and S
is a unary database relation.

Implementing the query ϕ in Pig/Hive/Shark will yield
either one of the following execution plans:

R(x̄) ¬S(x1)

∧ ¬S(x2)

...

R(x̄)

∧

¬S(x1)

· · · · · ·

R(x̄)

∧

¬S(xn)

∧

The plan on the left requires n rounds of shuffling the
datasets. Here, the first round evaluates R(x̄)∧¬S(x1), and
the result is passed to the second round which in turn eval-
uates (R(x̄)∧¬S(x1))∧¬S(x2), and so on. In contrast, the
plan on the right requires reading the input n number
of times: once for the evaluation of each R(x̄) ∧ ¬S(xi).

In either plan, we are required to either read the same
input multiple times or shuffling the datasets multiple times.
This creates a bottleneck, since shuffling and reading the
input can be very expensive, especially when the datasets
are huge.

GF in Gumbo.
Gumbo operates on top of Hadoop as well as Spark and

is specifically tailored to efficiently evaluate queries of the

to 5 books. If one member borrows less than 5 books, only
the first few fields are assigned and the rest are assigned
with the null value.

form:

ϕ(x̄) := ∃ȳ ∃z̄1 · · · ∃z̄l

R(x̄, ȳ) ∧
(

Boolean combination of
S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l)

)
(1)

where S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l) are atomic formulas. Gumbo
can evaluate such queries in two MapReduce jobs inde-
pendent of l and the form of the Boolean combination of
S1(ȳ, z̄1), . . . , Sl(ȳ, z̄l). In particular, Gumbo reads the in-
put datasets only once. This should be contrasted with Pig
and Hive where the number of jobs grows in the size of the
number of Boolean combinations.

We call queries of the form (1) basic queries, i.e. when
all Si(ȳ, z̄i) are atomic formulas. Gumbo can also evaluate
multiple queries that depend on one another. For example,
we can define ϕ1(x) = ∃y E(x, y)∧F (y), where E(x, y) and
F (y) are atomic formulas, and ϕ2(z) = ∃yE(z, x)∧ϕ1(x). In
this case, ϕ1 is a basic query, whereas ϕ2 is a nested query,
since it depends on the outcome of the query ϕ1. In this
case, Gumbo first takes two rounds to evaluate ϕ1(x), and
then another two rounds to evaluate ϕ2(x). In general, to
evaluate a set of queries in which the depth of dependency
is m, Gumbo requires 2m dependent map-reduce jobs.

4. COMPONENTS OF GUMBO
Gumbo is written in Java and consists of the six compo-

nents shown in Figure 1. We will briefly describe each of
these components in the following paragraphs.

Parser. GF queries are provided together with the location
of input and output relations. The queries are broken up
into basic GF queries, i.e. queries of the form (1) and de-
pendencies among them are determined. Structural errors
such as cyclic dependencies are also checked here. The re-
sult of this component is a DAG, where the nodes are sets
of basic GF queries to be evaluated, and the edges indicate
the dependencies among the queries.

Partitioner. Given a DAG of basic GF queries as input,
the partitioner aims to group queries in an optimal fashion
in an effort to reduce the total number of parallel rounds.
To this end, each query is assigned a round number, and
all queries that have the same round number are grouped
together. The result of this phase is a list of consecutive
rounds each containing a set of basic GF queries.

The partitioner can greatly reduce the number of jobs as
well as “balance” the computation load among the rounds.
Gumbo approximates the computational load of a query by
calculating or estimating the size of its input relations. We
can show that, in general, obtaining the most optimal sched-
ule is NP-hard, even if we assume that the computational
load to evaluate each query is uniform. In our initial version
of Gumbo, we therefore use a greedy algorithm to approx-
imate the optimal schedule. This is a reasonable approach
assuming that the queries are “few,” or that the dependency
depth is quite shallow. In the later versions of Gumbo, we
plan to use an SMT solver (e.g. Microsoft’s Z3 system [8])
to obtain the optimal schedule.

Job Constructor. Given a list of rounds, each round is com-
piled into two high-level map-reduce job as described below.
Locations for intermediate files are also determined here.

522

Parser Partitioner

Job

Constructor

Hadoop

Compiler

Spark

ExecutorQuery

Relation-to-File

Mapping

DAG of Basic

GF Queries

List of

Rounds

Execution

Plan

Hadoop

Executor

Output

Figure 1: The Gumbo workflow.

The result of this phase is a Gumbo-plan.
For a query ψ(x̄) of the form (1) Gumbo’s job constructor

builds the following mappers and reducers:

Mapper 1: On each tuple R(ā, b̄) Mapper 1 emits following
the key-value pairs:〈

S1(c̄1) : R(ā, b̄)
〉
, . . .

〈
Sl(c̄l) : R(ā, b̄)

〉
where each c̄i is the projection of (ā, b̄) according to
the ȳ coordinates. The intuitive meaning of this part is
that a tuple R(ā, b̄) inquires whether the tuple Si(c̄i, d̄)
exists for some d̄.

On each tuple Si(c̄, d̄) Mapper 1 emits the key-value
pair

〈
Si(c̄) : #

〉
, where c̄ is the projection of (c̄, d̄) to

the ȳ coordinate The intuitive meaning of this part is
that the key Si(c̄) states that the tuple Si(c̄, d̄) exists
for some d̄.

Reducer 1: For a key Si(c̄), the reducer operates on its set
of values V as follows.

If # appears as value, for each value of the formR(ā, b̄),
it emits a key-value pair

〈
R(ā, b̄) : i

〉
, which means that

Si(c̄, d̄) exists for some d̄.

If # does not exist, for each value of the form R(ā, b̄),
it emits

〈
R(ā, b̄) : −i)

〉
, which means that there is no

d̄ such that Si(c̄, d̄) exists.

Mapper 2: This is an identity mapper that just reads and
emits the key-value pairs created by Reducer 1.

Reducer 2: The keys are all of the form R(ā, b̄), with the
associated values a subset of {−l, . . . ,−1, 1, . . . , l}. The
values determine the Boolean assignment ξ, where ξ as-
signs Sj(z̄j)) with true, if and only if j appears among
the values associated with R(ā). So, on key R(ā, b̄),
the reducer evaluates the formula according to the as-
signment ξ. If it evaluates to true, it writes the tuple
ā into the output file.

In our implementation of Gumbo, we further optimize the
algorithm above, such as by compressing the keys and values,
thus, decreasing the number of data bytes to be shuffled.

Hadoop Compiler & Executor. This component takes a
Gumbo-plan and compiles into a set of Hadoop map-reduce
jobs using the mappers and reducers constructed above. The
resulting plan can then be directly executed using Hadoop.

Spark Executor. This component takes a Gumbo-plan and
executes the rounds one by one. The input data is stored
in Spark’s RDD data structure and the execution plan is
translated into RDD’s transformations and actions such as
flatMap() and groupByKey() to execute the jobs described
in the Gumbo-plan.

Assuming that the relations R,S1, . . . , Sl are all dumped
in a single RDD A, a straightforward translation of the al-
gorithm above to one that uses Spark’s RDD is as follows.

B = A.flatMapToPair(<Mapper 1>);

C = B.groupByKey();

D = C.flatMap(<Reducer 1>);

E = D.flatMapToPair(<Mapper 2>);

F = E.groupByKey();

G = F.flatMap(<Reducer 2>); // G is the output

To make the Spark’s algorithm above more efficient, we in-
corporate a few optimization strategies. For example, Map-
per 2 in the algorithm above basically does nothing, so it
can be omitted.

5. DEMO OVERVIEW
The goal of the demo is to show how Gumbo can be used

to evaluate GF queries on top of Hadoop/Spark and to give
insight in how it compares to the existing systems Pig, Hive
and Hadoop. This comparison can be done on several lev-
els: the query design, the query plan (which gives insight in
the workings of the system) and the query execution where
performance really matters. In the demo, the users can do
the following.

Input the queries and the dataset. Queries are written in
standard logic notation, where &, |, ! denote the and, or
and negation operations, respectively. We use the standard
symbol = to define the query. For example, the user can
input the following queries, where E(x, y), F (y) and G(x, z)
are atomic formulas:

Out1(x) = E(x,y) & !F(y) & G(x,z);

Out2(x) = E(x,y) & Out1(y);

Out3(x) = E(x,y) & Out1(y) & !Out2(x);

Out4(x,y) = E(x,y) & !Out1(x);

E(x,y) - E.txt;

F(y) - F.txt;

G(x,z) - G.txt;

Out1(x) - Out1.txt;

Out2(x) - Out2.txt;

Out3(x) - Out3.txt;

Out4(x,y) - Out4.txt;

The query Out1(x) collects all the x’s where for some y,z,
the tuple (x,y) is in E and (x,z) is in G, but y is not in
F. Similarly, the query Out2(x) collects all the x’s where for
some y, the tuple (x,y) is in E and y is in Out1.

Users also indicate which relations should be read from
disk and where these reside in the file system. In our exam-
ple above, E(x, y) is an atomic formula, so E(x,y) - E.txt

523

(file input)

round 1

round 2

round 3

Out1

Out2

Out3

Out4

E.txtF.txt G.txt

Figure 2: A DAG of jobs.

indicates that the relation E is to be read from the file E.txt
To indicate where to write the output, we use the same for-
mat. For example, Out1(x) - Out1.txt indicates that the
output of Out1(x) will be written in the file Out1.txt.

For the users to experiment, we provide a set of queries
and for each query a collection of datasets on which the
query behaves differently. For example, we provide some
datasets in which the query outputs a lot of tuples, as well
as some datasets in which the query outputs very few tuples.

Visualise the query plan. Similar to Pig, Gumbo also pro-
vides a “visualisation” of the dependencies among the jobs
to evaluate the input queries. In our demo we are going to
compare the map-reduce jobs constructed by Gumbo with
those constructed by Pig.

In our example of Out1, Out2, Out3 and Out4 above, in
Gumbo we obtain the DAG shown in Figure 2. Gumbo has
two choices: evaluating the query Out4 together with Out2 or
with Out3. If the computation load of Out2 is much smaller
than Out3, then the partitioner in Gumbo will merge Out2

with Out4. In this case, the partitioner assigned the same
round number to Out2 with Out4, which means that they
are to be evaluated simultaneously in the same map-reduce
job.

Such visualisation provides the users the following bene-
fits: (i) an insight in the plan construction; (ii) viewing the
round numbers assigned by the partitioner; (iii) the effect of
enabling/disabling certain optimizations (e.g. partitioners);
(iv) comparison in the number of jobs in the query plans of
Gumbo and those written in different systems such as Pig.

Execute the queries. In the final part of our demo, we will
allow the users to execute some queries on sample data. We
supply some sample-data of limited size, as “real” big data
would require too much execution time.

The progress of a query and the log messages produced by
the system can be viewed during execution. After the exe-
cution the user is able to inspect the output files to ensure
that the queries were executed correctly and also the inter-
mediate files to clarify the inner workings of the systems.

To further illustrate the inner working of Gumbo’s Hadoop
executor, we will show the content of the intermediate data
passed from one round to the next, as well as some metrics
such as the number of mappers and reducers used by Gumbo
as well as by Pig and Hive. For the case of Gumbo’s Spark

executor, we will show the content of the RDD in the inter-
mediate steps leading to the evaluation of the queries.

The key points that we want to highlight in this final part
of the demo are: the time Gumbo takes to evaluate a query,
and the performance gain obtained by combining multiple
queries.

Acknowledgement
The third author is supported by FWO Pegasus Marie Curie
fellowship.

6. REFERENCES
[1] Spark. http://spark.apache.org.

[2] H. Andréka, J. van Benthem, and I. Németi. Modal
languages and bounded fragments of predicate logic.
Journal of Philosophical Logic, 1998.

[3] F. Baader, D. Calvanese, D. McGuiness, D. Nardi,
and P. Patel-Schneider, editors. The Description Logic
Handbook. Cambridge University Press, 2003.

[4] V. Bárány, G. Gottlob, and M. Otto. Querying the
guarded fragment. In LICS, 2010.

[5] V. Bárány, B. ten Cate, and M. Otto. Queries with
guarded negation. PVLDB, 5(11):1328–1339, 2012.

[6] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Data complexity of query
answering in description logics. In KR, 2006.

[7] D. Calvanese, G. De Giacomo, D. Lembo,
M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The
DL-Lite family. Journal of Automated Reasoning,
39(3):385–429, 2007.

[8] L. de Moura and N. Bjørner. Z3: an efficient SMT
solver. In TACAS, pages 337–340, 2008.

[9] A. Gates, O. Natkovich, S. Chopra, P. Kamath,
S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and
U. Srivastava. Building a highlevel dataflow system on
top of mapreduce: The pig experience. PVLDB,
2(2):1414–1425, 2009.

[10] E. Grädel. Description logics and guarded fragments
of first order logic. In DL, 1998.

[11] I. Horrocks. Ontologies and the semantic web.
Commun. ACM, 51(12):58–67, 2008.

[12] R. Rosati. On the decidability and finite
controllability of query processing in databases with
incomplete information. In PODS, 2006.

[13] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive -
a petabyte scale data warehouse using hadoop. In
ICDE, 2010.

[14] T. White. Hadoop - The Definitive Guide: Storage and
Analysis at Internet Scale (3. ed., revised and
updated). O’Reilly, 2012.

[15] R. Xin, J. Rosen, M. Zaharia, M. Franklin, S. Shenker,
and I. Stoica. Shark: Sql and rich analytics at scale. In
SIGMOD, 2013.

524

